

Lecture Notes in Artificial Intelligence 3596
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Frithjof Dau Marie-Laure Mugnier
Gerd Stumme (Eds.)

Conceptual Structures:
Common Semantics
for Sharing Knowledge

13th International Conference
on Conceptual Structures, ICCS 2005
Kassel, Germany, July 17-22, 2005
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Frithjof Dau
Technische Universität Darmstadt, Fachbereich Mathematik, AG 1
Schloßgartenstr. 7, 64289 Darmstadt, Germany
E-mail: dau@mathematik.tu-darmstadt.de

Marie-Laure Mugnier
LIRMM (CNRS and University of Montpellier II)
161, rue ADA, 34392 Montpellier, France
E-mail: mugnier@lirmm.fr

Gerd Stumme
Universität Kassel, Fachbereich Mathematik und Informatik
Wilhelmshöher Allee 73, 34121 Kassel, Germany
E-mail: stumme@cs.uni-kassel.de

Library of Congress Control Number: 2005928703

CR Subject Classification (1998): I.2, G.2.2, F.4.1, F.2.1, H.4

ISSN 0302-9743
ISBN-10 3-540-27783-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27783-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11524564 06/3142 5 4 3 2 1 0

Preface

The 13th International Conference on Conceptual Structures (ICCS 2005) was
held in Kassel, Germany, during July 17–22, 2005. Information about the con-
ference can be found at http://www.kde.cs.uni-kassel.de/conf/iccs05.

The title of this year’s conference, “Common Semantics for Sharing Knowl-
edge”, was chosen to emphasize on the one hand the overall aim of any knowledge
representation formalism, to support the sharing of knowledge, and on the other
hand the importance of a common semantics to avoid distortion of the meaning.
We understand that both aspects are of equal importance for a successful future
of the research area of conceptual structures. We are thus happy that the papers
presented at ICCS 2005 addressed both applications and theoretical foundations.

“Sharing knowledge” can also be understood in a separate sense. Thanks to
the German Research Foundation, DFG, we were able to invite nine interna-
tionally renowned researchers from adjacent research areas. We had stimulating
presentations and lively discussions, with bidirectional knowledge sharing. Even-
tually the ground can be laid for establishing common semantics between the
respective theories.

This year, 66 papers were submitted, from which 22 were selected to be
included in this volume. In addition, the first nine papers present the invited
talks. We wish to express our appreciation to all the authors of submitted papers,
to the members of the Editorial Board and the Program Committee, and to
the external reviewers for making ICCS 2005 a valuable contribution to the
knowledge processing research field.

July 2005 Frithjof Dau
Marie-Laure Mugnier

Gerd Stumme

Organization

The International Conference on Conceptual Structures (ICCS) is the annual
conference and principal research forum in the theory and practice of conceptual
structures. Previous ICCS conferences were held at the Université Laval (Quebec
City, 1993), at the University of Maryland (1994), at the University of California
(Santa Cruz, 1995), in Sydney (1996), at the University of Washington (Seattle,
1997), at the University of Montpellier (1998), at Virginia Tech (Blacksburg,
1999), at Darmstadt University of Technology (2000), at Stanford University
(2001), in Borovets, Bulgaria (2002), at Dresden University of Technology (2003),
and at the University of Alabama (Huntsville, 2004).

General Chair

Gerd Stumme University of Kassel, Germany

Program Chairs

Frithjof Dau Darmstadt Technical University, Germany
Marie-Laure Mugnier University of Montpellier, France

Editorial Board

Galia Angelova (Bulgaria)
Michel Chein (France)
Aldo de Moor (Belgium)
Harry Delugach (USA)
Peter Eklund (Australia)
Bernhard Ganter (Germany)
Mary Keeler (USA)
Sergei Kuznetsov (Russia)
Wilfried Lex (Germany)

Guy Mineau (Canada)
Bernard Moulin (Canada)
Peter Øhrstrøm (Denmark)
Heather Pfeiffer (USA)
Uta Priss (UK)
John Sowa (USA)
Rudolf Wille (Germany)
Karl Erich Wolff (Germany)

Program Committee

Anne Berry (France)
Tru Cao (Vietnam)
Dan Corbett (Australia)
Olivier Corby (France)
Pavlin Dobrev (Bulgaria)

David Genest (France)
Ollivier Haemmerlé (France)
Roger Hartley (USA)
Udo Hebisch (Germany)
Joachim Hereth Correia (Germany)

VIII Organization

Richard Hill (UK)
Pascal Hitzler (Germany)
Kees Hoede (The Netherlands)
Julia Klinger (Germany)
Pavel Kocura (UK)
Robert Kremer (Canada)
Leonhard Kwuida (Germany)
M. Lecler̀e (France)
Robert Levinson (USA)
Michel Liquière (France)
Carsten Lutz (Germany)
Philippe Martin (Australia)
Engelbert Mephu Nguifo (France)
Sergei Obiedkov (Russia)

Simon Polovina (UK)
Anne-Marie Rassinoux (Switzerland)
Gary Richmond (USA)
Olivier Ridoux (France)
Daniel Rochowiak (USA)
Sebastian Rudolph (Germany)
Eric Salvat (France)
Janos Sarbo (The Netherlands)
Henrik Schaerfe (Denmark)
Thanwadee T. Sunetnanta (Thailand)
William Tepfenhart (USA)
Petko Valtchev (Canada)
Sergei Yevtushenko (Germany)
G.Q. Zhang (USA)

External Reviewers

Sadok Ben Yahia (Tunisia)
Richard Cole (Australia)
Jon Ducrou (Australia)
Letha Etzkorn (USA)

Markus Krötzsch (Germany)
Boris Motik (Germany)
Anthony K. Seda (Ireland)

Table of Contents

Invited Papers

Patterns for the Pragmatic Web . 1
Aldo de Moor

Conceptual Graphs for Semantic Web Applications . 19
Rose Dieng-Kuntz, Olivier Corby

Knowledge Representation and Reasoning in (Controlled) Natural
Language . 51

Norbert E. Fuchs

What Is a Concept? . 52
Joseph Goguen

Applications of Description Logics: State of the Art and Research
Challenges . 78

Ian Horrocks

Methodologies for the Reliable Construction of Ontological Knowledge 91
Eduard Hovy

Using Formal Concept Analysis and Information Flow for Modelling
and Sharing Common Semantics: Lessons Learnt and Emergent Issues 107

Yannis Kalfoglou, Marco Schorlemmer

On the Need to Bootstrap Ontology Learning with Extraction
Grammar Learning . 119

Georgios Paliouras

Conzilla — A Conceptual Interface to the Semantic Web 136
Mattias Palmér, Ambjörn Naeve

Theoretical Foundations

Variables in Concept Graphs . 152
Frithjof Dau

Arbitrary Relations in Formal Concept Analysis and Logical
Information Systems . 166

Sébastien Ferré, Olivier Ridoux, Benjamin Sigonneau

Merge-Based Computation of Minimal Generators . 181
Céline Frambourg, Petko Valtchev, Robert Godin

X Table of Contents

Representation of Data Contexts and Their Concept Lattices in
General Geometric Spaces . 195

Tim B. Kaiser

Local Negation in Concept Graphs . 209
Julia Klinger

Morphisms in Context . 223
Markus Krötzsch, Pascal Hitzer, Guo-Qiang Zhang

Contextual Logic and Aristotle’s Syllogistic . 238
Rudolf Wille

States of Distributed Objects in Conceptual Semantic Systems 250
Karl Erich Wolff

Knowledge Engineering and Tools

Hierarchical Knowledge Integration Using Layered Conceptual Graphs 267
Madalina Croitoru, Ernesto Compatangelo, Chris Mellish

Evaluation of Concept Lattices in a Web-Based Mail Browser 281
Shaun Domingo, Peter Eklund

D-SIFT: A Dynamic Simple Intuitive FCA Tool . 295
Jon Ducrou, Bastian Wormuth, Peter Eklund

Analyzing Conflicts with Concept-Based Learning . 307
Boris A. Galitsky, Sergei O. Kuznetsov, Mikhail V. Samokhin

Querying a Bioinformatic Data Sources Registry with Concept Lattices . . . 323
Nizar Messai, Marie-Dominique Devignes, Amedeo Napoli,
Malika Smäıl-Tabbone

How Formal Concept Lattices Solve a Problem of Ancient Linguistics 337
Wiebke Petersen

A New Method to Interrogate and Check UML Class Diagrams 353
Thomas Raimbault, David Genest, Stéphane Loiseau

Knowledge Acquisition and Ontologies

Language Technologies Meet Ontology Acquisition . 367
Galia Angelova

Weighted Pseudo-distances for Categorization in Semantic Hierarchies 381
Cliff A. Joslyn, William J. Bruno

Games of Inquiry for Collaborative Concept Structuring 396
Mary A. Keeler, Heather D. Pfeiffer

Table of Contents XI

Toward Cooperatively-Built Knowledge Repositories . 411
Philippe Martin, Michael Blumenstein, Peter Deer

What Has Happened to Ontology . 425
Peter Øhrstrøm, Jan Andersen, Henrik Schärfe

Enhancing the Initial Requirements Capture of Multi-Agent Systems
Through Conceptual Graphs . 439

Simon Polovina, Richard Hill

Outline of trikonic �∗ k: Diagrammatic Trichotomic . 453
Gary Richmond

Author Index . 467

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 1-18, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Patterns for the Pragmatic Web

Aldo de Moor

 STARLab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

ademoor@vub.ac.be

Abstract. The Semantic Web is a significant improvement of the original
World Wide Web. It models shared meanings with ontologies, and uses these to
provide many different kinds of web services. However, shared meaning is not
enough. If the Semantic Web is to have an impact in the real world, with its
multiple, changing, and imperfect sources of meaning, adequately modeling
context is essential. Context of use is the focus of the Pragmatic Web and is
all-important to deal with issues like information overload and relevance of
information. Still, great confusion remains about how to model context and
which role it should play in the Pragmatic Web. We propose an approach to put
ontologies in context by using pragmatic patterns in meaning negotiation
processes, among other meaning evolution processes. It then becomes possible
to better deal with partial, contradicting, and evolving ontologies. Such an
approach can help address some of the complexities experienced in many
current ontology engineering efforts.

1. Introduction

The World Wide Web has profoundly changed the way people collaborate. Whereas
e-mail has lowered the threshold for interpersonal communication by providing a
medium for fast, cheap, ubiquitous and global communication, the Web has become
the metaphor and technology for doing the same with respect to linking and sharing
knowledge resources. Even for the computing community, used to fast technological
progress, the speed with which the Web has evolved from initial prototype to a
foundation of daily life has been dazzling. It was only in 1991 that the following was
announced by a then unknown employee from CERN:

“The WorldWideWeb application is now available as an alpha release in source and binary
form from info.cern.ch. WorldWideWeb is a hypertext browser/editor which allows one to
read information from local files and remote servers. It allows hypertext links to be made
and traversed, and also remote indexes to be interrogated for lists of useful documents.
Local files may be edited, and links made from areas of text to other files, remote files,
remote indexes, remote index searches, internet news groups and articles … This project is
experimental and of course comes without any warranty whatsoever. However, it could
start a revolution in information access [my italics]”1.

The rest, as they say, is history.

1 Tim Berners-Lee, comp.sys.next.announce newsgroup, Aug.19, 1991.

2 Aldo de Moor

The rise of the World Wide Web has led to many benefits to society. Documents,
news, and results to queries can be obtained 24 hours a day from all over the world.
The Web has given a huge boost to research, education, commerce and even politics.
An interesting example of how deeply the Web has become embedded in the fabric of
our globalizing society is the significant role web sites play in political reforms in
less-than-democratic countries [17]. Still, not all is good. One serious consequence of
the explosion of Web-accessible information resources is information overload. It is
not uncommon to get hundreds, thousands, or even millions of hits when looking for
a certain piece of information. Increasingly, the problem shifts from making
information accessible, to delivering relevant information to the user.

The Semantic Web plays an important role in making the Web more relevant.
Berners-Lee, et al. [1] present a cogent view of how the Semantic Web will structure
meaningful content and add logic to the Web. In this web, data and rules for
reasoning about data are systematically described, after which they can be shared and
used by distributed agents. Granted, many of the basic theoretical ideas were already
conceived by the AI community in the 1970s and 80s. The added value of the
Semantic Web, however, is that this theory is finally being put into large scale-
practice. The main components implementing this Web vision include techniques
such as XML, for adding arbitrary structures to documents; RDF, to express meaning
by simple statements about things having properties with values; and ontologies, to
formally describe concepts and their relations. A typical ontology, in the sense of
being an explicit specification of a conceptualization [10], consists of a taxonomy
with a set of inference rules. Ontologies can be used to improve the accuracy of, for
instance, Web search and service discovery processes. Ultimately, such an approach
should lead to the evolution of human knowledge by scaling up collaboration from
individual efforts to large, joint endeavors. Multiple ontologies then come into play.
By selecting the right ontology for the right task, knowledge exchange, at least in
theory, could become more effective and efficient.

In practice, however, the Semantic Web comes with its own set of problems.
Voices are increasingly being heard that there is a need not only for explicitly taking
into account the semantics, but also the pragmatics of the Web, e.g.
[25,26,13,7,29,22]. Still, ideas and proposals are preliminary and sketchy and need
further elaboration and integration. With this paper, we hope to contribute to the
further maturation of thought on this important subject. We have two main objectives:
finding out (1) what are fundamental conceptual elements of the Pragmatic Web and
(2) how to use these elements in making meaning represented in semantic resources
more relevant. In Sect. 2, we outline some contours of the Pragmatic Web that are
becoming visible at the moment. This analysis results in a conceptual model of the
Web in Sect. 3, outlining how the Semantic and the Pragmatic Web are interrelated.
In Sect. 4, we focus on pragmatic patterns as a way to operationalize the pragmatics
of the Web. In Sect. 5, we present a scenario of how a Pragmatic Web could look in
practice. We end the paper with a discussion and conclusion.

Patterns for the Pragmatic Web 3

2. Contours of the Pragmatic Web

The Semantic Web, with all its (potential) benefits, still poses a number of difficult
challenges, both with respect to the ontologies which contain the shared meanings
and the services in which these are used.

Unlike data models, ontologies contain relatively generic knowledge that can be
reused by different kinds of applications. Ontologies should therefore not be too
tightly linked to a specific purpose or user group [30]. To select the right (parts of)
ontologies, the communicative situation needs to be taken into account. To this
purpose, a “mindshaking procedure” needs to be developed, in which a formal
language for information exchange is determined (syntax), and a synchronisation of
the meaning of concepts (semantics) takes place on the basis of a particular context,
such as purpose, time, date, or profile [29]. An example of a (typically) manual
version of such a procedure is described in [9]. There, a conceptual model supervisor
regularly creates reports of existing classes. If concepts seem to be in conflict, and the
conflicts are important enough, the model supervisor starts and controls a discussion
among stakeholders, who can be either modelers or representatives from the involved
departments. If the conflict remains unresolved, both concepts remain in the model
marked with their own namespaces.

Ontologies are not an end in themselves. One of the major functions of the
Semantic Web is to provide access to web services. These are often described and
invoked through central registries. However, for describing, discovering, and
composing web services, a semantic approach is not enough. Services cannot be
described independently of how they are used, because communities of practice use
services in novel, unexpected ways. Social mechanisms are therefore needed for
evaluating and discovering trustworthy providers and consumers of services, taking
into account contexts and interactions in the composition of service applications [25-
26].

Clearly it is not sufficient to model semantics to resolve such issues related to the
use of ontologies. Contextual elements like the community of use, its objectives and
communicative interactions are important starting points for conceptualizing the
pragmatic layer. These elements are combined in a conceptualist perspective. In such
a view, meanings are elements of the internal cognitive structures of language users,
while in communication, the conceptual structures of different views become attuned
to each other [13]. We can therefore make a distinction among shared semantic
resources, such as ontologies; individual pragmatic resources, i.e. the internal
conceptual models of users applying the semantic resources to their own purposes;
and common pragmatic resources, in which joint relevant meanings have been
established through communication. In communication between users aiming at
achieving joint objectives, concepts that are part of individual and common pragmatic
resources are selected, defined, aligned, and used. Finding out how such a meaning
negotiation process works is essential to understanding the pragmatics of the Web,
and to developing (partially) automated support processes for meaning negotiation.

Developing sound and complete pragmatic perspectives, models, and methods can
shed light on the confusing debates raging in the ontology and Semantic Web
research communities. One fundamental question, for example, is whether the way to

4 Aldo de Moor

go is to develop large, detailed, standard ontologies such as Cyc2 or myriad
independent, domain-specific, micro-ontologies, one for each application. The answer
is not either/or, but a mix of both approaches. A major reason why such a hybrid
point of view cannot be easily adopted and defended, is that the real issues underlying
these debates are not semantic, but pragmatic. The focus of many of these debates has
thus been the wrong one, without the ontological engineering community making any
significant progress on resolving the underlying issues.

Before further examining the Pragmatic Web, we first take a closer look at some of
the finer details of pragmatics.

2.1 A Primer of Pragmatics

A traditional source of problems, often found in traditional conceptual modelling
approaches, is to try and produce THE description of a joint reality. If members of a
particular community disagree, the modellers, in the best case, keep negotiating
explicit meanings until everybody agrees. If no agreement can be reached (or is not
even sought) modellers often impose a meaning by choosing an ontology definition
or system specification themselves.

 A pragmatic approach, on the other hand, should allow for contradictions,
different importance weights of information and subtle cultural differences [9]. Such
differences, however, create problems of their own if not handled properly.
Collaboration often fails, not because participants do not want to collaborate, but
because pragmatic errors lead to the breakdown of the social and contextual
components of a discourse [14]. To become successful, a pragmatic approach thus
needs to acknowledge and adequately handle ambiguity and consequences of
(differences in) semantics.

Facts only get their ‘ultimate meaning’ in their human context of use, and are
always ambiguous. Such ambiguities are about shades of differences in meaning. The
extent to and way in which ambiguities need to be resolved, depend on the context,
including the points of view of the communicating agents, i.e. utterer and
interlocutor, their common understanding of each other, and their (partially) shared
goals [18].

But how to decide which ambiguities need to be resolved? A semantic approach,
even when accepting different sources of meaning (i.e., ontologies), does not
explicitly acknowledge the consequences of semantic choices. A pragmatic approach,
on the other hand, assumes there are always conditions of difference, dependence,
and novelty, and recognizes the need for an overall process for transforming existing
knowledge to deal with negative consequences for community members [3]. We
would argue that, in addition, the community should also examine the positive
consequences, such as opportunities for action.

In a pragmatic approach, control over representation should shift from the
information producer to the information consumer [22]. More precisely, we think
control over how to use meaning representations should shift to the user, from which
controlling representations follows.

2 http://www.cyc.com/

Patterns for the Pragmatic Web 5

The need to accept a necessary amount of ambiguity by communities of users
assessing the consequences of semantic choices in a particular pragmatic context,
implies that there needs to be some user-controlled selection process of semantic
representations. In such a process, members of the community, using the knowledge
for a particular purpose, are actively involved, and aim to reach agreement only on
relevant knowledge issues. Pragmatically established changes in the implicit meaning
of representations should in the end also lead to changes the representation of those
meanings in ontologies. For instance, if users always ask for concepts that are not, or
only insufficiently, described in an ontology, it may be worthwhile to add this
concept to the ontology. Meaning selection and representation processes, however, do
not occur in isolation, but are driven by a meaning negotiation process in a specific
community of users. In such a process, stakeholders arrive at the requisite (as
determined by their shared goals) amount of agreement on shared concepts.

3. A Conceptual Model of the Web

Summarizing the previous discussion, we consider ‘The Web’ to consist of a
Syntactic, a Semantic, and a Pragmatic web (Fig.1).

Fig. 1. A Conceptual Model of ‘The Web’

The Syntactic Web consists of interrelated syntactic information resources, such as
documents and web pages linked by HTML references. These resources describe
many different domains.

The Syntactic Web

The Semantic Web

The Pragmatic Web

Meaning
alignmentMeaning

assignment

Cat
Cat Cat

Meaning
selection

Meaning
representation

Meaning negotiation

6 Aldo de Moor

The Semantic Web consists of a collection of semantic resources about the
Syntactic Web, mainly in the form of ontologies. The ontologies contain semantic
networks of concepts, relations, and rules that define the meaning of particular
information resources.

The Pragmatic Web consists of a set of pragmatic contexts of semantic resources.
We consider a pragmatic context to consist of a common context and a set of
individual contexts. A common context is defined by the common concepts and
conceptual definitions of interest to a community, the communicative interactions in
which these concepts are defined and used, and a set of common context parameters
(relevant properties of concepts, joint goals, communicative situation, and so on).
Each community member also has an individual context, consisting of individual
concepts and definitions of interest and individual context parameters. Common and
individual context parameters are not discussed further in this paper, as we will focus
on the meaning negotiation process in which these contexts play a role.

Meaning plays a central role in connecting the various Webs. Meaning assignment
takes place when syntactic resources are semantically enriched, such as by XML-tags
being added to HTML-pages. Meaning alignment has to do with interoperability
between ontologies: to what extent do their semantic models agree? How can (parts
of) ontologies be meaningfully linked? How to deal with definitions that partially
overlap in meaning? Much recent work addresses these – very hard – issues, e.g.
[24,4]. Such meaning alignment problems mostly focus on modeling representational
and evolutionary aspects of ontologies. However, as we have seen what needs
separate attention are issues of ontology use. In other words: how can the process of
meaning negotiation be improved? Meanings evolve not in the ontologies
themselves, but in the pragmatic contexts where they are being used. Thus, a strong
involvement of the community in ontology engineering processes is required,
ensuring that individual and community changes in meaning are represented
adequately in the ontologies.

3.1 The Complexity of Contexts

Our conceptual model allows us to examine a wide range of pragmatic contexts in the
real world, and to identify commonalities and differences in problems with
modelling, sharing and (re)using semantic resources such as ontologies.

Note that the sheer number of elements to analyze decreases as we move from the
Syntactic to the Semantic Web, but strongly increases again when moving from the
Semantic to the Pragmatic Web. There may be many thousands of (syntactic)
information resources for a particular domain. In general, there will be many fewer
ontologies defining the meanings of those resources. However, of pragmatic contexts
there can be an infinite number. There are many dimensions of pragmatics to be taken
into account, such as purposes, communicative situations, organizational norms,
individual values, and so on. These contextual parameters lead to a great variety of
contexts. The multiple pragmatic contexts are even harder to formalize and
standardize than the semantics of the concepts they interpret. Individual context views
may agree with each other, or differ. Community members may use different
ontologies to define the meaning of a particular concept. Many concepts have rich

Patterns for the Pragmatic Web 7

tacit meanings for individuals that can, nor should, always be made explicit in
collaborative situations [21]. To assess the consequences of meaning choices, fully-
automated negotiation processes will therefore never be sufficient. Augmentation, not
automation of human meaning negotiation processes is required, in the sense
proposed by Doug Engelbart [27].

One strategy to deal with this pragmatic complexity is to only model those
pragmatic constructs that are essential to reach joint objectives. The meaning
negotiation process should be a consensus seeking process, balancing individual and
common requirements. Different individual views on the meaning of common
concepts should be allowed, as long as they do not endanger the quality of the
communicative interaction. For example, in a business transaction, it is essential that
both parties have the same view of crucial parts of the definition of their contract,
such as legal obligations. Where and how to store copies of the contract internally
does not need to be part of a common meaning, however, and can thus be left as a
degree of freedom. If differences in meaning are inhibiting the accomplishment of
common goals, however, meaning negotiation has to proceed until the necessary
amount of consensus has been reached.

How to proceed? What is a scalable way to operationalize such a pragmatic
approach? If pragmatic contexts are unique and very different, how to systematically
support meaning negotiation and related processes like meaning selection and
representation? What is a requisite amount of consensus? The approach we propose
in this paper is to base meaning negotiation on a set of fundamental pragmatic
patterns, which can made available in a meta-ontology. These formal patterns can be
used to define pragmatic constraints on processes in which explicit meanings are
being defined and applied in contexts of use. Such an approach can help to better
understand the potential uses and limitations of particular ontology engineering
efforts, by clarifying the ‘meaning of those meanings’ for particular contexts of use.

4. Pragmatic Patterns

In [6], we presented a method for collaboratory improvement. Collaboratories are
evolving socio-technical systems of people and tools aimed at providing
environments for effective and efficient collaboration. About collaboratories often
only partial knowledge of different degrees of specificity is or can be represented.
The method uses ontology-grounded improvement patterns to capture various levels
of socio-technical context knowledge about information and communication
processes in collaboratories, including knowledge about workflows, design processes
and improvement processes. We view collaboratory improvement as a Peircean
pragmatic inquiry process in which hypotheses about socio-technical improvements
of the collaboratory are continuously constructed and tested in the community. This
process, properly supported, should lead to more effective and efficient collaboratory
evolution. Such an inquiry process could be a major driver of meaning selection in a
community and hence form an important constituent of the Pragmatic Web [7].

A collaboratory improvement process is a good example of a community using
patterns to evolve specification knowledge about its own socio-technical system. In

8 Aldo de Moor

the current paper, we want to develop a broader perspective. Instead of using patterns
just to improve collaboratories, we intend to use patterns to ‘improve semantics’.
Given our conceptual model of the Web, what kind of patterns do we need? How do
we represent them? How can we use them to deal with some of the problems
inhibiting the progress of the Semantic Web?

4.1 Patterns

Humans use patterns to order the world and make sense of things in complex
situations [15]. Patterns are often used in the construction of complex systems. An
influential definition of patterns in architecture, also useful for information systems,
was given by Christopher Alexander: “A pattern is a careful description of a perennial
solution to a recurring problem within a building context, describing one of the
configurations which brings life to a building (Alexander, et al., 1977, in [23]”. A
pattern thus contains elements of a solution to a problem, and applies within a
particular context. Important is to focus on the words recurring problem and
perennial solutions, indicating that the pattern definition of problems and solutions
must be generic enough to cover a range of problem situations which in reality are
always subtly different from the ideal, while being specific enough to offer useful
solutions for the particular problem at hand.

Patterns are another view on domain models stored in ontologies. Developing
ontologies for open environments like the Semantic Web is difficult, since more rules
make ontologies less generic, while light-weight ontologies are not very useful [30].
This problem of finding the right degree of semantic specificity of ontologies to
address problems in the domains they were created for, is not going to go away. The
problem is not technical, but philosophical. If the types and number of applications of
an ontology are infinite, and cannot be known beforehand, it will not work to try and
produce the ‘ultimate ontology’ of semantic patterns. The usefulness of an ontology is
always in the eye of the beholder, or more precisely, the eyes of many beholders: the
many communities and individuals within communities using the ontology for their
particular, changing, collaborative purposes.

Accepting this reality of eternal semantic partiality, conflict, and confusion, there
is another, potentially more rewarding way to go. It consists of (1) making a strict
conceptual separation between modelling and using ontologies, (2) identifying meta-
patterns, i.e. pragmatic patterns that can (3) be used in meaning evolution processes
in communities of users in order to make existing ontologies more useful and easier
to change3. These processes include what we referred to in the previous section as
meaning representation, assignment, selection, alignment, and negotiation. Only by
tackling these pragmatic issues head-on can the vision of the Semantic Web assisting
the evolution of human knowledge as a whole [1], be realized in practice.

3 These processes concern the evolution of explicated meanings. Many meanings are implicit,

in people’s heads. Although they may, and probably should change as well, understanding
these are more the focus of, for instance, psychological studies.

Patterns for the Pragmatic Web 9

4.2 Core Pragmatic Patterns

To operationalize our vision of the Pragmatic Web, we need some core pragmatic
patterns. We do not formalize the patterns in this article, but will outline some and
describe their possible role in the scenario presented in the next section. Using
conceptual graphs, it should be relatively easy to structure and reason about their
(meta)semantics.

For a particular community, core pragmatic patterns include:

 Pragmatic context: a pattern that defines the speakers, hearers, type of
communication, and identifiers of the individual and common contexts of a
community.

 Individual context: a pattern that defines an individual community member,
individual context parameters and an identifier of the individual context
ontology.

 Common context: a pattern that defines the common context parameters and
an identifier of the common context ontology of a community.

 Individual pragmatic pattern: a meaning pattern relevant to an individual
community member. An individual context ontology consists of the total set
of meaning patterns relevant to that individual.

 Common pragmatic pattern: a meaning pattern relevant to the community as
a whole. The common context ontology consists of the total set of common
meaning patterns relevant to the community.

Pragmatic patterns are template definitions that can be used as the basis of conceptual
definitions used in meaning negotiation and other meaning evolution processes.
These patterns can be refined and extended by communities if and when necessary.

Pragmatic patterns have a normative status, being either required, permitted, or
forbidden. In the case of a pattern being required, this implies that the pattern must be
satisfied in the process where it is used. If it is forbidden, it may not be matched in
such a process. If permitted, it may be applicable, but not necessarily so. Such
normative matching processes can provide powerful guidance of meaning evolution
processes.

Earlier, we said that there is a much larger number and diversity of pragmatic
contexts than of the ontologies which they use. Still, the number of pragmatic
patterns, if chosen at the right level of specificity, can be relatively small. These
patterns should not include the infinite number of details that make each pragmatic
context unique, but only those that contribute to improving the effectiveness and
efficiency of meaning evolution, with a focus on meaning negotiation. Of course, in
this paper, we do not claim to solve the pragmatic puzzle. We will not provide the
ultimate reference set of pragmatic patterns to be used in optimizing meaning
evolution on the Semantic Web. Our aim is much more modest: showing proof of
principle about what pragmatic patterns are and the role they could play in dealing
with some of the meaning evolution issues mentioned. To this purpose, we introduce
a hypothetical case very relevant to the conceptual graphs community: getting the
famous cat its mat.

10 Aldo de Moor

5. Using Pragmatic Patterns: How to Get a Mat for the Cat?

The mat producing company MatMakers wants to explore new markets. The
grapevine has it that an interesting niche exists of cat lovers wanting nothing but the
best for their furry friends. Its marketing officer Charles is commissioned to find new
customers who will appreciate MatMaker’s high-quality mats for their cats.

Charles decides to look for potential customers using the WYO=WTW
(WhatYouOffer-is-WhatTheyWant) e-business broker. This broker is a web service
that maximizes precision of advertising by using the latest Pragmatic Web-
technologies. In particular, it mediates in meaning negotiation between sellers and
prospective buyers by intelligent use of pragmatic pattern matching. The following
type hierarchy is part of the WYO=WTW community context ontology (Fig.2):

Fig. 2. The WYO=WTW Community Context Ontology

A most relevant concept in any advertising process is the object for sale. One
important property of these objects, which is often discussed in the business
negotiations of this particular community, is the size of the object being offered. Two
important size indicators are the minimum and the maximum length of the object. Two
communication roles in an e-business transaction are the seller and the consumer,
referring to the parties who can play the speaker or hearer-roles. The community
using the WYO-WTW service distinguishes two types of communication processes:
inquiring about objects for sale, initiated by customers, and advertising objects,
initiated by producers.

MatMakers has its own corporate ontology, from which Charles imports the Mat
and Size-concepts (including their positions in the type hierarchy) into the individual
context ontology of MatMakers for the WYO=WTW service. He also adds the Cat-
concept, since that is what he wants to focus his particular potential customer search
on. Since the maximum length of the mats produced by MatMakers is one meter,
Charles adds to his individual context ontology the required pattern that to be of
interest for an advertisement any cat for which the mat is bought should be at most
one meter long (Fig.3):

Patterns for the Pragmatic Web 11

Fig. 3. The Individual Context Ontology of MatMakers for the WYO-WTW Service

The Cat-Lovers-Association-of-the-World (CLAW) is a worldwide virtual
community of amateurs crazy about cats. They have interest groups studying not only
small cats, like street cats and Siamese cats, but also large cats, like lions and tigers.
The database of member addresses of such a highly motivated global community is of
high potential value to corporations. In principle, CLAW is not adverse to their
members being offered products for their pets. However, they are not interested in
offers of products for large cats, since their members are amateurs only, not zoo
owners. Therefore, they demand that any sales offer in an advertisement concerns
small cats only (Fig.4):

Fig. 4. The Individual Context Ontology of CLAW for the WYO-WTW Service

To find potential customers, Charles first sends a query identical to his required
pattern to the web service (Fig.5):

12 Aldo de Moor

Fig. 5. The Initial Query

WYO-WTW searches the individual context ontologies of all registered members
of its services for a match with this required pattern, by projecting the required
pattern on the individual context ontologies of the various members4. Nothing
matches. Charles realizes that his query could have been too specific, not because no
customers share his interest, but because their meanings have not yet been sufficiently
specified in the ontologies they use with respect to Charles’ purpose. He decides to
relax the query by only looking for potential customers who are interested in products
for cats, and try to find out about the length of their animals later. He therefore sends
the following generalization of his required pattern (Fig.6):

Fig. 6. The Generalized Query

WYO-WTW projects this generalization again on the various individual context

ontologies. It now matches with all (i.e. the only) required pattern of the CLAW
context ontology, returning the following result (Fig.7):

Fig. 7. The Result of the Generalized Query

 CLAW’s only (and all) pragmatic requirements on any seller have now been
satisfied, and the association in principle is open to being sent the advertisement.
However, MatMaker’s own required pattern has not been satisfied yet. To see if it
could, WYO-WTW goes on the Semantic Web, projecting MatMakers core semantic
pattern (i.e. the essence of MatMakers’ required pattern adapted to the semantic
constraints of the potential customer party’s required patterns) on the public
interfaces of various ontologies that are in CLAW’s list of trusted semantic
resources5. It does this to see if these ontologies can be useful in enriching CLAW’s
ontology sufficiently for it to match with MatMaker’s required pattern. The core
semantic pattern in this case is the part that follows the bnfc-relation, since this
indicates what MatMakers requires from its customers for them to be eligible
candidates for advertisement. The Cat-concept is thereby specialized to Small_Cat,
since that specialization is demanded by CLAW’s required pattern. Furthermore, any
instances are left out, since values may have to be calculated by inference rules,
instead of being stored directly in ontologies. This would lead to queries failing, even
though semantically they should match with an ontology. Thus, the WYO-WTW

4 We do not go into the details of dealing with labels like Req_Pattern here, these can be dealt

with by syntactically rewriting the queries.
5 If a semantic resource like an ontology is trusted, a user is willing to accept the ontological

commitments implied by the definitions of that resource.

Patterns for the Pragmatic Web 13

service sends out the following core semantic pattern query to trusted ontologies on
the Semantic Web (Fig.8):

Fig. 8. The Core Semantic Pattern Query to the Semantic Web

Again nothing matches. WYO-WTW now automatically starts to look for similar
concepts. It first tries to find synonyms for the Small_Cat-label by contacting the
Cyc-URI (Uniform Resource Indicator) service. This Semantic Web-service finds
Felinae as a synonym. It resends the query, but this time with Small_Cat replaced by
Felinae. It turns out that this query matches with the ontology of Animal Diversity
Web (ADW), a university zoological taxonomy server6. A part of this ontology is the
following (Fig.9):

Fig. 9. ADW’s Ontology on the Semantic Web

The fact in ADW’s ontology that matches with the query (i.e. is a specialization) is
the following (Fig.10):

Fig. 10. The Result of the Revised Core Semantic Pattern Query

6 In fact, the taxonomy server on which this (hypothetical) ontology is based really exists. It is

hosted by the University of Michigan: http://animaldiversity.ummz.umich.edu/site/. Such
relatively stable reference ontologies could play an important role in optimizing meaning
negotiation processes on the future Pragmatic Web.

14 Aldo de Moor

The following fact is automatically added to the WYO-WTW common context
ontology (since Felinae is equivalent to the Small_Cat-label, and the latter is the
terminology used by at least one of the community members) (Fig.11):

Fig. 11. The Common Pragmatic Pattern

This common pragmatic pattern forms the basis for starting the actual advertising
process. It means that seller and customer share an interest in beginning an
advertising process about objects for sale for small cats which have a maximum
length of half a meter. The pattern is - necessarily - a specialization of the parts of the
required patterns of both communicating parties that define the properties of the
beneficiary of the object for sale.

MatMakersMatMakers CLAWCLAW

WYO-WTW

ADW Ontology

Send initial query

1

Ind.Context
Ontology

Ind.Context
Ontology

Project initial query

2

Return result
3

Send generalized query

4

5

Project generalized query

Return result
6

Send core
semantic pattern

7

Return
result

8

The Semantic Web

9

Lookup
synonym
Small_Cat

Return
result

10

Felinae Resend core
semantic
pattern

11

Return result
12

Common Context Ontology

Store in comm. cont. ont.

13

Cyc URI-service
Fig 12. Meaning Negotiation on the Pragmatic Web

Fig. 12 summarizes the meaning negotiation process. This already complex

scenario was just a simplified example of a realistic meaning negotiation process.
Still, it should demonstrate the power of a combination of a conceptually clearly
separated, yet interdependent Semantic and Pragmatic Web.

Patterns for the Pragmatic Web 15

6. Discussion

The purpose of this paper was to expand current thinking on the Pragmatic Web by
identifying some issues and presenting a sketch of one possible approach for its
operationalization. There are many directions in which this work should be expanded,
however. For example:

 The Pragmatic Web and the Semantic Web are strongly interdependent. Many

open issues of the Semantic Web still need to be resolved, before a robust
Pragmatic Web can be constructed. One example concerns useful and widely
adopted URI (Uniform Resource Identifier) schemes. Still, it would already be
very useful to systematically examine current and projected components of the
Semantic Web through a pragmatic lens, in order to discover new applications.
Vice versa, insights about the Pragmatic Web may help address some of the
thorny issues currently blocking progress in the Semantic Web community.
Many semantic approaches, for example, already have pragmatic components.
However, semantics and pragmatics are often mixed up in confusing ways. Our
approach could help disentangle some of these conceptual knots, allowing for
optimizations with the right focus, e.g. with respect to either modelers’ or users’
needs in particular cases.

 We have mostly stuck to a rather practical and shallow interpretation of
pragmatics. Philosophically, pragmatics is a very complex idea, however.
Insights from philosophers with a strong focus on evolution of meaning, such as
Peirce’s pragmaticism [2] and Habermas’ theory of communicative action [11]
could be very useful in strengthening the theory of the Pragmatic Web.

 We only defined meaning negotiation and selection processes informally as
sequences of graph projections. The (meta)-semantics of the various pragmatic
patterns is still quite fuzzy. How to formalize individual and common contexts
and pragmatic patterns? What role should they play in the various meaning
evolution processes? When and how should recurring pragmatic patterns stored
in meta-ontologies be included in domain ontologies on the Semantic Web?
Conceptual graphs research can also make important contributions here, both in
terms of advanced theoretical research like context modelling [20] and
architectures for pragmatic graph application systems [28,5]. Also, the
normative status of patterns is a complex issue. In the scenario, we only used
required patterns. In realistic applications, these may conflict with prohibited
and permitted patterns. Deontic logic is one theoretical field that help clarify
some of these issues [19].

 Human communication is crucial in meaning negotiation on the Pragmatic Web.
Conceptual approaches such as proposed in this paper can only augment, not
automate human meaning interpretation and negotiation processes. A theoretical
foundation for modelling more complex and realistic communicative
interactions is the Language/Action Perspective, which stresses the coordinating
role of language. This perspective has led to various proposals for human/agent
communication-based collaborative models and systems e.g. [16,28,31,12].

16 Aldo de Moor

Another rich source of ideas for designing pragmatic systems supporting human
communication is (business) negotiation theory (e.g. [8]).

 Ontologies play a crucial role, at both the Semantic and Pragmatic Web levels.
The ontologies presented in the scenario were exceedingly simple, since the
focus was on proof of concept, not on the finer semantic details. Much ontology
research focuses on these representation and reasoning issues. Although
valuable and necessary, ontology research on the Pragmatic Web level should
also focus much more on ontology methodology issues. These include the
(partially) human processes of modeling, selecting, using and changing
meanings for collaborative purposes. The DOGMA-methodology being
developed at STARLab consists of a set of methods, techniques, and tools to
arrive at scalable ontologies that can actually be made useful in practice [29].
One of our projects in which a strong focus will be on exploring the relations
between ontologies and pragmatics is the CODRIVE project7. Our aim is to
develop a methodology for negotiating a common competence ontology by key
stakeholders in the European labor market. These parties, representing the
educational sector, public employment agencies, and industry have a need for a
common competency ontology that can be used for collaborative applications
such as doing job matches and developing individual training pathways. Given
the widely varying interests and definitions of competence concepts, this should
be a very interesting test case to further develop theory and practice of the
Pragmatic Web.

7. Conclusion

The Pragmatic Web is the next phase in the evolution of the Web. Most research
attention currently focuses on the Semantic Web. However, for the Semantic Web to
truly realize its potential, much more work needs to be done on its pragmatics aspects.
This entails that the context of use of explicated meanings that are stored in
ontologies need to be much better understood. The driver of the Pragmatic Web are
meaning negotiation processes. These processes are connected to the Semantic Web
by meaning selection and representation processes.

In this paper, we have explored the contours and some fundamental concepts of the
Pragmatic Web. By means of a scenario we have explored what the Pragmatic Web in
a few years time might look in practice. The aim of this paper was not to solve
existing problems, but to help open up an exciting new territory for intellectual and
practical exploration. Moving the research focus from semantics to pragmatics, from
representing to using meaning, is the next step on the way to network applications
that help communities of people realize their full collaborative potential.

7 EU Leonardo da Vinci project BE/04/B/F/PP-144.339

Patterns for the Pragmatic Web 17

References

1. Berners-Lee, T., Hendler, J. and Lassila, O. (2001), The Semantic Web, Scientific
American, May 2001: 35-43.

2. Buchler, J. (1955), Philosophical Writings of Peirce. Dover Publ., New York.
3. Carlile, P. R. (2002), A Pragmatic View of Knowledge and Boundaries: Boundary Objects

in New Product Development, Organization Science, 13(4): 442-455.
4. Corbett, D. (2004), Interoperability of Ontologies Using Conceptual Graph Theory. In

Proc. of the 12th Intl. Conference on Conceptual Structures (ICCS 2004), Huntsville, AL,
USA, July 2004, LNAI 3127. Springer, Berlin, pp. 375-387.

5. Delugach, H. S. (2003), Towards Building Active Knowledge Systems With Conceptual
Graphs, in Proc. of the 11th Intl. Conf. on Conceptual Structures (ICCS 2003), Dresden,
Germany, July 2003, LNAI 2746. Springer, Berlin, pp. 296-308

6. de Moor, A. (2004), Improving the Testbed Development Process in Collaboratories. In
Proc. of the 12th Intl. Conference on Conceptual Structures (ICCS 2004), Huntsville, AL,
USA, July 2004, LNAI 3127. Springer, Berlin, pp. 261-274.

7. de Moor, A., Keeler, M. and Richmond, G. (2002), Towards a Pragmatic Web. In Proc. of
the 10th Intl. Conference On Conceptual Structures (ICCS 2002), Borovets, Bulgaria, July
2002, LNAI 2393. Springer, Berlin, pp. 235-249.

8. de Moor, A. and Weigand, H. (2004), Business Negotiation Support: Theory and Practice,
International Negotiation, 9(1):31-57.

9. Fillies, C., Wood-Albrecht, G. and Weichhardt, F. (2003), Pragmatic Applications of the
Semantic Web Using SemTalk, Computer Networks, 42: 599-615.

10. Gruber, T. (1994), Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. In N. Guarino and R. Poli (eds.) Formal Ontology in Conceptual Analysis and
Knowledge Representation. Kluwer.

11. Habermas, J. (1981) Theorie des kommunikativen Handelns (2 vols.). Suhrkamp, Frankfurt.
12. Harper, L.W., and Delugach, H.S. (2004), Using Conceptual Graphs to Represent Agent

Semantic Constituents. In Proc. Of the 12th Intl. Conference on Conceptual Structures
(ICCS 2004), Huntsville, AL, USA, July 2004, LNAI 3127. Springer, Berlin pp. 325-338.

13. Kim, H. and Dong, A. (2002), Pragmatics of the Semantic Web. In Semantic Web
Workshop 2002, Hawaii.

14. Kreuz, R. J. and Roberts, R. M. (1993), When Collaboration Fails: Consequences of
Pragmatic Errors in Conversation, Journal of Pragmatics, 19: 239-252.

15. Kurtz, C. F. and Snowden, D. J. (2003), The New Dynamics of Strategy: Sense-Making in
a Complex and Complicated World, IBM Systems Journal, 42(3): 462-483.

16. McCarthy, J. (1996), Elephant 2000: A Programming Language Based on Speech Acts,
Technical Report, Stanford University.

17. McLaughlin, W. S. (2003), The Use of the Internet for Political Action by Non-State
Dissident Actors in the Middle East, First Monday, 8(11).

18. Mey, J. L. (2003), Context and (Dis)ambiguity: a Pragmatic View, Journal of Pragmatics,
35: 331-347.

19. Meyer, J. J.-C. and Wieringa, R., eds. (1993), Deontic Logic in Computer Science:
Normative System Specification. John Wiley & Sons, Chichester.

20. Mineau, G.W. and Gerbe, O. (1997). Contexts: A Formal Definition of Worlds of
Assertions. In Proc. of the 5th Intl. Conference on Conceptual Structures (ICCS 1997),
Seattle, Washington, USA, August 1997, LNCS 1257. Springer, Berlin, pp.80-94.

21. Nonaka, I., Reinmoeller, P. and Senoo, D. (1998), The 'ART' of Knowledge: Systems to
Capitalize on Market Knowledge, European Management Journal, 16(6): 673-684.

18 Aldo de Moor

22. Repenning, A. and Sullivan, J. (2003), The Pragmatic Web: Agent-Based Multimodal Web
Interaction with no Browser in Sight. In Human-Computer Interaction - INTERACT'03.
IOS Press, IFIP, pp. 212-219.

23. Schuler, D. (2002), A Pattern Language for Living Communication. In Participatory
Design Conference (PDC'02), Malmo, Sweden, June 2002.

24. Shanks, G., Tansley, E. and Weber, R. (2003), Using Ontology to Validate Conceptual
Models, Communications of the ACM, 46(10): 85-89.

25. Singh, M. P. (2002a), The Pragmatic Web, IEEE Internet Computing, May/June: 4-5.
26. Singh, M. P. (2002b), The Pragmatic Web: Preliminary Thoughts. In Proc. of the NSF-EU

Workshop on Database and Information Systems Research for Semantic Web and
Enterprises, April 3-5, Amicalolo Falls and State Park, Georgia.

27. Skagestad, P. (1993), Thinking with Machines: Intelligence Automation, Evolutionary
Epistemology, and Semiotic, Journal of Social and Evolutionary Systems, 16(2): 157-180.

28. Sowa, J. (2002), Architectures for Intelligent Systems, IBM Syst. Journal, 41(3):331-349.
29. Spyns, P. and Meersman, R. A. (2003), From Knowledge to Interaction: from the Semantic

to the Pragmatic Web. Technical Report STAR-2003-05, STARLab , Brussels.
30. Spyns, P., Meersman, R. A. and Jarrar, M. (2002), Data Modelling versus Ontology

Engineering, ACM SIGMOD Record, 31(4): 12-17.
31. Weigand, H. and de Moor, A. (2003), Workflow Analysis with Communication Norms,

Data & Knowledge Engineering, 47(3):349-369.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 19-50, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Conceptual Graphs for Semantic Web Applications

Rose Dieng-Kuntz, Olivier Corby

INRIA Sophia-Antipolis, ACACIA Project
2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France

{Rose.Dieng, Olivier.Corby}@sophia.inria.fr

Abstract. In this paper, we aim at showing the advantages of Conceptual Graph
formalism for the Semantic Web through several real-world applications in the
framework of Corporate Semantic Webs. We describe the RDF(S)-dedicated
semantic search engine, CORESE, based on a correspondence between RDF(S)
and Conceptual Graphs, and we illustrate the interest of Conceptual Graphs
through the analysis of several real-world applications based on CORESE.

1 Introduction

"The Semantic Web is an extension of the current web in which information is given
well-defined meaning, better enabling computers and people to work in cooperation."
[5]. The W3C works for "defining standards and technologies that allow data on the
Web to be defined and linked in a way that it can be used for more effective discov-
ery, automation, integration, and reuse across applications. The Web will reach its
full potential when it becomes an environment where data can be shared and proc-
essed by automated tools as well as by people." [6].

When Tim Berners-Lee presented his vision of the Semantic Web [4], several re-
search communities studied thoroughly how their research field results could contrib-
ute to reach this ambitious goal. In particular, researchers working in Knowledge
Representation (KR) recognised the potential important role that their KR formalisms
could play for representing the ontologies needed in Semantic Web. Object-oriented
(OO) representation formalisms, Description Logics (DL) and Conceptual Graphs
(CG) were the main candidates to achieve this purpose. The DL community was
strongly involved in the definition of the Ontology Web Language (OWL)1 [14] [33],
that W3C recommended in 2004 for representing ontologies. However some re-
searchers of the CG community had also brought their contributions very early, with
various strategies. Some researchers adopted CG directly as formalism for represent-
ing ontologies and annotations in Semantic Web context: e.g. WebKB [32]. Others
preferred to rely on a correspondence between CG and RDF(S) 2 – the language rec-
ommended by W3C for describing Web resources [29]: the ACACIA team thus pro-
posed and implemented a translation of RDF(S) into CG and built a semantic search
engine, CORESE, based on this correspondence [11] while in [24], the authors sug-

1 http://www.w3.org/sw/WebOnt.
2 Resource Description Framework, http://www.w3.org/RDF

20 Rose Dieng-Kuntz and Olivier Corby

gested to use CG as the Ontolingua for allowing the automatic translation of knowl-
edge structures between different KR formalisms, and they described RDF(S) meta-
model in CG.

In this paper, we summarise the ACACIA team approach for the Semantic Web
and emphasise the role of CG in this approach. Our objective is to show that in the
framework of Semantic Web, Conceptual Graphs have enough expressivity for KR
and enough reasoning capabilities for real-world applications.

2 Corporate Semantic Web Approach

2.1 ACACIA Project Evolution

The ACACIA project3 is a multidisciplinary team that aims at offering methodologi-
cal and software support for knowledge management (KM), and in particular for
building, managing, evaluating and evolving corporate memories.

Historically, in 1992, we were focusing on corporate memories materialised in
documents and knowledge bases (KBs). Our main topics were: (1) multi-expertise,
(2) “intelligent” information retrieval and (3) management of links between docu-
ments and KBs. Therefore we chose CG as privileged KR formalism since it offered
reasoning capabilities interesting for intelligent information retrieval, and it seemed a
good basis for tackling multi-expertise or for representing a KB associated to texts.
The main results of our previous research in CG formalism were the following:

 The CGKAT system integrated a CG-represented ontology extending WordNet
and enabled to associate a base of CGs to a structured document. The user could
ask queries about either the base of CGs or the document contents and CGKAT
could retrieve relevant document elements through a projection of the user’s query
on the CG base associated to the document [31].

 The MULTIKAT system offered an algorithm for comparing KBs modelling
knowledge of two experts in a given domain. MULTIKAT enabled comparison
and merging of two CG ontologies [19] as well as comparison and integration of
two CG bases, the integration being guided by different integration strategies [18];

 The C-VISTA and CG-VISTA models enabled to represent viewpoints in CG
formalism (both in a CG support and in a CG base) [39].

In 1998, Tim Berners-Lee proposed his vision of the Semantic Web [4]. The main

approach suggested was to use an ontology for making explicit semantic annotations
on Web resources. According to us, CG was clearly a relevant formalism for repre-
senting such ontology and annotations: there was an analogy between on the one
hand, a Web document annotated by semantic annotations w.r.t. an ontology and on
the other hand, a structured document associated to a base w.r.t. the CGKAT ontol-
ogy. But W3C had already started to define RDF as the future language for describ-
ing Web resources. So, as there was also an analogy between RDF and CG, and as a
W3C-recommended language was more likely to be widely adopted by the different

3 http://www-sop.inria.fr/acacia/

Conceptual Graphs for Semantic Web Applications 21

research communities or industrial companies than CG, our strategy was to rely on
this RDF – CG correspondence, so as to take advantage of both the standard feature
of RDF and our competence in CG. Therefore, instead of building an RDF-dedicated
tool from scratch, we preferred to rely on this RDF – CG correspondence for devel-
oping CORESE, an RDF-dedicated search engine based on CG: thus, the first version
of CORESE was quickly implemented and tested using the API of Notio [44]. More-
over, our KM approach evolved towards our so-called “Corporate Semantic Web”
approach. From research viewpoint, using CORESE as the kernel of our research and
applications enables us to check the validity of our hypothesis that CG is a good in-
ternal KR formalism for “Corporate Semantic Web” applications.

2.2 Corporate Semantic Webs

Ontologies

Knowledge Management System Query,
Browsing

Push

DB

Software
or Service

Ontology

Query Tool &
Search engine

Ontology
Tool

Annotation
Tool

User (collective task)
User (Individual task)

Documents

Semantic
Annotation

Base

Expert

Fig. 1. Architecture of a corporate semantic Web

In 1999, we proposed an approach called « Corporate Semantic Web » approach, that
relies on a natural analogy between Web resources and corporate memory resources,
and on a generalisation of CGKAT approach. We thus proposed to materialise a cor-
porate memory through:

 resources: they can be documents (in various formats such as XML, HTML, or
even classic formats), but they can also correspond to people, services, software or
programs,

22 Rose Dieng-Kuntz and Olivier Corby

 ontologies, describing the conceptual vocabulary shared by one or several commu-
nities in the company,

 semantic annotations on these resources (i.e. contents of documents, skills of per-
sons or characteristics of services / software / programs), based on these ontolo-
gies.

with diffusion on the Intranet or the corporate Web.
A Corporate Semantic Web has some specificities w.r.t. the Semantic Web: the

fact that an organisation is bounded should allow an easier agreement on a corporate
policy, an easier creation of ontologies and annotations, an easier verification of va-
lidity and reliability of information sources, a description of more precise user pro-
files, a smaller scale for the document corpora and for the ontologies.

Inventory

Choice of Application Scenario
Users aimed
& application aimed

Information Sources
(non structured, semi-structured or structured,

homogeneous vs heterogeneous)
Contents and grain
of the ontology

Validation of the Ontologies
Consistency checking from
system viewpoint (e.g. CoMMA)

Validation by experts
(e.g. CoMMA, KmP)

Evaluation by end-users
(e.g. CoMMA, KmP)

Constitution, Organisation & Validation of Resources

New resources created
Legacy resources adapted (transformed, reorganised)
(e.g. CoMMA, SAMOVAR)

Annotation of Resources
Manual Annotation
(e.g. CoMMA, ESCRIRE)

Automatic Annotation Semi-automatic Annotation
(e.g. MEAT, SAMOVAR)

Validation of the Annotations
Consistency checking from
system viewpoint

Validation by experts
(e.g. SAMOVAR, CoMMA, KmP)

Evaluation by end-users
(e.g. CoMMA, KmP)

Maintenance & Dynamic Evolution of the Corporate Semantic Web
Ontologies Resources Annotations

Validation of the Corporate Semantic Web
Consistency checking from
system viewpoint

Validation by experts
(e.g. CoMMA, KmP)

Evaluation by end-users
(e.g. CoMMA, KmP)

Construction of the Ontologies
From Human Sources
(e.g. CoMMA, ESCRIRE, KmP)

From Textual Corpus
(e.g. SAMOVAR)

From Structured Databases
(e.g. SAMOVAR, Life Line, KmP)

From Multimedia
Corpus

Fig. 2. « Corporate Semantic Web » Approach

Figure 1 shows the architecture of a corporate semantic Web and figure 2 summa-
rises our method for building it, method stemming from our synthesis and abstraction
after analysis of all our semantic web applications. In [17], we study thoroughly the
components of a corporate semantic Web (resources, ontologies, annotations).

In this paper, we will illustrate this “Corporate Semantic Web” approach by sev-
eral ACACIA team research results: the CORESE semantic search engine, project
memory (SAMOVAR system), distributed memory (CoMMA system), information
retrieval from Medline (ESCRIRE system), support to interpretation or validation of
DNA micro-array experiments (MEAT project), support to collaborative reasoning in

Conceptual Graphs for Semantic Web Applications 23

a healthcare network (Life Line project), support to skills cartography (KmP project).
Table 1 summarises their contributions to the ACACIA team research program.

Table 1. Contribution of the different projects to ACACIA research program

Research questions Contributing projects
How to build or enrich an ontology from textual
sources?

SAMOVAR

How to build or enrich an ontology from a structured
database?

SAMOVAR, Life Line,
KmP

What existing KR formalisms are the most relevant for
the semantic Web?

ESCRIRE

How to create semantic annotations manually through
an editor?

CoMMA

How to create semantic annotations (concepts or rela-
tions) semi-automatically from texts?

SAMOVAR, MEAT

How to offer ontology-guided information retrieval? CORESE, ESCRIRE,
SAMOVAR, CoMMA

How to offer approximate reasoning? CORESE, KmP
How to distribute annotations in a memory?
How to distribute query processing among agents?
How to use agents and ontologies for information
retrieval from a distributed memory?

CoMMA

How to offer scenario-guided, user-centred evaluation
of a corporate memory?

CoMMA, KmP

How to offer friendly interfaces (for ontology brows-
ing, querying or result presentation)?

KmP

Table 2. Scenarios studied in the different applications

Application Scenario Contributing project
Project memory SAMOVAR, Aproba-

tiom
Integration of a new employee CoMMA
Support to technological watch CoMMA
Experiment memory for a research community MEAT
Support to cooperative work Life Line
Skills cartography KmP

3 CORESE Semantic Search Engine

As detailed in [11][12][13], CORESE4 is a semantic search engine, i.e. an ontology-
based search engine for the semantic web: it enables to retrieve web resources anno-

4 http://www-sop.inria.fr/acacia/soft/corese

24 Rose Dieng-Kuntz and Olivier Corby

tated in RDF. CORESE ontology representation language is built upon RDFS, that
enables to represent an ontology by a class hierarchy and a property hierarchy.
CORESE thus takes into account subsumption links between concepts and between
relations when it needs to match a query with an annotation. CORESE ontology rep-
resentation language also enables to represent domain axioms on which CORESE
relies when matching a query with an annotation.

Annotations are represented in RDF and related to the RDF Schema representing
the ontology they are built upon. The CORESE query language is also based on RDF;
for each query, an RDF graph is generated, related to the same RDF Schema as the
one of the annotations to which the query will be matched.

The CORESE engine works on CG internally. When matching a query with an an-
notation according to their common ontology, both the RDF graphs and their schema
are translated into the CG model [45] [10]. Figure 3 summarises the principle of
CORESE. Through this translation, CORESE takes advantage of previous work of
the KR community on reasoning with CG [41] [42] [37] [3].

3.1 RDF(S) and Conceptual Graphs

As stressed in [11][12][13], the RDF(S) and CG models share many common features
and a mapping can easily be established between RDFS and a large subset of the CG
model. An in-depth comparison of both models was the starting point of the devel-
opment of CORESE. Both models distinguish ontological knowledge and assertional
knowledge. In both models, the assertional knowledge is positive, conjunctive and
existential and it is represented by directed labelled graphs. In CORESE, an RDF
graph representing an annotation or a query is thus translated into a CG.

Concerning the ontological knowledge, the class (resp. property) hierarchy in an
RDF Schema is translated into a concept (resp. relation) type hierarchy in a CG sup-
port. RDF properties are declared as first class entities as RDFS classes, just as rela-
tion types are declared independently of concept types in a CG support. This common
handling of properties makes the mapping of RDFS and CG models relevant, contrar-
ily to OO formalisms where properties must be defined as attributes inside classes.

RDFS
Ontology

RDF
Annotation
Base

Query

Rules

CG Support

CG Base

CG Rules

CG Query

RDF(S)
resultCG Result

PROJECTION

INFERENCES

Fig. 3. Principle of CORESE

Conceptual Graphs for Semantic Web Applications 25

There are a few differences between the RDF(S) and CG models in their handling
of classes and properties but such differences can be easily dealt with:

 In RDF(S), a resource can be instance of several classes while in CG, an individual
marker has a unique concept type corresponding to the lowest concept type associ-
ated to the instance referred by this individual marker (i.e. a concept is exact in-
stance of only one concept type). The declaration of a resource as an instance of
several classes in RDF is translated in CG model by generating the concept type
corresponding to the highest common subtype of the concept types translating
these classes.

 Similarly, an RDF property can have several domains (resp. ranges), while in CG,
a relation type signature is unique. Moreover in RDF, properties are binary while
in CG, relations are n-ary. The multiple domains (resp. ranges) constraint of an
RDF property is translated into a single domain (resp. range) constraint in CG by
generating the concept type corresponding to the highest common subtype of the
concept types constraining the domain (resp. range).

The projection operation is the basis of reasoning in the CG model. A query is thus

processed in the CORESE engine by projecting the corresponding CG into the CGs
obtained by translation of the RDF annotations. The retrieved web resources are those
for which there exists a projection of the query graph into their annotation graph.

For example, for the ontology shown in figure 4, the query graph G in figure 5 can
be projected on the two annotation graphs G1 and G2. The web resources annotated
by these graphs will be found as answers of the G query and will be retrieved by
CORESE when processing this query.

Document

MedicalDocument

SurgeryReport

BestPracticeGuide

Person

Surgeon

Professor

Pathology

Cancer

StomachCancer

Melanoma

ConceptType RelationType

createdBy

writtenBy

subject

topic

Extract of concept type hierarchy Extract of relation type hierarchy

diseaseOf

Fig. 4. Example of CG support

26 Rose Dieng-Kuntz and Olivier Corby

G

G1

G2

MedicalDocument MedicalDocument

Cancer

createdBy

subject

SurgeryReport: Report on surgery of Mr Frollister

Surgeon: Dr Michal

StomachCancer

createdBy

subject

diseaseOfPatient: Mr Frollister

BestPracticeGuide: How to treat melanoma

Professor: Prof. Bolstein

Melanoma

writtenBy

topic

Fig. 5. Examples of CG graphs based on the previous CG support

3.2 Domain Axioms

In addition to a concept type hierarchy and a relation type hierarchy, a more expres-
sive ontology can contain domain axioms enabling to deduce new knowledge from
existing one. However RDF Schema does not offer such a feature. Therefore an RDF
Rule extension to RDF was proposed in [13] and CORESE integrates an inference
engine based on forward chaining. The rules are applied once the annotations are
loaded in CORESE and before the query processing. Hence, the annotation graphs are
augmented by rule conclusions before the query graph is projected on them.

CORESE production rules implement CG rules [41] [42] [37] [3]: a rule G1 G2
(also noted IF G1 THEN G2) is a pair of lambda abstractions (x1, ..., xnG1, x1, ...,

xnG2) where the xi are co-reference links between generic concepts of G1 and corre-
sponding generic concepts of G2 that play the role of rule variables.

For instance, the following CG rule states that if a person ?p suffers from an al-
lergy to a molecule ?m and if a drug ?d contains this molecule, then this drug must
not be prescribed to this patient:
IF [Person: ?p] – (allergic_to) – [Molecule:?m] – (con-
tained_in) – [Drug: ?d]
THEN [Drug: ?d] – (forbidden_to) – [Person:?p]

A rule G1 G2 applies to a graph G if there exists a projection from G1 to G, i.e.
G contains a specialisation of G1. The resulting graph is built by joining G and G2
while merging each (xi) in G with the corresponding xi in G2. Joining the graphs
may lead to specialise the types of some concepts, to create relations between con-
cepts and to create new individual concepts (i.e. concepts without variable).

Conceptual Graphs for Semantic Web Applications 27

Remark: In the first implementation of CORESE rule language and rule engine, in
order to avoid possible loops during the execution of the forward-chaining engine, we
restricted the rule language by the following constraint: no new generic concept could
be created in a rule conclusion. However, later applications required the need to use
RDF anonymous resources in rule conclusions. So we decided to suppress this re-
striction, so as to allow the creation of generic nodes for expressing such graphs as:
IF [Patient: ?p] - (taken-care-in) - [Hospital: ?h]
THEN [Patient: ?p] - (attended-by) - [Doctor: ?d] -
(working-in) - [Hospital: ?h].

But the rule engine keeps track of the variable values that led to the triggering of
such a rule, so as to avoid to apply twice the same rule with the same variable values.

3.3 CORESE Query Language

CORESE had several successive query languages, that evolved through the various
applications of CORESE. The last version of the CORESE query language enables to
express queries in the form of RDF triples or of a Boolean combination of RDF tri-
ples. It is an SQL–like query language for RDF, compatible with the W3C SPARQL
RDF query language [38].

The query processor is the CG projection. It relies on the RDF Schema by using
subsumption links (rdf:subClassOf and rdfs:subPropertyOf) and it processes datatype
values. The query language can also query the RDF Schema itself (i.e. the CG sup-
port). Last, it is able to return the best approximate answers by relaxing types.

For example, the following query enables to retrieve any doctor author of a medi-
cal document; the name of this doctor as well as the title of the medical document
must be returned in the answer:
select ?n ?t where
?p rdf:type lv:Doctor
?p lv:name ?n
?p lv:author ?doc
?doc rdf:type lv:MedicalDocument
?doc lv:Title ?t

(lv is the namespace where the classes and properties are defined; as a notation, the
variables are characterised by a name starting by an interrogation point.)

This query is translated into the following CG:
[Doctor: ?p] – {
 – (name) – [Literal: ?n]
 – (author) – [MedicalDocument: ?doc] – (Title) –
[Literal: ?t]}

3.4 Approximate Reasoning

In [12], CORESE approximate reasoning capabilities are detailed. The principle is to
calculate the semantic distance of concept types or of relation types in the ontology

28 Rose Dieng-Kuntz and Olivier Corby

hierarchies, so that two brothers are closer at the ontology deepest levels. When the
user asks an approximate search about a query, the query projection on the annotation
base is performed independently of the subsumption link between concept types
(resp. relation types). For each retrieved resource, the distance to the query is com-
puted and only the resources having a semantic distance to the query lower than a
given threshold are presented to the user; these results are sorted by increasing dis-
tance.

3.5 Conclusions

CORESE works with domain ontologies represented through RDF(S) extended with
domain axioms (which corresponds to simple CG extended by graph rules). It can
process queries expressed in a query language close to SPARQL, and it offers ap-
proximate reasoning in case of need. CORESE has been tested with several existing
RDF Schemas such as the Gene ontology, IEEE LOM, W3C CC/PP, etc.
Let us now present several approaches illustrating corporate semantic web applica-
tions developed in the ACACIA team and based on CORESE.

4 Memory of a Vehicle Project: SAMOVAR Project

The first application of CORESE was the SAMOVAR system. The objective of the
SAMOVAR project was to capitalise knowledge on the problems encountered during
a vehicle design project at Renault. The capitalisation was already initiated at Renault
through a database (DB) called “Problem Management System” and describing the
problems detected during the validation phases in a vehicle project: in the textual
fields of this DB, the participants discussed about these problems, about the possible
solutions for solving them, with their constraints and their advantages, as well as the
solution finally chosen. But due to the volume of this DB, these textual fields of the
Problem Management System constituted an unused information mine.

4.1 Methodological Approach

The SAMOVAR ontology was made up by using both (1) a corpus of texts consti-
tuted by the textual fields of the Problem Management System and (2) a structured
database describing the nomenclature of all parts that can be used in a vehicle project
at Renault. The SAMOVAR approach [25] consisted of the following steps:

 Make an inventory, through discussions with the experts, for analysing the organi-
sation structure, a vehicle project development, and the corporate data available.

 Apply a natural language processing tool (more precisely, the term extractor
Nomino) on the textual fields of the Problem Management System.

 Analyse the structure of the obtained candidate terms for determining their lin-
guistic regularities to be used in heuristic rules allowing to enrich the ontology.

Conceptual Graphs for Semantic Web Applications 29

Component
Ontology

Base of
heuristic

rules

Referential on
components Translation

Ontology
Enrichment

Candidate
concepts to insert
in the Problem or
Solution ontology

Problem or
Solution
Ontology

Validation

Interviews

Bootstrap of
Problem or

Solution
ontology

Ontology
Initialization

Textual corpus

Terms and
relations
extracted

Term or
relation
Extraction

Fig. 6. Method of construction of the SAMOVAR ontology [25]

 Build an ontology with several components: Problem, Part, Project, Service. The
Part sub-ontology was built automatically from a part nomenclature, available in
the company. The Problem sub-ontology, manually initialised from the analysis of
the discussions with the experts and of the Nomino-obtained candidate terms, was
then enriched semi-automatically using the previous heuristic rules (cf. figure 6).

 Annotate semi-automatically descriptions of problems with this ontology.
 Use the semantic search engine CORESE for information retrieval (once the on-

tology represented in RDFS and the annotations in RDF): in particular, CORESE
enables to retrieve problem descriptions satisfying given features.

4.2 Example of Query

The user searches all the problems of Geometry encountered on the Driver_cockpit
_crossmember:
[GeometryProblem: ?pb] – (concerning) – [Part:
Driver_cockpit _crossmember]

which corresponds in CORESE query language to:
?pb rdf:type GeometryProblem
?pb concerning Driver_cockpit _crossmember
Driver_cockpit _crossmember rdf:type Part

30 Rose Dieng-Kuntz and Olivier Corby

Using the projection, the SAMOVAR system is able to find not only descriptions
of problems that are annotated by « GeometryProblem concerning Driver_cockpit
_crossmember » but also those annotated by « CenteringProblem (resp. Interferen-
ceProblem or ClearanceProblem) concerning Driver_cockpit_crossmember », since
CenteringProblem, InterferenceProblem and ClearanceProblem are subtypes of
GeometryProblem.

The SAMOVAR system is an illustration of a corporate semantic Web, implement-

ing a project memory through resources constituted by problem descriptions anno-
tated semantically w.r.t. the ontology. This ontology represented in RDFS then allows
CORESE to guide information retrieval in this memory.

Table 3. Summary of SAMOVAR project

System SAMOVAR: vehicle project memory system
Context or scenarios Memory of problems encountered during a

vehicle project
Domain Automotive sector
Company Renault car manufacturer
Scope of Semantic Web (SW)
Approach

Corporate semantic web on an internal web

Resources Database of problem descriptions
Information sources Human experts

+ Structured DB on part nomenclature describ-
ing all the parts used for vehicle manufacturing
+ Textual corpus constituted by textual com-
ments of the database of problem descriptions

Ontology 792 concepts and 4 relations in the
SAMOVAR ontology.

Annota-
tions

4483 problem descriptions annotated

Expert validation Validation by some experts at Renault
Typical user’s query “Find all problems of a given (resp. any) type

that occurred on a given (resp. any) part of the
vehicle in a given (resp. any) project”

Used reasoning Classic projection
+ Browsing of the concept type hierarchy

CORESE functions used CORESE past query language (consisting of
RDF + variables and operators)

End-user evaluation Evaluation by some experts at Renault
Research progress Use of linguistic tools for semi-automatic

construction / enrichment of an ontology and
of semantic annotations

Conceptual Graphs for Semantic Web Applications 31

4.3 Conclusions

SAMOVAR was the first application of CORESE in a real world concrete problem. It
proved the interest of ontology-guided information retrieval. It was based on
CORESE first query language (that was similar to RDF with variables). SAMOVAR
illustrated how legacy systems can be used as sources of the memory. It offered an
example of knowledge acquisition from heterogeneous information sources: texts,
databases, experts. It enabled us to study thoroughly the problem of creation of an
ontology and of semantic annotations from textual sources, such ontology and anno-
tations being then represented in RDF(S) in order to serve as inputs of CORESE.

The corpus-based approach for building the ontology and the annotations is ge-
neric. It relies on the two following stages: (1) Analyse the structures of the candidate
terms obtained from a term extractor, in order to determine their regularities that will
be used to create heuristic rules; (2) Use these rules in order to enrich the ontology.

The SAMOVAR method was generalised in a method for construction of a mem-
ory of problems encountered during a project of design of a complex system [25].

After SAMOVAR, several applications enabled to improve CORESE query lan-

guage, CORESE Graphical User Interface (both for browsing the ontology, for query-
ing and for presenting the answers).

5 Distributed Memory: COMMA Project

Corese
Search engine

Ontology
Editor

Annotation
Editor Multi-Agent

System

Machine
Learning Tool

O’CoMMA
ontology

Semantic
Annotation

Base

Documents

Fig. 7. Architecture of the CoMMA system

32 Rose Dieng-Kuntz and Olivier Corby

The management of a distributed memory was studied thoroughly in the CoMMA
IST project that enabled to develop a multi-agent system in order to manage a distrib-
uted memory [23]. This memory was constituted by a corporate semantic Web made
of:
 O’CoMMA corporate ontology and user models,
 resources constituted by the corporate members or by documents useful for a new

employee or handled for technological watch,
 semantic annotations on these resources.

 The CoMMA system [23] includes five main components: (1) the O'CoMMA on-
tology, (2) the multi-agent knowledge management system, (3) the CORESE seman-
tic search engine, (4) machine learning algorithms enabling to improve relevance of
retrieved documents according to the users’ interest centres, (5) graphical interfaces.

5.1 The O’CoMMA Ontology

The method of construction of the O’CoMMA ontology [23] relied on the following
phases: knowledge elicitation from human sources, manual terminological analysis
phase, ontology structuration, validation by experts, ontology formalisation in RDFS.
The O’CoMMA ontology is structured in three levels [23]:
 A high level comprising abstract types of concepts, very reusable but not very

usable by end-users in their daily work, and having to be hidden during the ontol-
ogy browsing by the end-user: e.g. Entity and Situation types of concepts.

 An intermediate level comprising concept types useful for the processed scenarios
of corporate memory and for the considered domains and reusable for other sce-
narios and similar domains: e.g . concepts related to the aspects Document, Or-
ganisation, Person, Telecommunications and Building, useful for support to inte-
gration of new employees and technological watch in telecommunications (cf T-
NOVA and CSELT) and in building industry (CSTB) but generic enough to be re-
usable for other similar scenarios and domains.

 A specific level comprising concepts typical to the considered enterprise and there-
fore very useful for the end-users but not very reusable outside this enterprise: e.g.
concepts also related to the aspects Document, Organisation, Person, Telecommu-
nications and Building, but typical of the company considered (for example, guide
of the route of the new employee, technological watch file or thematic referent).

The ontology construction method and the ontology structure are reusable. The re-

usability of the O’CoMMA ontology was proven through the Aprobatiom project
where the O’CoMMA ontology was extended by concepts useful for building a pro-
ject memory in building sector for CSTB.

Let us note that this O'CoMMA ontology was not only aimed at annotating docu-
ments and people, but also aimed at being browsed by human users and used by soft-
ware agents (helping in the search of information in a distributed memory).

Conceptual Graphs for Semantic Web Applications 33

5.2 Examples

Here is an example of query in CoMMA for integration of a new employee:
“Find the titles and authors of all documents aimed at newcomers”.

In the new CORESE query language:
select ?t ?auth
?doc rdf:type comma:Document
?doc comma:title ?t
?auth comma:author ?doc
?doc comma:target ?targ
?targ rdf:type comma:Newcomer

An example of query in CoMMA for technological watch is:
“Find all the persons for which the documents found on fire detection systems are

interesting”.
select ?pers
?doc rdf:type comma:Document
?doc comma:Subject comma:FireDetectionSystem
?pers rdf:type comma:Person
?pers comma:HasForWorkInterest
comma:FireDetectionSystem

An example of use of rule is:
“If a team includes a person professionally interested in a subject, the team can be

considered as professionally interested in the subject and the documents on the sub-
ject are relevant for being sent to the team.”
IF [Team:?team] – (Includes) – [Person:?pers] – (Has-
ForWorkInterest) – [Topic:?theme]
 [Document:?doc] – (Subject) – [Topic:?theme]
THEN [Team:?team] – (HasForWorkInterest) –
[Topic:?theme]
 [Document:?doc] – (RelevantFor) – [Team:?team]

In CORESE new rule language, it is expressed as:
IF ?team rdf:type comma:Team
 ?team comma:Includes ?pers
 ?pers rdf:type comma:Person
 ?pers comma:HasForWorkInterest ?theme
 ?theme rdf:type comma:Topic
 ?doc rdf:type comma:Document
 ?doc comma:Subject ?theme
THEN ?team comma:HasForWorkInterest ?theme
 ?doc comma:RelevantFor ?team

34 Rose Dieng-Kuntz and Olivier Corby

Table 4. Summary of CoMMA project

System CoMMA, a multi-agent system for corporate
memory management

Context or scenario Support to integration of a new employee and
to technological watch

Domain Telecommunications and Building sector
Companies T-NOVA (Deutsche Telecom), CSELT (Ital-

ian Telecom) and CSTB (French Centre for
Science and Technique of Building)

Scope of Semantic Web Ap-
proach

Distributed corporate semantic Web, both on
internal and external web, with agents used for
search and for push towards the end-user

Resources Documents describing the organisation, the
corporate members and the domain

Information sources Human experts + Document manual analysis
Ontology The O'CoMMA ontology comprises 472 con-

cepts, 80 relations and 13 levels of depth
Annota-
tions

Annotations on documents or on people in an
organisation

Expert validation Validation by T-NOVA, CSELT, CSTB ex-
perts

Typical User query “Find the document of this type speaking about
this subject or interesting for this kind of user”
“Find the persons of this type that have these
characteristics”

Used reasoning Classic projection + Use of global objects
+ Graph rules + Ontology browsing

CORESE functions used CORESE past query language + Use of rules
End-user evaluation Evaluation by end-users at T-NOVA, CSELT

and CSTB
Research progress O’CoMMA ontology represented in RDFS

+ DRDF(S) a CG-based extension of RDF(S)
for expressing contextual knowledge
+ Concept learning from RDF annotations
+ Annotation and query distribution
+ Multi-agent system for distributed informa-
tion retrieval

5.3 CORESE Extensions Designed for CoMMA.

In the CoMMA project, CORESE was extended with:

 a global graph representing global knowledge true for all annotations, so that this
global graph would be joined to each annotation during query processing,

 the expression and processing of reflexive, symmetric or transitive properties,

Conceptual Graphs for Semantic Web Applications 35

 extensions of the query language with type operators enabling to specify more
precisely the type of the requested resources,

 rule graphs and a forward-chaining rule engine.

5.4 DRDF(S): Extensions of RDFS for Expressing Contextual Knowledge

One lesson of the CoMMA project was that RDF(S) was insufficient to express con-
textual knowledge such as definitions or axioms: therefore we took inspiration of CG
for proposing DRDFS (Defined Resource Description Framework), an extension of
RDF(S) with class, property and axiom definitions [16]. DRDFS more generally
enables to express contextual knowledge on the Web. The RDF philosophy consists
of letting anybody free to declare anything about any resource. Therefore the knowl-
edge of by whom and in which context an annotation is stated is crucial. DRDF(S)
enables to assign a context to any cluster of annotations. The representation of axioms
or class and property definitions is just a particular use of DRDFS contexts. DRDFS
is a refinement of the core RDFS which remains totally compliant with the RDF triple
model. More precisely, DRDFS is an RDF Schema extending RDFS with new primi-
tives. This extension of RDFS is inspired of CG features. DRDFS is built upon the
CORESE mapping established between RDF(S) and the Simple CG model. A
DRDFS context corresponds to a CG; a DRDFS class (resp. property) definition
corresponds to a concept (relation) type definition; a DRDFS axiom corresponds to a
graph rule.

5.5 Learning Concepts from RDF Annotations

We offered a method for classifying documents and capturing knowledge by learning
concepts from the RDF annotations of documents [15]. Our approach consists of
extracting descriptions of the documents from the RDF graph gathering all the docu-
ment annotations and then forming concepts by generating the most specific generali-
sation of these descriptions for each possible set of documents. In order to deal with
the intrinsic exponential complexity of such a task, the concept hierarchy is built
incrementally by increasing at each step the maximum size of the RDF document
descriptions extracted from the whole RDF graph gathering all the annotations.

5.6 Annotation Distribution and Query Distribution

In [22], algorithms enabling the CoMMA multi-agent system to allocate and retrieve
semantic annotations in a distributed corporate semantic web were proposed. The
agents used the underlying graph model when they needed to allocate a new annota-
tion and when solving distributed queries. As the agents dedicated to ontology or to
the annotations used the CORESE API, they used CG reasoning.

36 Rose Dieng-Kuntz and Olivier Corby

5.7 Conclusions

CoMMA project was a very important step for improving CORESE. This application
also showed the interest of RDF(S) but also its insufficiencies. From CG viewpoint, it
enabled to propose multiple improvements of RDF(S) inspired of CG: graph rules,
expression of contexts, concept learning.

6 Comparison of KR Formalisms: The ESCRIRE Project

Table 5. Summary of ESCRIRE project

System EsCorServer, system for querying annotated
abstracts of Medline database

Context or scenarios ESCRIRE project, cooperative project among
INRIA teams

Domain Biology
Company None
Scope of SW Approach External, open Web
Resources Abstracts of Medline database on genetics
Information sources A researcher (computer scientist) that had

taken part in projects representing knowledge
on biology and genetics

Ontology ESCRIRE ontology has 28 classes (enabling
to describe 163 genes as instances of these
classes) and 17 relations

Expert validation No expert available for validation
Typical User query “Find the articles describing interactions where

a given gene acts as target and where the in-
stigator is either this other gene or that other
gene”

Used reasoning Classic projection + Processing of “OR que-
ries” + Use of global objects (for representing
global knowledge)

CORESE functions used Another CORESE query language a la select
from where + Use of “OR queries”
+ Use of rules for handling reflection, symme-
try and transitivity properties and inverse
relations of relations

End-user evaluation No evaluation by end-users
Research progress Techniques of translation between a pivot

language and conceptual graphs via RDFS
+ Virtual document composition

Conceptual Graphs for Semantic Web Applications 37

The ESCRIRE project [1] [34] was a cooperative project launched in 1999 - before
the existence of OWL - among three INRIA teams, in order to compare DL, CG and
OO languages for representing the contents of documents and for querying about
them. It relied on the annotation of abstracts of Medline DB on genetics. It enabled to
answer “OR queries” such as: “Find the articles describing interactions where the
Ubx gene acts as target and where the instigator is either en gene or dpp gene?”

For comparing the three languages, chosen test articles were annotated in order to
constitute a test base to be queried. An XML-based pivot language was defined, for
describing the ESCRIRE ontology, expressing queries and describing the answers. So
each team had to translate this pivot language into the target language (DL, CG, OO
KR). ACACIA developed the translator from ESCRIRE language to CG.

Example of ESCRIRE rule:
IF [Interaction: ?int1] – {
 - (promoter) - [Gene: ?x]
 – (target) – [Gene:?y]
 - (effect) - [Inhibition]}
 [Interaction: ?int2] – {
 - (promoter) - [Gene: ?y]
 – (target) – [Gene:?x]
 - (effect) - [Inhibition]}
THEN [Gene: ?x]–(mutually-repressive-with)–[Gene: ?y]

As a conclusion, the ESCRIRE project illustrates how using a translation from dif-

ferent KR formalisms to this pivot language enables then to work with CGs.

7 Experiment Memory in Biology: The MEAT Project

Table 6. Summary of MEAT project

System MEAT, a memory of experiments of biologists
on DNA micro-arrays

Context Memory of DNA-micro-array experiments
Domain Biology
Company IPMC
Scope of SW Approach External, open web
Re-
sources

Scientific articles useful for interpretation or
validation of results of DNA micro-array ex-
periments

Information sources Human experts
Ontology UMLS semantic network that contains 134 con-

cept types and 54 relations, and is linked to
millions of terms via UMLS metathesaurus.

Expert validation Validation of extracted relations and of gener-
ated annotations, by biologists of IPMC

38 Rose Dieng-Kuntz and Olivier Corby

Typical user query “ Find all the articles asserting a given (resp.
any) relation between a given biological entity
(gene, protein…) and another biological entity”
 “ Find all the articles asserting any relation
between a given gene and any disease”

Used reasoning Classic projection
CORESE functions used CORESE new query language + Use of rules

+ Use of approximate reasoning
End-user evaluation Evaluation by biologists of IPMC
Research progress Automatic extraction of relations from texts

+ Automatic generation of RDF annotations

The MEAT project aims at building a memory of experiments in DNA micro-array,
and at supporting biologists in their interpretation and validation of the results of their
experiments, through analysis of semantically annotated Medline scientific articles.
We consider the UMLS semantic network as a general ontology for the biomedical
domain: the UMLS hierarchy of semantic types can be regarded as a hierarchy of
concept types and the terms of the metathesaurus can be considered as instances of
these concept types.

Fig. 8. CORESE interface showing the ontology and the query structure [28]

The MEAT-Annot system [28] relies on analysis of scientific articles through lin-
guistic tools in order to generate automatically RDF annotations (not only concepts as
in SAMOVAR but also relations among concepts). In the text, MEAT-Annot recog-
nises terms corresponding to UMLS concepts and then it uses a relation extraction
grammar for extracting automatically relations linking terms denoting UMLS con-
cepts. It generates an RDF annotation that is stored, once validated by the biologist.

Conceptual Graphs for Semantic Web Applications 39

The annotation base is then used by CORESE for retrieving the articles possibly rele-
vant for answering the biologist’s query and supporting him/her in the interpretation
of a DNA micro-array experiment.

Figure 8 shows the CORESE interface for asking a query “Find the URL of docu-
ments speaking about an amino-acid-peptide-or-protein playing a role in a disease”
and figure 9 shows the answers to this query.

As a conclusion, the MEAT project illustrates the reuse of an existing ontology

and the use of linguistic tools for generating RDF annotations.

Fig. 9. CORESE answers for the previous query [28]

8 Support to Cooperative Work in a Healthcare Network:
The Life Line Project

Table 7. Summary of Life Line project

System A Virtual staff in the framework of the “Life Line” project
Context or sce-
nario

Support to cooperative reasoning of members of a health
care network

Domain Medicine
Company Nautilus (specialised in marketing medical software)
SW Scope Medical semantic Web among distributed health partners
Resources Medical documents: patient records, guide of best practices
Info. sources A medical database translated automatically into RDF(S)

40 Rose Dieng-Kuntz and Olivier Corby

Ontology Nautilus ontology with 26432 concepts and 13 relations
Expert validation Validation by our industrial partner Nautilus
Typical User query “Find the past sessions of virtual staff where a given ther-

apy was chosen for the patient and indicate the arguments
that were given in favour of his solution”
“Find a past session of virtual staff where the patient suf-
fered from a given symptom and indicate the disease diag-
nosed and the therapy protocol decided”

Used reasoning Classic projection
CORESE func-
tions used

 CORESE past query language

End-user evalua-
tion

Evaluation by our industrial partner

Research progress Translation of a database into an RDF(S) ontology
+ Integration of an ontology with SOAP and QOC graphs

The Life Line project [20] [40] aims at developing a knowledge management tool for
a care network.

8.1 Nautilus Ontology

We developed a translator of the Nautilus medical DB from its internal format to-
wards RDF(S), by using an approach of "reverse engineering" relying on the analysis
of the principle of coding of this DB. The obtained Nautilus ontology was then ex-
tended by a classification of medical professions and by classes relevant for a health-
care network, and represented in RDFS. It was used in a tool called "Virtual Staff",
that allows the members of a healthcare network to visualise their reasoning when
formulating diagnosis assumptions or when making decisions of therapeutic proce-
dures [20]. This application corresponds to an organisational semantic Web dedicated
to a medical community cooperating in the context of a health care network.

In the Virtual Staff, the dependencies between the various diagnostic and therapeu-
tic hypotheses are represented through a graph using the concepts defined in the Nau-
tilus ontology. The doctor reasons by linking the health problems to the symptoms,
the clinical signs and the observations in order to propose care procedures.

The Virtual Staff relies on the SOAP model (Subjective, Objective, Assessment,
Plan) used by the medical community [46]. In this model, the S nodes describe cur-
rent symptoms and clinical signs of the patient, the O nodes describe analyses or
observations of the physician, the A nodes correspond to the diseases or health prob-
lems of the patient, and the P nodes correspond to the procedures or action plans set
up in order to solve the health problems.

Sometimes, the doctor may need to visualise all the possible solutions and the ar-
guments in their favour or against them. The QOC model (Question Options Criteria)
[30]) is useful for support to decision-making. In this model, a question Q corre-
sponds to a problem to solve. To solve the question Q, several Options are thought
out, with, for each option, the criteria in its favour and the criteria against it. Two
types of questions are possible for the Virtual Staff: (1) Diagnosis of a pathology:

Conceptual Graphs for Semantic Web Applications 41

Which pathology explains the clinical signs of the patient? (2) Search of a prescrip-
tion: Which action plan will enable to treat the diagnosed pathology?

In the Virtual Staff, the SOAP graph enables to visualise the patient’s record and
in phase of decision, QOC graphs enable to choose between pathologies or between
action plans. Using the Nautilus ontology, the system can propose a list of possible
concept types to help the users to build SOAP and QOC graphs [20]. Table 8 indi-
cates the concept types among the subtypes of which each category of node must be
chosen.

Fig. 10. Interface of the Virtual Staff [40]

Table 8. Nodes of Virtual Staff graphs and Nautilus ontology concept types

Node Category Possible concept types
S node in a SOAP graph Symptom
O node in a SOAP graph LaboratoryTest, PathologicalAgent or ForeignBody
A node in a SOAP graph Malformation, Pathology or PsychologicalProblem
P node in a SOAP graph Treatment or DiagnosticGesture
Option in a QOC graph Pathology or Treatment
Criterion in a QOC graph Symptom, LaboratoryTest, Pathology or Treatment

42 Rose Dieng-Kuntz and Olivier Corby

The arcs between the nodes correspond to relations among concepts:
[Symptom] – (has_for_cause) – [Pathology]
[Pathology] – (has_for_consequence) – [Symptom]
[Pathology] – (confirmed_by) – [LaboratoryTest]
[Pathology] – (treated_by) – [Treatment]

Fig. 11. Architecture of the Virtual Staff [40]

The arcs between the nodes of a QOC graph can be interpreted by « Question has-
solution Option » or by « Option has-positive-criterion Criterion » or by « Option
has-negative-criterion Criterion ».

8.2 Examples of Queries

“Find the past sessions of virtual staff where a given therapy was chosen for the
patient and indicate the arguments that were given in favour of this solution”
[VirtualStaff Session: ?session] – (has-QOC) –
[QOCGraph: ?graph] – (chosen-therapy) - [Therapy:
?therap] – (positivecriteria) –[ConceptNautilus: ?cri-
terion]

“Find a past session of virtual staff where the patient suffered from a given symptom
and indicate the disease diagnosed and the therapy protocol decided”
[VirtualStaff Session: ?session] – (has-SOAP) – [SOAP-
Graph: ?graph] – (has_symptom) – [Symptom: ?symp] –
(has_for_cause) – [Pathology: ?patho] – (treated_by) –
[Therapy: ?therap]

Conceptual Graphs for Semantic Web Applications 43

8.3 Conclusions

The Virtual Staff illustrates an application where CORESE helps to retrieve the rele-
vant subclasses for editing the SOAP and QOC graphs and enables to retrieve infor-
mation on past virtual staff sessions stored in RDF(S).

9 KMP (Knowledge Management Platform) Project

The KmP project5 is an RNRT project for skills cartography of Sophia Antipolis
firms in telecommunications. It is so far the largest application using CORESE and its
new features such as new query language, new rule language, approximate reasoning.
CORESE is the kernel of the semantic web server developed for KmP. Design of the
KmP system was characterised by a user-centred, participative approach with a spe-
cial care for GUI interfaces developed in SVG (see figure 12).

Table 8. Summary of KmP project

System KmP system for cartography of skills in tele-
communications for Sophia Antipolis firms

Context or scenarios 1) Increase visibility of Telecom Valley
2) Cartography of skills in order to enhance

inter-firms cooperation
3) Support to cooperation between industrial

companies and research laboratories
Domain Telecommunications
Companies Companies of Telecom Valley: Amadeus,

ATOS Origin, Coframi, Elan IT, Eurecom,
France Télécom R&D, HP, IBM, INRIA, Phil-
ips Semiconductors, Qwan System, Transiciel,
UNSA-CNRS

Semantic Web Approach Semantic Web server
Resources Documents describing collective competencies

of firms or of research laboratories
Information sources Human experts
Ontology The KMP ontology comprises 1136 concepts

and 83 relations and 15 levels of depth
Expert validation User-centred participative design and user-

centred validation
User query “Find one company having this type of skills”

 “Show me the poles of complementary compe-
tencies in this field”
 “Show me the clusters of similar competencies
in this field”

5 http://www-sop.inria.fr/acacia/soft/kmp

44 Rose Dieng-Kuntz and Olivier Corby

Used reasoning Classic projection
+ Approximate reasoning

CORESE functions used CORESE past and new query language + Use
of rules + Use of approximate reasoning

End-user evaluation User-centred evaluation
Research Progress Competence ontology represented in RDF(S)

+ New ontological distance for approximate
reasoning + SVG graphical user interfaces

Fig. 12. Interface of KmP showing clusters of complementary competences (credit: Gronnier)

10 Conclusions

10.1 Evolution of CORESE

Let us summarise the evolution of CORESE through all these applications:
 In SAMOVAR, we used CORESE first query language and we used a linguistic

tool for generating both the ontology concept types and the annotations from texts.
 In CoMMA, CORESE was enhanced by representation of graph rules enabling to

express property relations such as reflexivity, symmetry, transitivity, inverse rela-

Conceptual Graphs for Semantic Web Applications 45

tion and to express domain rules; a forward-chaining engine was developed for us-
ing such rules in order to enlarge the annotation base.

 In the ESCRIRE project, a new select … from … where query language was intro-
duced, and the “or queries” were processed, as well as reflexive, symmetric, transi-
tive and inverse relations.

 In Life Line and MEAT projects, the new query language was used.
 In KmP, a semantic web server was developed, as well as new interfaces with

SVG and the new CORESE query language and approximate reasoning were used.

CORESE can be compared to query languages or tools dedicated to RDF such as

RQL [27], Triple [43], SquishQL [35], Sesame [7], or tools such as [21]. But
CORESE is the only RDF(S)-dedicated engine that offers both inference rules and
approximate search and the only RDF(S)-dedicated engine relying on CG. A few
researchers use CG in semantic Web context: a link between CG and RDF(S) meta-
model is proposed in [24]; CG is also the KR formalism used by Ontoseek (a content-
based information retrieval system for online yellow page and product catalogs) [26]
and by WebKB (an ontology server and Web robot) [32]. With respect to the synthe-
sis on CG applications [9], CORESE is a prototype that has been used in ten applica-
tions and by several dozens of users. It proves a real usefulness of CG reasoning for
corporate semantic webs. Moreover, the applications MEAT, Life Line and KmP are
not restricted to a single organisation and are relevant for the (open) semantic Web.

10.2 Evaluation Issues

In the previous applications, evaluation was carried out from three viewpoints [17]:
 Checking from system viewpoint: we can check whether the system actually real-

ises the functions it was intended for, and whether it satisfies classic criteria of
software quality (performance, robustness, etc). We performed such a verification
partially in most of our applications.

 Validation from expert viewpoint: the experts must validate the correctness, quality
and relevance of the knowledge included in the system (mainly the ontology and
the semantic annotations): we performed such validation for all our applications
except ESCRIRE project where no expert was available.

 Evaluation from end-user viewpoint: the end-users evaluate whether the system is
useful and usable according to them. We performed a very detailed, scenario-
guided, end-user evaluation in two projects: CoMMA and KmP.
In our past applications such as SAMOVAR or CoMMA, we did not organise ex-

periments for calculating systematically information retrieval recall and precision.
However, during SAMOVAR evaluation, the Renault experts appreciated the ontol-
ogy-guided retrieval offered by CORESE: for example, CORESE enabled them to
discover similarity between different problems described in the description problem
base, similarity that could not have been found automatically using classic SQL que-
ries since it depended on the semantic contents of textual fields and not on structured
fields of the DB. As the SAMOVAR ontology had been created from these textual
fields, it enabled to capture this similarity between different problems (in the same
project or in different projects). Likewise, during the CoMMA project, T-NOVA

46 Rose Dieng-Kuntz and Olivier Corby

considered CORESE as retrieving far more relevant documents than its previous
search engine and in a more efficient way. More generally, in most of our past appli-
cations, the evaluation was ergonomics-based, qualitative and based on human as-
sessment. However, we performed a quantitative evaluation in some projects not
detailed here (e.g. ontology alignment [2]). we are now preparing quantitative evalua-
tion experiments in the MEAT project and in a technological watch application.

10.3 Discussion

The main advantages of CG in the applications previously described are:
 The expressiveness at the level of KR: Sowa’s CGs “a la Pierce” [45] enable to

represent first-order logic; in CORESE, we translated RDF(S) into simple CG
[10]; SG family [3] is more expressive than RDF(S): for example, it enables to rep-
resent n-ary relations. Even though some expressions of OWL cannot be repre-
sented in SG family, however, in most of our applications, RDF(S) extended with
rules was sufficient for expressing what was needed, which means that simple CGs
with graph rules – as studied in the SG family– were sufficient.

 The power at the level of reasoning: CORESE takes advantage of the classic CG
projection (that we optimised for dealing with large ontologies), and offers for-
ward-chaining on graph rules. The approximate search based on the calculation of
an ontological distance requires the implementation of an “approximate projec-
tion” [12]. It would be interesting to study its complexity as for the SG family [3].

 The power at the level of queries: CORESE query language is close to SPARQL
specification [38] – that should become a recommendation of W3C.
As a further work, we intend to study systematically (1) what can be expressed

with CGs (KR and queries) that could not be expressed with the other languages and
(2) what cannot be expressed in CGs while it could be expressed with other lan-
guages.

One frequent argument in favour of CG formalism is its greater readability thanks
to its graphical notation. However in CORESE, it is RDF(S) that is handled and visi-
ble externally and not CGs, since RDF(S) is the W3C-recommended language, that
plays the role of exchange language between CORESE and external world (e.g. the
user or other applications). However, adequate graphical user interfaces can represent
RDF(S) through graphs (as CGs): in the MEAT project, our validation interface for
the biologists presents the generated RDF annotations through user-friendly graphs.

We distinguish the internal language handled by the semantic web tools (i.e.
RDF(S) and OWL), the language handled by the developer (in our case, RDF(S) and
CG), and last, what can be seen by the end-user through user interfaces.

Our choice of RDFS is mainly historical since the first implementations of

CORESE preceded the emergence of OWL. But as, in 2004, W3C recommended
OWL for representing more complex ontologies, our strategy can be either to con-
tinue to focus on RDF(S) – i.e. privilege applications needing only simple ontologies
since most existing Web-available ontologies are still in RDF(S) – or to evolve to-
wards OWL. The ACACIA team is studying CORESE extensions to handle annota-
tions represented in OWL Lite. Handling simple ontologies should be an advantage in

Conceptual Graphs for Semantic Web Applications 47

the framework of the open semantic Web, where heterogeneity and scalability issues
are more crucial than for corporate semantic Webs.

10.4 Towards the Semantic Web

In [17], we emphasise the most important research topics needed to be performed on
construction, management and evolution of the different elements of a corporate
semantic Web: automation, heterogeneity, evolution, evaluation and scalability.

In addition to the topics described in this paper, the ACACIA team also studies
thoroughly RDF(S) ontology alignment ontology [2], multi-viewpoint ontologies [39]
support to technological watch with ontology-guided search on the external Web [8]
and support to e-Learning (a new KM scenario) using semantic Web technologies. As
the results of this research will be used to extend CORESE search engine, this re-
search on RDF(S) indirectly works with CGs. We hope to have shown through this
paper that more than 10 years of research in CG are useful for contributing to reach
Tim Berners-Lee’s vision of the Semantic Web.

Acknowledgements.
We deeply thank all our colleagues of the ACACIA team for their enthusiasm in our
collective work on corporate memories and on corporate semantic Webs. We are
specially grateful to Khaled Khelif, Nicolas Gronnier, and Marek Ruzicka for the
hard-copies of MEAT-Annot, KmP and Virtual Staff integrated in this paper.
CORESE was mainly designed and developed by Olivier Corby, with a support of
Olivier Savoie for implementation. Rules were added to CORESE by Alexandre
Delteil and Catherine Faron-Zucker, that also proposed the DRDF(S) language and
the algorithm for concept learning from RDF annotations. Joanna Golebiowska de-
veloped the SAMOVAR system, Fabien Gandon the O’CoMMA ontology and the
annotation and query distribution algorithms in the CoMMA multi-agent system,
Carolina Medina-Ramirez developed the EsCorServer server of biological knowl-
edge, Khaled Khelif the MEAT-Annot system for generation of annotations in the
framework of the MEAT project initiated by Leila Alem on biochip experiment
memory, Frédéric Corby and David Minier reconstituted the Nautilus ontology from
the medical database, David Minier and Marek Ruzicka implemented the Virtual
Staff, Nicolas Gronnier and Cécile Guigard developed the KmP system specified by
Alain Giboin, Fabien Gandon and Olivier Corby. Bach Thanh-Le developed the Asco
algorithm for RDF(S) ontology alignment, Cao Tuan-Dung an algorithm for support-
ing technological watch guided by an ontology, Laurent Alamarguy an algorithm for
relation extraction from texts, Sylvain Dehors semantic Web techniques for eLearn-
ing, and Luong Hiep-Phuc studies the evolution of a corporate semantic Web. Many
thanks also to the previous members of the ACACIA team, since their past research
was an important step towards corporate semantic Webs: Philippe Martin developed
the CGKAT system linking structured documents, WordNet ontology and CG, Sofi-
ane Labidi, Krystel Amergé, Laurence Alpay contributed to knowledge acquisition
from multiple experts, Stéphane Lapalut to reasoning on CGs, Christophe Cointe,
Nada Matta, Norbert Glaser and Roberto Sacile to research on CommonKADS, Ka-
lina Yacef to research on eLearning, Stefan Hug developed the MultiKat system for

48 Rose Dieng-Kuntz and Olivier Corby

CG ontology comparison and Myriam Ribière proposed models for integrating view-
points in a CG ontology.

References

1. Al-Hulou, R., Corby, O., Dieng-Kuntz, R., Euzenat, J., Medina Ramirez, C., Napoli, A. and
Troncy, R. Three knowledge representation formalisms for content-based manipulation of
documents, KR'2002 Workshop on "Formal Ontology, Knowledge Representation and In-
telligent Systems for the World Wide Web". Toulouse, France, April 2002.

2. Bach, T.-L., Dieng-Kuntz, R., Gandon, F. On Ontology Matching Problems (for building a
corporate Semantic Web in a multi-communities organization). ICEIS 2004. Porto, 2004.

3. Baget, J.-F., Mugnier, M.-L. Extensions of Simple Conceptual Graphs: The Complexity of
Rules and Constraints, JAIR, 16:425-465, 2002

4. Berners-Lee, T. Semantic Web Road Map. http://www.w3.org/DesignIssues/Semantic.html,
September 1998.

5. Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web. Scientific American, May 2002.
6. Berners-Lee T. , Miller E. The Semantic Web lifts off. ERCIM News No. 51, Oct. 2002.
7. Broekstra, J., Kampman, A., van Harmelen, F. Sesame: A Generic Architecture for Storing

and Querying RDF and RDF Schema. Proc. of ISWC'2002, pp. 54-68, Sardinia, Italy,
2002.

8. Cao, T.-D., Dieng-Kuntz, R., Fiès, B. An Ontology-Guided Annotation System For Tech-
nology Monitoring, IADIS Int. Conf. WWW/Internet 2004, Madrid, October 2004.

9. Chein, M., Genest, D. CGs Applications: Where are we 7 years after the first ICCS. In
ICCS’2000, Darmstadt, Germany, August 14-18, Springer LNAI 1867, p. 127-139.

10. Chein, M., Mugnier, M.-L. Conceptual graphs: fundamental notions. RIA, 6(4): 365-406.
1992.

11. Corby, O., Dieng, R., Hébert, C. A Conceptual Graph Model for W3C Resource Descrip-
tion Framework, In Proc. of ICCS’2000, Darmstadt, 2000, LNAI 1867, p. 468-482.

12. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C. Querying the Semantic Web with the
CORESE Search Engine. ECAI’2004, Valencia, August 2004, IOS Press, p. 705-709.

13. Corby, O., Faron, C., CORESE: A Corporate Semantic Web Engine. WWW’2002 Work-
shop on Real World RDF and Semantic Web Appl., Hawaii, USA, May 2002.
http://paul.rutgers.edu/~kashyap/workshop.html

14. Dean, M., Schreiber, G. (eds). OWL Web Ontology Language Reference. W3C Recom-
mendation, 10 February 2004, http://www.w3.org/TR/owl-ref/

15. Delteil A., Faron C., Dieng R. Learning Ontologies from RDF Annotations. In Proc. of
IJCAI'01 Workshop on Ontology Learning, Seattle, USA, August 2001.

16. Delteil A., Faron C., Dieng R. Extensions of RDFS Based on the Conceptual Graph Model.
ICCS’2001, LNAI 2120, Springer-Verlag, pp. 275-289, Stanford, CA, USA, 2001.

17. Dieng-Kuntz, R. Corporate Semantic Webs. To appear in D. Schwartz ed, Encyclopaedia of
Knowledge Management, Idea Publishing, July 2005.

18. Dieng, R., Hug, S. MULTIKAT, a Tool for Comparing Knowledge from Multiple Experts.
Proc. of ICCS'98, Montpellier, 1998, Springer-Verlag, LNAI 1453

19. Dieng, R., Hug, S. Comparison of "personal ontologies" represented through conceptual
graphs. Proc. of ECAI'98, Wiley & Sons, p. 341-345, Brighton, UK, 1998.

20. Dieng-Kuntz, R., Minier, D., Corby, F., Ruzicka, M., Corby, O., Alamarguy, L. & Luong,
P.-H. Medical Ontology and Virtual Staff for a Health Network, Proc. of EKAW'2004,
Whittlebury Hall, UK, October 2004, p. 187-202.

21. Eberhart, A. Automatic Generation of Java/SQL Based Inference Engines from RDF
Schema and RuleML. Proc. of ISWC'2002, pp. 102-116, Sardinia, Italy, 2002.

Conceptual Graphs for Semantic Web Applications 49

22. Gandon, F., Berthelot, L., Dieng-Kuntz, R., A Multi-Agent Platform for a Corporate Se-
mantic Web, AAMAS’2002, p. 1025-1032, July 15-19, 2002, Bologna, Italy.

23. Gandon, F., Dieng-Kuntz, R., Corby, O., Giboin, A. Semantic Web and Multi-Agents
Approach to Corporate Memory Management, Proc. of the 17th IFIP World Computer
Congress IIP Track, p. 103-115, August 25-30, 2002, Montréal, Canada.

24. Gerbé O., Mineau G. W. The CG Formalism as an Ontolingua for Web-Oriented Represen-
tation Languages. ICCS’2002, Borovetz, July 2002, Springer, p. 205-219.

25. Golebiowska, J., Dieng, R., Corby, O., Mousseau, D. Building and Exploiting Ontologies
for an Automobile Project Memory, K-CAP, Victoria, Oct. 2001, p. 52-59.

26. Guarino, N., Masolo, C., Vetere, G. Ontoseek: Content-based access to the Web. In IEEE
Intelligent Systems, vol. 14(3), pp. 70-80, 1999.

27. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl M. RQL: a
declarative query language for RDF. In Proc. of WWW'2002, Honolulu, pp. 592-603.

28. Khelif, K., Dieng-Kuntz, R. Ontology-Based Semantic Annotations for Biochip Domain,
EKAW'2004 Workshop on Application of Language and Semantic Technologies to support
Knowledge Management Processes, UK, October 2004, http://CEUR-WS.org/Vol-121/

29. Lassila, O., Swick, R. R. Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recomm., February 22, http://www.w3.org/tr/rec-rdf-syntax/ , 1999.

30. Maclean, A., Young, R., Bellotti, V., Moran T.: Questions, Options, and Criteria: Elements
of a Design Rationale for User Interfaces. IJHCI, 6(3/4):201-250. 1991.

31. Martin, P. CGKAT: A Knowledge Acquisition and Retrieval Tool Using Structured Docu-
ments and Ontologies. ICCS'97, 1997, Springer, LNAI 1257, p. 581-584.

32. Martin, P., Eklund, P. Knowledge Retrieval and the World Wide Web. IEEE Intelligent
Systems, 15(3):18-25, 2000.

33. McGuinness, D. L., van Harmelen, F. (eds) OWL Web Ontology Language 57. Overview,
W3C Recommendation, February 10, 2004. http://www.w3.org/TR/owl-features/

34. Medina Ramirez, R. C., Dieng-Kuntz, R., Corby, O. Querying a heterogeneous corporate
semantic web: a translation approach, Proc. of the EKAW'2002 Workshop on KM through
Corporate Semantic Webs. Sigüenza, Spain, October 2002.

35. Miller, L., Seaborne, A., Reggiori, A. Three Implementations of SquishQL, a Simple RDF
Query Language. In Proc. of ISWC'2002, 2002, pp. 423-435, Sardinia, Italy.

36. Mineau, G. W. A First Step toward the Knowledge Web: Interoperability Issues among
Conceptual Graph Based Software Agents, Part I. Proc. of ICCS’2002, p. 250-260.

37. Mugnier, M.-L. Knowledge Representation and Reasonings Based on Graph Homomorph-
ism. ICCS’2000, Darmstadt, August 2000, Springer 1867, p. 172-192.

38. Prud'hommeaux E., Seaborne A., SPARQL Query Language for RDF, W3C Working
Draft, 17 February 2005, http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050217/

39. Ribière, M., Dieng-Kuntz, R. A Viewpoint Model for Cooperative Building of an Ontol-
ogy, ICCS’2002, Borovets, July 2002, Springer LNAI 2393, p. 220-234.

40. Ruzicka, M., Dieng-Kuntz, R., Minier, D. Virtual Staff - Software Tool for Cooperative
Work in a Health Care Network INRIA Research Report RR-5390, November 2004.

41. Salvat E. Theorem Proving Using Graph Operations in the Conceptual Graph Formalism,
In Proc. of ECAI'98, pp. 356-360, Brighton, UK, 1998.

42. Salvat É., Mugnier M.-L. Sound and Complete Forward and Backward Chaining of Graph
Rules. ICCS '96, Sydney, 1996, Springer, LNAI 1115, p. 248-262.

43. Sintek, M., Decker, S. Triple: A Query, Inference and Transformation Language for the
Semantic Web. Proc. of ISWC'2002, pp. 364-378, Sardinia, 2002.

44. Southey, F. and Linders, J. G., Notio - A Java API for developing CG tools, ICCS'99, 1999.
45. Sowa, J. Conceptual Graphs: Information Processing in Mind and Machine. Reading, Addi-

son Wesley, 1984.
46. Weed, L. D. The Problem Oriented Record as a Basic Tool in Medical Education, Patient

Care and Clinical Research. Ann Clin Res 3(3):131-134. 1971.

50 Rose Dieng-Kuntz and Olivier Corby

47. Wielemaker J., Schreiber G., Wielinga B. Prolog-Based Infrastructure for RDF: Scalability
and Performance. ISWC'2003, pp. 644-658, 2003.

48. Zhong J., Zhu, H., Li, J., Yu, Y. Conceptual Graph Matching for Semantic Search,
ICCS'2002, pp. 92-106, Borovets, July 2002.

Knowledge Representation and Reasoning in

(Controlled) Natural Language

Norbert E. Fuchs

Department of Informatics
University of Zurich, Switzerland

fuchs@ifi.unizh.ch

http://www.ifi.unizh.ch/attempto/

Abstract. Attempto Controlled English (ACE) is a controlled natu-
ral language, i.e. a precisely defined, tractable subset of full English that
can be automatically and unambiguously translated into first-order logic.
ACE seems completely natural, but is actually a formal language, con-
cretely it is a first-order logic language with the syntax of a subset of
English. Thus ACE is human and machine understandable. While the
meaning of a sentence in unrestricted natural language can vary depend-
ing on its — possibly only vaguely defined — context, the meaning of an
ACE sentence is completely and uniquely defined. As a formal language
ACE has to be learned, which — as experience shows — takes about two
days.
ACE was originally developed to specify software programs, but has since
been used as a general knowledge representation language. For instance,
we specified in ACE an automated teller machine, Kemmerer’s library
data base, Schubert’s Steamroller, data base integrity constraints, and
Kowalski’s subway regulations. ACE served as natural language interface
for the model generator EP Tableaux, for a FLUX agent, and recently
for MIT’s Process Handbook. We partially investigated applying ACE to
knowledge assimilation, medical reports, planning, and as input language
for a synthesiser of constraint logic programs. Other people suggested to
express in ACE ontologies, legal texts, or standards. There were first
attempts to use ACE to teach logic. Our current focus of application is
the semantic web within the EU Network of Excellence REWERSE.
To support automatic reasoning in ACE we have developed the Attempto
Reasoner (RACE). RACE proves that one ACE text is the logical conse-
quence of another one, and gives a justification for the proof in ACE. If
there is more than one proof then RACE will find all of them. Variations
of the basic proof procedure permit query answering and consistency
checking. Reasoning in RACE is supported by auxiliary first-order ax-
ioms and by evaluable functions. The current implementation of RACE is
based on the model generator Satchmo. As a consequence, RACE cannot
only be used for theorem proving but also for model generation.
ACE and RACE are powerful and general tools that do not require a
priori world knowledge or a domain ontology — though both can be
expressed in ACE — and they are neutral with regard to particular
applications or methods.
More information on ACE and RACE, demo versions, and publications
can be found at: http://www.ifi.unizh.ch/attempto.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 51–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

What Is a Concept?

Joseph Goguen

University of California at San Diego, Dept. Computer Science & Engineering
9500 Gilman Drive, La Jolla CA 92093–0114 USA

Abstract. The lattice of theories of Sowa and the formal concept anal-
ysis of Wille each address certain formal aspects of concepts, though for
different purposes and with different technical apparatus. Each is suc-
cessful in part because it abstracts away from many difficulties of living
human concepts. Among these difficulties are vagueness, ambiguity, flex-
ibility, context dependence, and evolution. The purpose of this paper
is first, to explore the nature of these difficulties, by drawing on ideas
from contemporary cognitive science, sociology, computer science, and
logic. Secondly, the paper suggests approaches for dealing with these dif-
ficulties, again drawing on diverse literatures, particularly ideas of Peirce
and Latour. The main technical contribution is a unification of several
formal theories of concepts, including the geometrical conceptual spaces
of Gärdenfors, the symbolic conceptual spaces of Fauconnier, the infor-
mation flow of Barwise and Seligman, the formal concept analysis of
Wille, the lattice of theories of Sowa, and the conceptual integration of
Fauconnier and Turner; this unification works over any formal logic at
all, or even multiple logics. A number of examples are given illustrat-
ing the main new ideas. A final section draws implications for future
research. One motivation is that better ways for computers to integrate
and process concepts under various forms of heterogeneity, would help
with many important applications, including database systems, search
engines, ontologies, and making the web more semantic.

1 Introduction

This paper develops a theory of concepts, called the Unified Concept Theory
(UCT), that integrates several approaches, including John Sowa’s lattice of
theories [61] (abbreviated LOT), the formal concept analysis (FCA) of Rudolf
Wille [15], the information flow (IF) of Jon Barwise and Jerry Seligman [3], Gilles
Fauconnier’s logic-based mental spaces [13], Peter Gärdenfors geometry-based
conceptual spaces [16], the conceptual integration (CI, also called blending)
of Fauconnier and Turner, and some database and ontology approaches, in a
way that respects their cognitive and social aspects, as well as their formal
aspects. UCT does not claim to be an empirical theory of concepts, but rather a
mathematical formalism that has applications to formalizing, generalizing, and
unifying theories in cognitive linguistics, psychology, and other areas, as well as
to various kinds of engineering and art; it has implementations and is sound
engineering as well as sound mathematics.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 52–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

What Is a Concept? 53

Although the question in the title does not get a final answer, I hope that
readers will enjoy the trip through some perhaps exotic seeming countries that lie
on the borders between the sciences and the humanities, and return to their home
disciplines with useful insights, such as a sense of the limitations of disciplinary
boundaries, as well as with some new formal tools.

Section 2 illustrates several of the difficulties with concepts mentioned above,
through a case study of the concept “category” in the sense of contemporary
mathematics; Section 2.1 outlines some sociology of this concept, and Section 2.2
discusses some methodological issues, drawing particularly on theories of Bruno
Latour. Section 3 reviews research on concepts from several areas of cognitive
semantics, especially cognitive psychology and cognitive linguistics. This section
provides a technical reconciliation of two different notions of “conceptual space”
in cognitive semantics, Fauconnier’s symbolic notion and Gärdenfors’ geometric
notion; it also gives an extended illustration of the use of this new theory, and an
example using fuzzy convex sets to represent concepts. In addition, it suggests
an approach to the symbol grounding problem, which asks how abstract symbols
can refer to real entities. Section 4 reviews research from sociology, concerning
how concepts are used in conversation and other forms of interaction; values are
also discussed. Section 5 explains the UCT approach to semantic integration,
using tools from category theory to unify LOT, FCA, IF and CI, and generalize
them to arbitrary logics, based on the theory of institutions; an ontology align-
ment example is given using these methods. Finally, Section 6 considers ways
to reconcile the cognitive, social and technical, and draws some conclusions for
research on formal aspects of concepts and their computer implementations.
Unfortunately, each section is rather condensed, but examples illustrate several
main ideas, and a substantial bibliography is provided.

Acknowledgements I thank John Sowa, Mary Keeler and Rod Burstall for
constructive suggestions, references, and remarks, though of course any remain-
ing errors are my own. This paper is based on work supported by the National
Science Foundation under Grant No. 9901002, SEEK, Science Environment for
Ecological Knowledge.

2 A Case Study: “Category”

Category theory has become important in many areas of modern mathematics
and computer science. This section presents a case study, exploring the mathe-
maticians’ concept of category and its applications, in order to help us under-
stand how concepts work in practice, and in particular, how they can evolve, and
how they can interact with other concepts within their broader contexts. This
socio-historical situation is made more complex and interesting by the fact that
the mathematical notion of category formalizes a certain kind of mathematical
concept; Section 5 makes considerable use of categories in this sense.

The word “category” has a complex history, in which it manifested as many
different concepts, several of which are of interest for this paper. Aristotle in-

54 Joseph Goguen

troduced the term into philosophy, for the highest level kinds of being, based
on basic grammatical categories of classical Greek. The idea was later taken up
and modified by others, including the medieval scholastics, and perhaps most
famously, by Immanual Kant. Later Friedrich Hegel and Charles Sanders Peirce
criticized Kant, and put forth their own well known triads, the three elements
of which are commonly called “categories.”

In the early 1940s, Samuel Eilenberg and Saunders Mac Lane developed
their theory of categories [12] to solve certain then urgent problems in algebraic
topology1. They borrowed the word from Kant, but their concept is very different
from anything in Kant’s philosophy. They gave a semantic formalization of the
notion of a mathematical structure: the category for a structure contains all
mathematical objects having that structure; but the real innovation of category
theory is that the category also contains all structure preserving “morphisms”
between its objects, along with an operation of composition for these morphisms.
This concept, which is made explicit in Definition 1 below, allows an amazing
amount of mathematics to be done in a very abstract way, e.g., see [51, 57].
For example, one can define notions of “isomorphism,” “product,” “quotient,”
and “subobject,” at the abstract categorical level, and then see what form they
take (if they exist) in particular categories; many general theorems can also be
proved about such notions, which then apply to an enormous range of concrete
situations. Even more can be done once functors are introduced, and that is not
the end of the story by any means. Thus “category” is not an isolated concept,
but part of a large network of inter-related concepts, called “category theory.”

The phrase “all mathematical objects having that structure” raises founda-
tional issues, because Zermelo-Fraenkel (ZF) set theory, the most commonly
used foundation for mathematics, does not allow such huge collections. How-
ever, Gödel-Bernays set theory does allow them under its notion of “classes,”
which it distinguishes from the small “sets.” Further foundational issues arise
when one considers the category Cat of all categories. This has also been solved,
by so-called universes of sets, along lines developed by either Alexander Groth-
endieck or Solomon Feferman. Some of these issues are discussed in [51]. This
illustrates how a concept can generate difficulties when pushed to its limits, and
then stimulate further research to resolve those difficulties2.

Such seemingly esoteric issues can have significant social consequences. For
example, in the 1970s, I had several perfectly good papers rejected, due to referee
reports claiming that the mathematics used, namely category theory, lacked
adequate foundations! Such incidents no longer occur, but there is lingering
1 There were several different homology theories, some of which seemed equivalent to

others, but it was very unclear how to define an appropriate notion of equivalence.
Eilenberg and Mac Lane characterized homology theories as functors from the cat-
egory of topological spaces to the category of groups, and defined two such theories
to be equivalent if there was a natural equivalence between their functors.

2 An example that followed a somewhat different trajectory is Gottlob Frege’s formal-
ization of Cantor’s informal set theory, which was shown inconsistent by Russell’s
paradox and then supplanted by theories with a more restricted notion of set; see
[39] for details.

What Is a Concept? 55

disquiet due to the fact that foundations more sophisticated than standard ZF
set theory are required.
Definition 1. A category consists of: a class, denoted | |, of objects; for
each pair A,B of objects a set (A,B) of morphisms from A to B; for each
object A, a morphism 1A in (A,A), called the identity at A; and for each
three objects A,B,C, an operation called composition, (A,B) × (B,C) →
(A,C), denoted “;” such that f ; (g;h) = (f ; g);h and f ; 1A = f and 1A; g = g

whenever these compositions are defined. Write f : A → B when f ∈ (A,B)
and call A the source and B the target of f .

Example 2. Perhaps the easiest example to explain is the category et of sets.
Its objects are sets, its morphisms f : A → B are functions, 1A is the identity
function on the set A, and composition is as usual for functions. Another familiar
example is the category of Euclidean spaces, with n for each natural number n
as objects, with morphisms f : m → n the n×m real matrices, with identity
morphisms the n × n diagonal matrices with all 1s on the diagonal, and with
matrix multiplication as composition.

There are also other ways of defining the category concept. For example,
one of these involves only morphisms, in such a way that objects can be re-
covered from the identity morphisms. The precise senses in which the various
definitions are equivalent can be a bit subtle. Moreover, a number of weaken-
ings of the category concept are sometimes useful, such as semi-categories and
sesqui-categories.

A powerful approach to understanding the category concept is to look at
how it is used in practice. It turns out that different communities use it in
different ways. Following the pioneering work of Grothendieck, category theory
has become the language of modern algebraic geometry, and it is also much used
in modern algebraic topology and differential geometry, as well as other areas,
including abstract algebra. Professional category theorists generally do rather
esoteric research within category theory itself, not all of which is likely to be
useful elsewhere in the short term. Many mathematicians look down on category
theory, seeing it more as a language or a tool for doing mathematics, rather
than an established area of mathematics. Within theoretical computer science,
category theory has been used to construct and study models of the lambda
calculus and of type theories, to unify the study of various abstract machines,
and in theories of concurrency, among many other places. It is also often used
heuristically, to help find good definitions, theorems, and research directions,
and to test the adequacy of existing definitions, theorems and directions; such
uses have an aesthetic character. I tried to formulate general principles for using
category theory this way in “A Categorical Manifesto” [21].

Let us consider two results of this approach in my own experience: initial
algebra semantics [34] and the theory of institutions [28]. As discussed in [21],
initial algebras, and more generally initial models, formalize, generalize and sim-
plify the classical Herbrand Universe construction, and special cases include
abstract syntax, induction, abstract data types, domain equations, and model
theoretic semantics for functional, logic and constraint programming, as well

56 Joseph Goguen

as all of their combinations. The first application was an algebraic theory of
abstract data types; it spawned a large literature, including several textbooks.
But its applications to logic programming and other areas attracted much less
attention, probably because these areas already had well established semantic
frameworks, whereas abstract data types did not; moreover, resistance to high
levels of abstraction is rather common in computer science.

Institutions [28, 53] are an abstraction of the notion of “a logic,” originally
developed to support powerful modularization facilities over any logic; see Sec-
tion 5 for more detail. The modularization ideas were developed for the Clear
specification language [7] before institutions, but institutions allow an elegant
and very general semantics to be given for them [28, 35]; these facilities include
parameterized modules that can be instantiated with other modules. This work
influenced the module systems of the programming languages Ada, C++, ML,
lotos, and a large number of lesser known specification languages3. Among the
programming languages, the Standard ML (or SML) variant of ML comes clos-
est to implementing the full power of these modularization facilities, while the
specification languages mentioned in footnote 3 all fully implement it. ML is a
functional programming language with powerful imperative features (including
assignment and procedures)4.

2.1 Sociology of Concepts

The evolution of concepts called “category” from Aristotle’s ontological interpre-
tation of syntax, through a multitude of later philosophies, into mathematics and
then computer science, has been long and complex, with many surprising twists,
and it is clear that the mathematical concept differs from Aristotle’s original, as
well as from the intermediate philosophical concepts. This evolution has been
shaped by the particular goals and values of the communities involved, and views
of what might be important gaps in then current philosophical, mathematical,
or technical systems, have been especially important; despite the differences,
there is a common conceptual theme of capturing essential similarities at a very
abstract level.

The heuristic use of the category theoretic concepts for guiding research in
computer science suggested in [21] is not so different from that of Aristotle
and later ordinary language philosophers, who sought to improve how we think
by clarifying how we use language, and in particular by preventing “category
errors,” in which an item is used in an inappropriate context. However, the
approach of [21] is much more pragmatic than the essentially normative approach
of Aristotle and the ordinary language philosophers. Many theoretical computer
scientists have reported finding [21] helpful, and it has a fairly high citation
index.
3 These include CafeOBJ [11], Maude [8], OBJ3 [36], BOBJ [31], and CASL [54].
4 Rod Burstall reports that much of the design work for the module system of the

SML version of ML was done in discussions he had with David MacQueen. Perhaps
the most potentially useful ideas still not in SML are the renamings of Clear [28]
and the default views of OBJ3 [36].

What Is a Concept? 57

On the other hand, beyond its initial success with abstract data types, the
initial model approach, despite its elegance and generality, has not been taken
up to any great extent. In particular, the programming languages community
continues to use more concrete approaches, such as fixed points and abstract
operational semantics, presumably because they are closer to implementation
issues.

The extent to which a concept fits the current paradigm (in the general
sense of [44]) of a community is crucial to its success. For example, Rod Burstall
and I expected to see applications of institutions and parameterized theories
to knowledge representation (KR), but that did not happen. Perhaps the KR
community was not prepared to deal with the abstractness of category theory,
due to the difficulty of learning the concepts and how to apply them effectively.
Although we still believe this is a promising area, we were much more successful
with the specification of software systems, and the most notable impact of our
work has been on programming languages.

Let us now summarize some of what we have seen. Concepts can evolve over
very long periods of time, but can also change rather quickly, and the results
can be surprising, e.g., the “categories” of Aristotle, Kant, Hegel, and Peirce.
Multiple inconsistent versions of a concept can flourish at the same time, and
controversies can rage about which is correct. Concepts can become problematic
when pushed further than originally intended, requiring the invention of further
concepts to maintain their life, as when category theory required new foundations
for mathematics. Otherwise, the extended concept may be modified or even
abandoned, as with Frege’s logic. New concepts can also fail to be taken up, e.g.,
initial model semantics and the security model mentioned in footnote 5.

The same concept can be used very differently in different communities: the
uses of categories by working mathematicians, category theorists, and computer
scientists are very different, so much so that, despite the mathematical definitions
being identical, one might question whether the concepts should be regarded
as identical. These differences include being embedded in different networks of
other concepts, other values, and other patterns of use; to a large extent, the
values of the communities determine the rest. Moreover, these differences can
lead to serious mutual misunderstandings between communities. For example,
mathematicians value “deep results,” which in practice means hard proofs of
theorems that fit well within established areas, whereas computer scientists must
be concerned with practical issues such as efficiency, cost, and user satisfaction.
These differences make it difficult for category theorists and computer scientists
to communicate, as I have often found in my own experience.

In retrospect, it should not be so surprising that our research using category
theory had its biggest impact in programming languages rather than formal logic
or mathematics, because of the great practical demand for powerful modular-
ization in contemporary programming practice. To a great extent, science today
is “industrial science” or “entrepreneurial science,” driven by the goals of large
organizations and the pressures of economics, rather than a desire for simple
general abstract concepts that unify diverse areas.

58 Joseph Goguen

It seems likely that the above observations about the “category” concept also
hold for many other concepts used in scientific and technical research, but further
case studies and comparative work would be needed to establish the scope and
limitations of these observations. There is also much more in the category theory
literature that could be considered, such as the theory of topoi [4].

2.2 Methodology

Because much of the intended audience for this paper is unlikely to be very in-
terested in social science methodology, this subsection is deliberately quite brief.
Science Studies is an eclectic new field that studies science and technology in
its social context, drawing on history, philosophy and anthropology, as well as
sociology; its emphasis is qualitative understanding rather than quantitative re-
duction, although quantitative methods are not excluded. The “strong program”
of David Bloor and others [5] calls for a “symmetric” approach, which disallows
explaining “true” facts rationally and “false” facts socially; it is constructionist
but not anti-realist. Donald McKenzie has a fascinating study of the sociology
of mechanized proof [52]5. The actor network theory of Bruno Latour [49, 48]
and others, emphasizing the interconnections of human and non-human “ac-
tants” required to produce scientific knowledge and technology, grew out of the
strong program. Symbolic interactionism (e.g., [6]) is concerned with how mean-
ing arises out of interaction through interpretation; it was strongly influenced by
the pragmatism of Peirce6. Ethnomethodology [17], a more radical outgrowth of
symbolic interactionism, provides useful guidelines when the analyst is a mem-
ber of the group being studied; Eric Livingston has done an important study of
mathematics in this tradition [50]. Among more conventional approaches are the
well known historical theories of Thomas Kuhn [44] and the grounded theory of
Anselm Strauss and others [19]. Some related issues are discussed in Section 4.

3 Cognitive Science

This section is a short survey of work in cognitive semantics, focused on the no-
tion of “concept.” In a series of papers that are a foundation for contemporary
cognitive semantics, Eleanor Rosch designed, performed, and carefully analyzed
innovative experiments, resulting in a theory of human concepts that differs
greatly from the Aristotelian tradition of giving necessary and sufficient condi-
tions, based on properties. Rosch showed that concepts exhibit prototype effects,
e.g., degrees of membership that correlate with similarity to a central member.
5 While reading this book, I was startled to encounter a sociology of the concept

“security” which (along with many other things) explained that the early 1980s
Goguen-Meseguer security model was largely ignored at the time, due to pressure
from the National Security Agency, which was promoting a different (and inferior)
model. This illustrates how social issues can interact with formal concepts.

6 Interpretation in this tradition is understood in essentially the sense of Peirce’s
thirdness [56].

What Is a Concept? 59

Moreover, she found that there are what she called basic level concepts, which
tend to occur in the middle of concept hierarchies, to be perceived as gestalts, to
have the most associated knowledge, the shortest names, and to be the easiest to
learn. Expositions in [46, 47, 37] give a concise summary of research of Rosch and
others on conceptual categories. This work served as a foundation for later work
on metaphor by George Lakoff and others. One significant finding is that many
metaphors come in families, called basic image schemas, that share a common
sensory-motor pattern. For example, more is up is grounded in our everyday
experience that higher piles contain more dirt, or more books, etc. Metaphors
based on this image schema are very common, e.g., “That raised his prestige.”
or “This is a high stakes game.”

owner

rideown

 boat

resident owner

house

live-in own

 passenger

Fig. 1. Two Simple Conceptual Spaces

Fauconnier’s mental spaces [13] (called conceptual spaces in [14]) do not at-
tempt to formalize concepts, but instead formalize the important idea that con-
cepts are used in clusters of related concepts. This formalization uses a very
simple special case of logic, consisting of individual constants, and assertions
that certain relations (mostly binary) hold among certain of those individuals;
it is remarkable how much natural language semantics can be encoded with this
framework (see [13, 14]). Figure 1 shows two simple conceptual spaces, the first
for “house” and the second for “boat.” These do not give all possible informa-
tion about these concepts, but only the minimal amount needed for a particular
application, which is discussed in Section 5. The “dots” represent the individual
constants, and the lines represent true instances of relations among those indi-
viduals. Thus, the leftmost line asserts own(owner, house), which means that
the relation own holds between these two constants.

Goguen [23] proposed algebraic theories to handle additional features that
are important for user interface design. In particular, many signs are com-
plex, i.e., they have parts, and these parts can only be put together in cer-
tain ways, e.g., consider the words in a sentence, or the visual constituents of
the diagram in Figure 1. Algebraic theories have constructor functions build
complex signs from simpler signs; for example, a window constructor could
have arguments for a scrollbar, label, and content. Then one can write W1 =
window(SB1, L1, C1); there could also be additional arguments for color, po-
sition, and other details of how these parts are put together to constitute a
particular window. This approach conveys information about the relations be-

60 Joseph Goguen

tween parts and wholes in a much more explicit and useful way than just saying
has-a(window, scrollbar), and it also seems to avoid many problems that
plague the has-a relation and its axiomatizations in formal mereology7 (see [58]
for some discussion of these problems).

Algebraic theories also have sorts (often called “types”), which serve to re-
strict the structure of signs: each individual has a sort, and each relation and
function has restrictions on the sorts that its arguments may take. For example,
owner and resident might have sort Person while house has sort Object and
own takes arguments only of sorts Person, Object. Allowing sorts to have sub-
sorts provides a more effective way to support inheritance than the traditional
is-a relation. For example, Person might have a subsort Adult. Order sorted
algebra [32] provides a mathematical foundation for this approach, integrating
inheritance with whole/part structure (using constructor functions instead of the
has-a relation) in an elegant and computationally tractable algebraic formalism
that also captures some subtle relations between the two8.

Algebraic theories may have conditional equations as axioms (though arbi-
trary first order sentences could be used if needed) to further constrain the space
of possible signs; for example, certain houses might restrict their residents to be
adults. Fauconnier’s mental spaces are the special case of order sorted algebraic
theories with no functions, no sorts or subsorts, and with only atomic relation
instances as axioms. There is extensive experience applying algebraic theories to
the specification and verification of computer-based systems (e.g., [36, 31, 11]).
Hidden algebra [31] provides additional features that handle dynamic systems
with states, which are central to computer-based systems. Semiotic spaces ex-
tend algebraic theories by adding priority relations on sorts and constructors,
which express semiotic information that is vital for applications to user interface
design [23, 24]. Semiotic spaces are also called sign systems, because they define
systems of signs, not just single signs, e.g., all possible displays on a particular
digital clock, or a particular cell phone.

Gärdenfors [16] proposes a notion of “conceptual space” that is very different
from that of Fauconnier, since it is based on geometry rather than logic. One of
the most intriguing ideas in [16] is that all conceptual spaces are convex9; there is
also a nice application of Voronoi tessellation to a family of concepts defined by
multiple prototypes10. Although [16] aims to reconcile its geometric conceptual
spaces with symbolic representations like those of Fauconnier, it does not provide
a unified framework. However, such a unification can be done in two relatively

7 Mereology is the study of whole/part relations.
8 E.g., the monotonicity condition on overloaded operations with respect to subsorts

of argument sorts [32].
9 A subset of Euclidean space is convex if the straight line between any two points

inside the subset also lies inside the subset; this generalizes to non-Euclidean man-
ifolds by using geodesics instead of straight lines, but it is unclear what convexity
means for arbitrary topological spaces.

10 Given a set of n “prototypical points” in a convex space, the Voronoi tessellation
divides the space into n convex regions, each consisting of all those points that are
closest to one of the prototypes.

What Is a Concept? 61

Fig. 2. Human Color Manifold

straightforward steps. The first step is to introduce models in addition to logical
theories, where a model provides a set of instances for each sort, a function
for each function symbol, and a relation for each relation symbol; since we are
interested in the models that satisfy the axioms in the theory, an explicit notion
of satisfaction is also needed11. The second step is to fix the interpretations in
models of certain sorts to be particular geometrical spaces (the term “standard
model” is often used in logic for such a fixed interpretation). Sorts with fixed
interpretation give a partial solution to the symbol grounding problem12 [38],
while those without fixed interpretation are open to arbitrary interpretations.
This way of combining logic with concrete models can be applied to nearly any
logic13.

For example, a sort color might be interpreted as the set of points in a fixed
3D manifold representing human color space, coordinatized by hue, saturation
and brightness values, as in Figure 2, which is shaped like a “spindle,” i.e., two
cones with a common base, one upside down. This provides a precise framework
within which one can reason about properties that involve colors, as in the
following:

Example 3. A suggestive example in [16] concerns the (English) terms used to
describe human skin tones (red, black, white, yellow, etc.), which have a very

11 These items are the usual ingredients of a logic, but Section 5 argues that the extra
ingredients provided by institutions, e.g., variable context and context morphisms,
are also needed.

12 This is the problem in classic logic-based AI, of how abstract computational symbols
can be made to refer to entities in the real world. The approach in this paragraph is
partial because it only shows how abstract symbols can refer to geometrical models
of real world entities.

13 More precisely, to any concrete institution, which is a specialization of the notion
of institution described in Section 5, in which symbols have sorts and models are
many-sorted sets; see e.g. [53] for details.

62 Joseph Goguen

different meaning in that context than e.g., in a context of describing fabrics.
Gärdenfors explains this shift of meaning by embedding the space of human skin
tones within the larger color manifold, and showing that in this space, the stan-
dard regions for the given color names are the closest fits to the corresponding
skin tone names. Technically, it is actually better to view the spaces as related
by a canonical projection from the spindle to the subspace, because Gärdenfors’
assumption that all such spaces are convex guarantees that such a canonical pro-
jection exists. Gärdenfors does not give a formal treatment of the color terms
themselves, but we can view them as belonging to a mental space in the sense of
Fauconnier, and view their relationship as a classification between the space of
skin color terms and the space of all colors; note that many colors will not have
any corresponding skin tone name.

Unified Concept Theory (see Section 5) uses the term frame for a combi-
nation of a context, a symbolic space, a geometrical space (or spaces), and a
relation between them for the given context. Thus, there are two frames in the
above example, and the embedding and projection of color spaces mentioned
above can be seen as frame morphisms.

�
�
��

�
�

��

�
�
��

�
�

���

I1 I2

G

B

Fig. 3. Information Integration over a Shared Subobject

The most important recent development of ideas in the tradition of Rosch,
Lakoff, and Fauconnier is conceptual blending, claimed in [14] to be a (previ-
ously unrecognized) fundamental cognitive operation, which combines different
conceptual spaces into a unified whole. The simplest case is illustrated in Fig-
ure 3, where for example I1, I2 might be mental spaces for “house” and “boat”
(as in Figure 1), with G containing so-called “generic” elements such that the
maps G → Ii indicate which individuals should be identified. Some “optimality
principles” are given in Chapter 16 of [14] for judging the quality of blends, and
hence determining which blends are most suitable, although these distillations of
common sense are far from being formal. In contrast to the categorical notion of
colimit14, blends are not determined uniquely up to isomorphism; for example,
B could be “houseboat,” or “boathouse,” or some other combination of the two
input spaces Ii (see [30] for a detailed discussion of this example).

14 Colimits abstractly capture the notion of “putting together” objects to form larger
objects, in a way that takes account of shared substructures; see [21] for an intuitive
discussion.

What Is a Concept? 63

Blending theory as in [14] also refines the metaphor theory of Lakoff, by
proposing that a metaphorical mapping from I1 to I2 is really a kind of “side
effect” of a blend B of I2 and I2, since a metaphor really constructs a new space
in which only certain parts of I1 and I2 appear, and in which some new structure
found in neither I1 nor I2 may also appear; the usual formulation of metaphor
as a “cross space mapping” m : I1 → I2 is the reflection of the identifications
that are made in B, i.e., if i1, i2 are constants in I1, I2 respectively, that map to
the same constant in B, then we set m(i1) = i2.
Example 4. In the metaphor “the sun is a king,” the constants “sun” and “king”
from the input spaces are identified in the blend, so “sun” maps to “king,” but
the hydrogen in the sun is (probably) not mapped up or across, nor is that fact
that kings may collect taxes. But if we add the clause “the corona is his crown,”
then another element is added to the cross space map.

Example 5. One of the most striking examples in [14], called “the Buddhist
monk,” is not a metaphor. It can be set up as follows: A Buddhist monk makes
a pilgrimage to a sacred mountain, leaving at dawn, reaching the summit at
dusk, spending the night there in meditation, then departing at dawn the next
day, and arriving at the base at dusk. A question is then posed: is there a
time such that the ascending monk and the descending monk are at the same
place at that time? This question calls forth a blend in which the two days are
merged into one, but the one monk is split into two! The reasoning needed to
answer the question cannot be done in a logic-based blend space, because some
geometrical structures are needed to model the path of the monk(s), in addition
to the individuals and relations that are given logically. The table below shows
the semiotic spaces for the first and second day in its first and second columns,
respectively; notice the explicitly given types, which are needed to constrain
possible interpretations of the declared elements.

T ime = [6, 18] T ime = [6, 18]
Loc = [0, 10] Loc = [0, 10]
m : T ime → Loc m : T ime → Loc
m(6) = 0 m(6) = 10
m(18) = 10 m(18) = 0
(∀ t, t′ : T ime) t > t′ ⇒ (∀ t, t′ : T ime) t > t′ ⇒

m(t) > m(t′) m(t) < m(t′)

The first two lines of each theory are type definitions. A model for the first day
will interpret T ime as the fixed interval [6,18] (for dusk and dawn, in hours); it
will also interpret Loc as another fixed interval, [0,10] (for the base and summit
locations, in miles). Then m is interpreted as some continuous function [6, 18] →
[0, 10], giving the monk’s distance along the path as a function of time. The key
axiom is the last one, a monotonicity condition, which asserts that the monk
always makes progress along the path, though without saying how quickly or
slowly. Each such function m corresponds to a different model of the theory.
The theory for the second day is the same except for the last three axioms,
which assert that the monk starts at the top and always descends until reaching

64 Joseph Goguen

the bottom. Notice that the types T ime and Loc must be given exactly the same
interpretations on the two days, but the possible paths are necessarily different.
The blended theory is shown in the array below, in which m indicates the monk’s
locations on the first day and m′ on the second day.

T ime = [6, 18] Loc = [0, 18]
m,m′,m∗ : T ime → Loc
t∗ : T ime
m(6) = 0 m(18) = 10
m′(6) = 10 m′(18) = 0
(∀ t, t′ : T ime) t > t′ ⇒ m(t) > m(t′)
(∀ t, t′ : T ime) t > t′ ⇒ m′(t) < m′(t′)
m∗(t) = M ′(t) − M(t)
m ∗ (t∗) = 0

To answer the question, we have to solve the equation m(t) = m′(t). If we let
t∗ denote a solution and let m∗ = m′ − m, then the key “emergent” structure
added to the blend space is m∗(t∗) = 0, since this allows us to apply (the
strict monotone version of) the Intermediate Value Theorem, which says that
a strict monotone continuous function which takes values a and b with a �= b
necessarily takes every value between a and b exactly once. In this case, m∗ is
strict monotone decreasing, m∗(6) = 10 and m∗(18) = −10, so there is a unique
time t∗ such that m∗(t∗) = 0.

It is interesting to notice that if we weaken the monotonicity axioms to
become non-strict, so that the monk may stop and enjoy the view for a time, as
formally expressed for the first day by the axiom

(∀ t, t′ : T ime) t > t′ ⇒ m(t) ≥ m(t′)
then (by another version of the Intermediate Value Theorem) the monk can
meet himself on the path for any fixed closed proper subinterval [a, b] of [6,18]
(i.e., with 6 ≤ a ≤ b ≤ 18 with either a �= 6 or b �= 18). Moreover, if we drop
the monotonicity assumption completely but still assume continuity, then (by
the most familiar version of the Intermediate Value Theorem) there must still
exist values t∗ such that m(t∗) = m′(t∗), but these t∗ are no longer confined to
a single interval, and can even consist of countably many isolated intervals. It
seems safe to say that such observations would be very difficult to make without
a precise mathematical analysis like that given above15.

Finally, it is important to notice that the structures used in this example,
consisting of a many-sorted logical theory and a class of models that satisfy
that theory, such that some sorts have fixed interpretations in the models, can
be seen as a classification in the sense of Barwise and Seligman [3]; however,
it is better to consider these structures as frames in the sense of the theory of
institutions (in Section 5), because in this example the geometrical structure of
the models is important, and the different theories involve different vocabularies.
15 Of course, some results of this analysis are unrealistic, due to assuming that the

monk can move arbitrarily quickly; a velocity restriction be added, but at some cost
in complexity.

What Is a Concept? 65

Notice that it is not just the theories that are blended, but the frames, including
the vocabularies over which they are defined.

Concepts with prototype effects have a fuzzy logic, in that similarity to a
prototype determines a grade of membership. A formal development of first order
many sorted fuzzy logic is given in [20], where membership can be measured by
values in the unit interval, or in more general ordered structures; it is not difficult
to generalize semiotic spaces to allow fuzzy predicates, and it is also possible
to develop a comprehensive theory of convex fuzzy sets16. The example below
demonstrates how these ideas are useful in extending Gärdenfors’ approach.
Example 6. The “pet fish” problem from cognitive semantics is, in brief, how can
a guppy be a bad exemplar for “pet” and for “fish,” but a very good exemplar
for “pet fish”? Let A be a space for animals, coordinatized by k measurable
(real valued) quantities, such as average weight at maturity, average length at
maturity, number of limbs, etc. For each point a in A that represents an animal,
let p(a) denote the extent to which a is judged to be a “pet” (in some set of
experiments), and similarly f(a) for “fish”; for convenience, we can interpolate
other values for p and f between those with given experimental values, so that
they are continuous functions on A, which can be assumed to be a rectilinear
subset of k. In fuzzy logic, “pet fish” is the intersection of p and f , which we
an write as pf (a) = p(a) ∧ f(a), where ∧ gives the minimum of two real values;
see Figure 4. Then “guppy” can be have a maximal value for pf even though it
is far from maximal for either p or f . (It makes sense that the maximum value
of pf is smaller than those for p or f , because “pet fish” is a somewhat rare
concept, but if desired, pf can be renormalized to have maximum 1.) Moreover,
if Gärdenfors is right, then the level sets p� = {a ∈ A | p(a) ≥ �} are convex for
each 0 ≤ � ≤ 1, and similarly for f�. It follows from this that pf is also convex,
because pf � = {a ∈ A | p(a) ≥ � and f(a) ≥ �} = p� ∩ f� and the intersection of
convex subsets of k is convex.

Fig. 4. A fuzzy intersection

As a final remark, our answer to the symbol grounding problem (in the
sense of footnote 12) follows Peirce, who very clearly said that signs must be
interpreted in order to refer, and interpretation only occurs in some pragmatic
context of signs being actually used; this means that the symbol grounding prob-
lem is artificial, created by a desire for something that is not possible for purely
16 The author has done so in an unpublished manuscript from 1967. A fuzzy set f : X →

L is convex iff for each � ∈ L, the level set f� = {x | f(x) ≥ �} is convex, where L is
any partially ordered set (usually at least a complete lattice).

66 Joseph Goguen

symbolic systems, as in classic logic-based AI, but which is easy for interpreted
systems17.

4 Social Science

There is relatively little work in the social sciences addressing concepts in the
sense of this paper. However, there are some bright spots. Ethnomethodology
emphasizes the situatedness of social data, and closely examines how competent
members of a group actually organize their interactions. A basic principle of
accountability says that members may be required to account for certain actions
by their social groups, and that exactly those actions are socially significant to
those groups. From this follows a principle of orderliness, which says that social
interaction can be understood, because the participants understand it due to
accountability; therefore analysts can also understand it, once they discover how
members make sense of their interactions.

To understand interaction, ethnomethodology looks at the categories (i.e.,
concepts) and the methods that members use to render their actions intelligible to
each other; this contrasts with presupposing that the categories and methods of
the analyst are necessarily superior to those of members. Harvey Sacks’ category
systems [59] are collections of concepts that members distinguish and treat as
naturally co-occurring. Some rules that govern the use of such systems are given
in [59], which also demonstrates how category systems provide a rich resource
for interpreting ordinary conversation. A similar approach is used in a study
reported in [22] which aimed to understand the workflow and value systems of a
corporate recruitment agency. Ethnomethodology has many commonalities with
Peirce’s pragmatism and semiotics that would be well worth further exploration.

The activity theory of Lev Vygotsky [64, 65] and others is an approach to
psychology emphasizing human activity, its material mediation (taken to in-
clude language), and the cultural and historical aspects of communication and
learning; Michael Cole’s cultural psychology [9] builds on this, and is particu-
lar concerned with social aspects of learning. The distributed cognition of Ed-
win Hutchins [40] and others claims that cognition should be understood as
distributed rather than purely individual, and studies “the propagation of rep-
resentational states across media.” Leigh Star’s boundary objects [62], in the
tradition of science studies, provide interesting examples in which different sub-
groups use the same material artifact in quite different ways. It might be objected
that this discussion concerns how concepts are used in social groups, rather than
what they “are.” But the authors cited in this section would argue that concepts
cannot be separated from the social groups that use them.

An important ingredient that seems to me under-represented in all these
theories is the role of values, i.e., the motivations that people have for what
17 From an engineering perspective, one can say that sensors, effectors, and a world

model are needed to ground the constants in conceptual spaces; this is of course what
robots have, and our previously discussed partial solution can provide intermediate
non-symbolic (geometric) representations for systems with such capabilities.

What Is a Concept? 67

they do. It is argued in [22] that these can be recovered using the principle
of accountability, as well as through discourse analysis, in the socio-linguistic
tradition of William Labov [45] and others; some examples are also given in [22].

5 Logical and Semantic Heterogeneity and Integration

This section explains Unified Concept Theory; although mainly mathematical,
it is motivated by non-mathematical ideas from previous sections, as the final
section makes more explicit.

We have already shown how frames unify the symbolic concept spaces of
Fauconnier [13] with the geometrical conceptual spaces of Gärdenfors [16] (see
Example 3). This section shows how LOT, FCA, IF and CI can be included, and
also shows how these theories can make sense over any logic, although they are
usually done over first order, or some closely related logic (such as conceptual
graphs [61]). For example, Section 3 argued that order sorted algebra is an
interesting alternative for applications to ontologies, databases and so on. One
might think a lot of work is required to transport these theories to such a different
logic. But the theory of institutions [28, 53] actually makes this quite easy [26].

Institutions formalize the notion of “a logic”, based on a triadic satisfaction
relation, which like Peirce’s signs, includes a context for interpretation. Intu-
itively, institutions capture the two main ingredients of a logic, its sentences
and its models, as well as the important relation of satisfaction between them,
with the novel ingredient of parameterization by the vocabulary used; this is im-
portant because different applications of the same logic in general use different
symbols. The formalization is very general, allowing vocabularies to be objects
in a category; these objects are called “signatures,” and they serve as “contexts,”
or “interpretants” in the sense of Peirce. The possible sentences (which serve as
“descriptions,” or “representamen” in Peirce-speak) are given by a functor from
signatures. The possible models (“tokens,” or “objects” for Peirce) are given by
a (contravariant) functor from the signature category. Finally, given a signature
Σ, satisfaction is a binary relation between sentences and models, denoted |=Σ ,
required to satisfy a condition asserting invariance of satisfaction (or “truth”)
under context morphisms. The following makes this precise:

Definition 7. An institution consists of an abstract category ign, the ob-
jects of which are signatures, a functor Sen : ign → et, and a functor
Mod : ignop → et (technically, we might uses classes instead of sets here).
Satisfaction is then a parameterized relation |=Σ between Mod(Σ) and Sen(Σ),
such that the following Satisfaction Condition holds, for any signature mor-
phism ϕ : Σ → Σ′, any Σ′-model M ′, and any Σ-sentence e,

M ′ |=Σ′ ϕ(e) iff ϕ(M ′) |=Σ e

where ϕ(e) abbreviates Sen(ϕ)(e) and ϕ(M ′) abbreviates Mod(ϕ)(e).
Much usual notation of model theory generalizes, e.g., we say M |=Σ T where T
is a set of Σ-sentences, if M |=Σ ϕ for all ϕ ∈ T , and we say T |=Σ ϕ if for all
Σ-models M , M |=Σ T implies M |=Σ ϕ. Moreover, if V is a class of models, let

68 Joseph Goguen

V |=Σ T if M |=Σ T for all models M in V . We call the structure that results
when a signature is a fixed frame18. It is now very interesting to notice that
the Buddhist monk example is really a blending of two frames, not just of two
conceptual spaces.

Example 8. First order logic is a typical example: its signatures are sets of re-
lation names with their arities; its signature morphisms are arity preserving
functions that change names; its sentences are the usual first order formulae; its
models are first order structures; and satisfaction is the usual Tarskian relation.
See [28] for details. It is straightforward to add function symbols and sorts.

Other logics follow a similar pattern, including modal logics, temporal logics,
many sorted logics, equational logics, order sorted logics, description logics,
higher order logics, etc. Database systems of various kinds are also institutions,
where database states are contexts, queries are sentences, and answers are mod-
els [25]. The theory of institutions allows one to explore formal consequences
of Peirce’s triadic semiotic relation, which are elided in the dyadic formalisms
of IF and FCA; for example, one insight with significant consequences is that
Peirce’s “objects” (i.e., an institution’s models) are contravariant with respect
to “interpretants” (i.e., signatures).

In the special case where the signature category has just one object and
one morphism (the identity on that object), institutions degenerate to the clas-
sifications of [3], which are the same as the formal contexts of [15] (as well
as the frames of institutions). The translation is as follows (where we use the
prefix “I-” to indicate institutions): I-models, IF-tokens, and FCA-objects corre-
spond; I-sentences, IF-types, and FCA-attributes correspond; and I-satisfaction,
IF-classification, and FCA formal concept correspond. Chu spaces (see the ap-
pendix in [2]), in the usual case where Z = {0, 1}, are also a notational variant
of one signature institutions, and general Chu spaces (and their categories) are
the one signature case of the “generalized institutions” of [27], where satisfaction
takes values in an arbitrary category V (but [63] gives a better exposition).

Institution morphisms can be defined in various ways [33], each yielding a cat-
egory, in which many important relations among institutions can be expressed,
such as inclusion, quotient, product, and sum. This gives a rich language for com-
paring logics and for doing constructions on logics. In the special case of institu-
tions with just one signature, institution morphisms (actually “comorphisms”)
degenerate to the “infomorphisms” of [3], and the formal context morphisms
of [15]. Categories of institutions support logical heterogeneity, i.e., working in
several logics at the same time, as developed in some detail in [11, 26] and many
other papers.

Given an institution , a theory is a pair (Σ, T), where T is a set of Σ-
sentences. The collection of all Σ-theories can be given a lattice structure, under

18 In [27], the word “room” is used, and the more precise mathematical concept is
called a “twisted relation” in [28]); in fact, institutions can be seen as functors from
signatures to frames.

What Is a Concept? 69

inclusion19: (Σ, T) ≤ (Σ′, T ′) iff Σ ⊆ Σ′ and T ⊆ T ′; this is the lattice of
theories (LOT) of Sowa [61]. However, a richer structure is also available for this
collection of theories, and it has some advantages: Let Th() be the category with
theories as objects, and with morphisms (Σ, T) → (Σ′, T ′) all those signature
morphisms f : Σ → Σ′ such that T ′ |=Σ′ f(ϕ), for all ϕ ∈ T .

The category Th() was invented to support flexible modularity for knowledge
representation, software specification, etc., as part of the semantics of the Clear
specification language [28]. The most interesting constructions are for param-
eterized theories and their instantiation. An example from numerical software
is CPX[X :: RING], which constructs the complex integers, CPX[INT], the ordi-
nary complexes, CPX[REAL], etc., where RING is the theory of rings, which serves
as an interface theory, in effect a “type” for modules, declaring that any theory
with a ring structure can serve as an argument to CPX. For another example,
if TRIV is the trivial one sort theory, an interface that allows any sort of any
theory as an argument, then LIST[X :: TRIV] denotes a parameterized theory
of lists, which can be instantiated with a theory of natural numbers, LIST[NAT],
of Booleans, LIST[BOOL], etc. Instantiation is given by the categorical pushout
construction (a special case of colimits) in Th(), where is an institution suitable
for specifying theories, such as order sorted algebra.

Other operations on theories include renaming (e.g., renaming sorts, rela-
tions, functions) and sum; thus, compound “module expressions,” such as NAT +
LIST[LIST[CPX[INT]]] are also supported. This module system inspired those
of C++, Ada, ML, and numerous specification languages (e.g., those in foot-
note 3). Colimits are suggested in [28] for evaluating module expressions such as
E = REAL+ LIST[CPX[INT]]. For example, we may instantiate Figure 3 with B
the module expression E above, I1 = REAL, I2 = LIST[CPX[INT]], and G = INT
as a common subobject, noting that INT is a subtheory of REAL.

For any signature Σ of an institution , there is a Galois connection between
its Σ-theories and its sets of Σ-models: (Σ, T)• = {M | M |=Σ T }, and if M
is a collection of Σ-models, let M• = {ϕ | M |=Σ ϕ}. A theory T is closed
if T •• = T , and it is natural to think of the closed theories as the “concepts”
of , or following FCA [15], to define formal concepts to be pairs (T,M) such
that T • = M and M• = T . Much of FCA carries over to arbitrary institutions.
For example, the closed theories form a complete lattice under inclusion which
is (anti-) isomorphic to the lattice of closed model sets; this lattice is called
the formal concept lattice in [15]. The Galois connection also gives many
identities connecting the various set theoretic operations with closure, such as
(T ∪ T ′)• = T • ∩ T ′•. Example 9 below applies these ideas to an ontology
problem, and a more elegant, categorical version of these ideas is given just after
that example.

Ontologies are a promising application area for ideas in this section. First,
numerous logics are being proposed and used for expressing ontologies, among
which description logics, such as OWL, are the most prominent, but by no means

19 The converse ordering is used by Sowa, and seems to have more intuitive appeal,
because a larger theory has a smaller collection of models.

70 Joseph Goguen

the only, examples. Second, a given semantic domain will often have a number of
different ontologies. Thus both logical and semantic heterogeneity are quite com-
mon, and integration at both levels is an important challenge. Fortunately, cat-
egory theory provides appropriate tools for this. The “IFF” approach of Robert
Kent has pioneered work in this area, integrating FCA and IF in [42], and more
recently, using institutions to unify the IEEE Standard Upper Ontology [43],
which defines a set of very high level concepts for use in defining and structuring
specific domain ontologies.

Example 9. A simple but suggestive example, originally from [61], but elaborated
in [60] and further elaborated here, illustrates applications to the problems of
“ontology alignment” and “ontology merging,” where the former refers to how
concepts relate, and the latter refers to creating a joint ontology. The informal
semantics that underlies this example is explained in the following quote from
[61]:

In English, size is the feature that distinguishes “river” from “stream”;
in French, a “fleuve” is a river that flows into the sea, and a “riviére” is
a river or a stream that runs into another river.

We can now set up the problem as follows: there are two (linguistic) contexts,
French and English, each of which has two concepts; let us also suppose that
each context has three instances, as summarized in the two classification relations
shown in the following tables.

English river stream French fleuve riviére
Mississippi 1 0 Rhône 1 0
Ohio 1 0 Saône 0 1
Captina 0 1 Roubion 0 1

Although these tables are insufficient to recover the informal relations be-
tween concepts given in the quotation above, if we first align the instances, a
surprising amount of insight can be obtained. So let us further suppose it is
known that the corresponding rows of the two tables have the same conceptual
properties, e.g., that the Mississippi is a fleuve but not a riviére, that the Saône
is a river but not a stream, etc.

One might expect that this correspondence of rows should induce some kind
of a blend, and indeed, we will formalize the example in such a way that a blend
is obtained in our formal sense. We first describe the very simple logic involved.
Its signatures are sets of unary predicates. Its sentences over a signature Σ are
the nullary predicate false, and the unary predicates in Σ. Signature morphisms
are maps of the unary predicate names. A model for Σ is a one point set, with
some subset of predicates in Σ designated as being satisfied; the satisfaction
relation for this model is then given by this designation. Note that for this logic,
Th(Σ) has as its objects the set of all sets of Σ-sentences.

The English signature ΣE in this example is just {river, stream} and the
French signature is ΣF = {fleuve, riviére}, while the blend signature ΣB is

What Is a Concept? 71

their union. The two tables above can be seen as defining 6 models, and also as
defining the two satisfaction relations, or better, two frames.

It is possible to recover some interesting relationships among the concepts
represented by the predicates if we extend the satisfaction relation to sets of
sentences and sets of models as indicated just after Definition 7. Since the entities
corresponding to the three rows of the two tables have the same properties, we
can merge them when we blend the signatures. If we denote these merged entities
by MR, OS and CR, then the merged models and their satisfaction relation are
described by the following:

river stream fleuve riviére
MR 1 0 1 0
OS 1 0 0 1
CR 0 1 0 1

Figure 5 shows the formal concept lattice of this merged context over the merged
signature ΣB, with its nodes labeled by the model sets and theories to which
they correspond. It is interesting to notice that any minimal set of generators for
this lattice gives a canonical formal vocabulary for classifying models. Although
in this case, there are 23 = 8 possible sets of models, only 7 appear in the concept
lattice and a subset of 3 are sufficient to generate the lattice. (The reason there
are only 7 elements is that there is no model that both is small and flows into
the sea.)

�

�����������

����������

M, O : r

���������

���������� O, C : r′

���������

���������

M : f

��������������������� O : r, r′ C : s

���������������������

⊥
Fig. 5. A formal concept lattice

A more sophisticated institutional view is that we have blended the English
and French contexts into the single context of the final table, by a pushout
construction (as in Figure 3) in the category of frames, where the contravariant
nature of the model part of the institution means that the frame pushout does
a pullback on models, giving the identifications (or “alignment”) that we made,
whereas the covariant nature of the signature and sentence components gives a
union. The Buddhist monk example can be understood in the same way.

Given an institution , we define another institution G, the Galoisification
of , as follows: its signature category is the same as that of , its sentences are
the closed theories of , its models are the closed model classes of , and its
satisfaction relation is the natural extension of that of . We may call a frame
of G a Galois frame, or G-frame for short. Then the satisfaction relation of

72 Joseph Goguen

each G-frame is a bijective function, the corresponding pairs of which are the
formal concepts of [15] in the special case of their logic, though this construction
applies to any institution.

The category Th() is also an example of a very general construction, called
Grothendieck flattening; see [26] for the definition and many examples, as well as
many more details about information flow and channel algebra over an arbitrary
institution. Grothendieck flattening supports semantic heterogeneity, i.e., work-
ing in several different contexts at the same time, by defining new morphisms,
called heteromorphisms, between objects from different categories; this gives rise
to the Grothendieck category, of which Th() is an example. A number of
useful general theorems are known about Grothendieck categories, for example,
conditions for limits and colimits to exist.

Colimits are not an adequate formalization of blending in the sense of cog-
nitive linguistics, because more than one blend is possible for two input spaces
(e.g., “houseboat” and “boathouse”). This raises the mathematical challenge of
weakening colimits so that non-multiple isomorphic solutions are allowed. An-
other challenge is to discover precise “optimality principles” that measure the
quality of the blend space. These problems are addressed in algebraic semiotics
[23, 24], which is a general theory of representation, based on the semiotic spaces
discussed in Section 3) and semiotic morphisms, which (partially) preserve the
structure of semiotic spaces, and which model representations, such as an index
to a book, a graph of a dataset, or a GUI for UNIX. A basic principle in [23]
is that the quality of a representation depends on how well its semiotic mor-
phism preserves structure, and [23] proposes a number of quality measures on
that basis; [23] also introduces 3/2-category theory, including 3/2-colimits as a
model of blending, under the hypothesis that optimal blends are achieved by
using semiotic morphisms that score well on the quality measures.

This theory is tested against some simple examples in [23], and has also been
implemented in a blending algorithm called “Alloy” [30, 29], which generates
novel metaphors on the fly as part of a poetry generation system (called “Griot”)
developed by Fox Harrell. The optimality principles used are purely formal (since
they could not otherwise be implemented); they measure the degree to which the
injection morphisms Ii → B in Figure 3 preserve structure, including constants,
relation instances, and types20.

6 Reconciliations and Conclusions

This paper considers cognitive, social, pragmatic, and mathematical perspectives
on concepts. Despite this diversity, there has been a single main goal, which is
to facilitate the design and implementation of systems to support information

20 An interesting sidelight is that recent poetry (e.g., Neruda and Rilke) often re-
quires what we call “disoptimality principles” to explain certain especially striking
metaphors [29]. For example, type coercions are needed when items of very different
types are blended.

What Is a Concept? 73

integration. Good mathematical foundations are of course a great help, in pro-
viding precise descriptions of what should be implemented. But without some
understanding of broader issues, it is impossible to understand the potential
limitations of such systems. In addition, models from cognitive psychology and
sociology can inspire new approaches to information integration. So the huge
gaps that currently exist between disciplines are really counter-productive. This
section is devoted to sketching various forms of reconciliation among them, along
with some general conclusions.

It can be argued that some concepts (scientific concepts) have a hard physical
reality, manifesting as perceivable regularities of behavior, or in a more sophis-
ticated language, as invariants over perceptions, e.g., in James Gibson’s “eco-
logical” approach to perception [18]. It can also be argued that other concepts
(mathematical) are formal transcendental, existing independently of humans and
even physical reality. But as realized long ago by the Indian philosopher Nagar-
juna [55], phenomenological human concepts are not like that: they are elastic,
situated, evolving, relative, pragmatic, fuzzy, and strongly interconnected in do-
mains with other concepts; the thoughts we actually have cannot be pinned down
as scientific or mathematical concepts. Contemporary cognitive science has ex-
plored many reasons for this, and Section 4 suggests that there are also many
social reasons.

There are several views on how phenomenological, social and scientific ap-
proaches to concepts can be reconciled; in general, they argue that the phe-
nomenological and the social are interdependent, in that concepts necessarily
exist at both levels, and that scientific and mathematical concepts are not es-
sentially different from other concepts, though it is convenient to use these more
precise languages to construct models, without needing to achieve perfect fi-
delity. For example, Gärdenfors [16] argues that formal entities, such as equa-
tions, “are not elements of the internal cognitive process, but function as ex-
ternal devices that are, literally, manipulated”; this is similar to the material
anchors of Hutchins [40], which represent shared concepts in concrete form to
facilitate cooperative work. Terrence Deacon [10] argues that concepts evolve in
social environments in much the same way that organisms evolve in natural en-
vironments, as part of an ambitious program that (among other things) seeks a
biological reconstruction of Richard Dawkins’ implausible reification of concepts
as “memes”.

In a brilliant critique of modernism, Bruno Latour [48] proposes to reconcile
society, science, and the myriad hybrid “quasi-objects” that have aspects of both
(among which he apparently includes natural language) through a “symmetry
principle” that refuses to recognize the “modern” distinctions among these ar-
eas, and that grounds explanations in the quasi-objects, which inherently mix
cognitive, social, and formal aspects. Latour rightly criticizes the Saussurian
dyadic semiotics that dominated French cultural thought for a time, but seems
unaware of Peirce’s [56] triadic semiotics, which I believe offers a better solution,
because its signs are already defined to be hybrid “quasi-objects”; note that one
of Peirce’s goals for his triadicity was to reconcile nominalism and realism [41],

74 Joseph Goguen

an enterprise with a flavor similar to that of Latour’s. A Peircean perspective is
also the basis of Deacon’s theories [10] concerning how concepts evolve within
social contexts.

Ideas in this paper have implications for the study of formal aspects of con-
cepts, including knowledge representation, analysis and integration. Section 3
unified two notions of conceptual space, due to Fauconnier and to Gärdenfors
using frames. The Unified Concept Theory of Section 5 generalized this, as well
as LOT, FCA, IF and CI, to arbitrary logics by using institutions. Institutions
can be considered to formalize Peirce’s triadic semiotics, as well as Latour’s
quasi-objects. It could be interesting to apply UCT to description logics [1],
which are commonly used for ontologies, or alternatively, as argued in Section 3,
to an order sorted algebra approach to ontologies. I believe there are also fruitful
applications to database systems, e.g., the problem of integrating information
from multiple databases; see [25]. These examples illustrate how the exploration
of ways to reconcile cognitive, social, pragmatic, and formal approaches to con-
cepts can be useful in suggesting new research directions.

Perhaps the most important conclusion is that research on concepts should be
thoroughly interdisciplinary, and in particular, should transcend the boundaries
between sciences and humanities. Unfortunately, such efforts, including those of
this paper, are likely to attract criticism for blurring distinctions between estab-
lished disciplines, which indeed often operate under incompatible assumptions,
using incomparable methods. It is my hope that the reconciliations and unifica-
tions sketched above may contribute to the demise of such obstructions, as well
as to a better understanding of concepts and their applications.

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. Description Logic Handbook. Cambridge, 2003.

2. Michael Barr. �-autonomous categories and linear logic. Mathematical Structures
in Computer Science, 1:159–178, 1991.

3. Jon Barwise and Jerry Seligman. Information Flow: Logic of Distributed Systems.
Cambridge, 1997. Tracts in Theoretical Computer Science, vol. 44.

4. John Lane Bell. Toposes and Local Set Theories: An Introduction. Oxford, 1988.
Oxford Logic Guides 14.

5. David Bloor. Knowledge and Social Imagery. Chicago, 1991. Second edition.
6. Herbert Blumer. Symbolic Interactionism: Perspective and Method. California,

1986.
7. Rod Burstall and Joseph Goguen. Putting theories together to make specifications.

In Raj Reddy, editor, Proceedings, Fifth International Joint Conference on Arti-
ficial Intelligence, pages 1045–1058. Department of Computer Science, Carnegie-
Mellon University, 1977.

8. Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Principles of
Maude. In José Meseguer, editor, Proceedings, First International Workshop on
Rewriting Logic and its Applications. Elsevier Science, 1996. Volume 4, Electronic
Notes in Theoretical Computer Science.

9. Michael Cole. Cultural Psychology: A once and future discipline. Harvard, 1996.

What Is a Concept? 75

10. Terrence Deacon. Memes as signs in the dynamic logic of semiosis: Beyond molec-
ular science and computation theory. In Karl Wolff, Heather Pfeiffer, and Harry
Delugach, editors, Conceptual Structures at Work: 12th International Conference
on Conceptual Structures, pages 17–30. Springer, 2004. Lecture Notes in Computer
Science, vol. 3127.

11. Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification. World
Scientific, 1998. AMAST Series in Computing, Volume 6.

12. Samuel Eilenberg and Saunders Mac Lane. General theory of natural equivalences.
Transactions of the American Mathematical Society, 58:231–294, 1945.

13. Gilles Fauconnier. Mental Spaces: Aspects of Meaning Construction in Natural
Language. Bradford: MIT, 1985.

14. Gilles Fauconnier and Mark Turner. The Way We Think. Basic, 2002.

15. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer, 1997.

16. Peter Gärdenfors. Conceptual Spaces: The Geometry of Thought. Bradford, 2000.

17. Harold Garfinkel. Studies in Ethnomethodology. Prentice-Hall, 1967.

18. James Gibson. An Ecological Approach to Visual Perception. Houghton Mifflin,
1979.

19. Barney Glaser and Ansolm Strauss. The Discovery of Grounded Theory: Strategies
for qualitative research. Aldine de Gruyter, 1999.

20. Joseph Goguen. The logic of inexact concepts. Synthese, 19:325–373, 1969.

21. Joseph Goguen. A categorical manifesto. Mathematical Structures in Computer
Science, 1(1):49–67, March 1991.

22. Joseph Goguen. Towards a social, ethical theory of information. In Geoffrey
Bowker, Leigh Star, William Turner, and Les Gasser, editors, Social Science, Tech-
nical Systems and Cooperative Work: Beyond the Great Divide, pages 27–56. Erl-
baum, 1997.

23. Joseph Goguen. An introduction to algebraic semiotics, with applications to user
interface design. In Chrystopher Nehaniv, editor, Computation for Metaphors,
Analogy and Agents, pages 242–291. Springer, 1999. Lecture Notes in Artificial
Intelligence, Volume 1562.

24. Joseph Goguen. Semiotic morphisms, representations, and blending for interface
design. In Proceedings, AMAST Workshop on Algebraic Methods in Language
Processing, pages 1–15. AMAST Press, 2003.

25. Joseph Goguen. Data, schema and ontology integration. In Proceedings, Work-
shop on Combinination of Logics, pages 21–31. Center for Logic and Computation,
Instituto Superior Tecnico, Lisbon, Portugal, 2004.

26. Joseph Goguen. Information integration in instutions. In Lawrence Moss, editor,
Memorial volume for Jon Barwise. Indiana, to appear.

27. Joseph Goguen and Rod Burstall. A study in the foundations of programming
methodology: Specifications, institutions, charters and parchments. In David Pitt,
Samson Abramsky, Axel Poigné, and David Rydeheard, editors, Proceedings, Con-
ference on Category Theory and Computer Programming, pages 313–333. Springer,
1986. Lecture Notes in Computer Science, Volume 240; also, Report CSLI-86-54,
Center for the Study of Language and Information, Stanford University, June 1986.

28. Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39(1):95–146, January 1992.

76 Joseph Goguen

29. Joseph Goguen and Fox Harrell. Style as a choice of blending principles. In
Shlomo Argamon, Shlomo Dubnov, and Julie Jupp, editors, Style and Meaning in
Language, Art Music and Design, pages 49–56. AAAI Press, 2004.

30. Joseph Goguen and Fox Harrell. Foundations for active multimedia narrative:
Semiotic spaces and structural blending, 2005. To appear in Interaction Studies:
Social Behaviour and Communication in Biological and Artificial Systems.

31. Joseph Goguen and Kai Lin. Behavioral verification of distributed concurrent
systems with BOBJ. In Hans-Dieter Ehrich and T.H. Tse, editors, Proceedings,
Conference on Quality Software, pages 216–235. IEEE Press, 2003.

32. Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105(2):217–273, 1992. Drafts exist from as early as 1985.

33. Joseph Goguen and Grigore Roşu. Institution morphisms. Formal Aspects of
Computing, 13:274–307, 2002.

34. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra
semantics and continuous algebras. Journal of the Association for Computing
Machinery, 24(1):68–95, January 1977.

35. Joseph Goguen and William Tracz. An implementation-oriented semantics for
module composition. In Gary Leavens and Murali Sitaraman, editors, Foundations
of Component-based Systems, pages 231–263. Cambridge, 2000.

36. Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. In Joseph Goguen and Grant Malcolm,
editors, Software Engineering with OBJ: Algebraic Specification in Action, pages
3–167. Kluwer, 2000.

37. Rebecca Green. Internally-structured conceptual models in cognitive semantics.
In Rebecca Green, Carol Bean, and Sung Hyon Myaeng, editors, The Semantics
of Relationships, pages 73–90. Kluwer, 2002.

38. Stevan Harnad. The symbol grounding problem. Physica D, 42:335–346, 1990.
39. William S. Hatcher. Foundations of Mathematics. W.B. Saunders, 1968.
40. Edwin Hutchins. Cognition in the Wild. MIT, 1995.
41. Mary Keeler. Hegel in a strange costume. In Aldo de Moor, Wilfried Lex, and

Bernhard Ganter, editors, Conceptual Structures for Knowledge Creation and Com-
munication, pages 37–53. Springer, 2003. Lecture Notes in Computer Science, vol.
2746.

42. Robert Kent. Distributed conceptual structures. In Harre de Swart, editor, Sixth
International Workshop on Relational Methods in Computer Science, pages 104–
123. Springer, 2002. Lecture Notes in Computer Science, volume 2561.

43. Robert Kent. Formal or axiomatic semantics in the IFF, 2003. Available at
suo.ieee.org/IFF/work-in-progress/.

44. Thomas Kuhn. The Structure of Scientific Revolutions. Chicago, 1962.
45. William Labov. Language in the Inner City. University of Pennsylvania, 1972.
46. George Lakoff. Women, Fire and Other Dangerous Things: What categories reveal

about the mind. Chicago, 1987.
47. George Lakoff and Mark Johnson. Philosophy in the Flesh: The Embodied Mind

and its Challenge to Western Thought. Basic, 1999.
48. Bruno Latour. We Have Never Been Modern. Harvard, 1993. Translated by

Catherine Porter.
49. Bruno Latour and Steve Woolgar. Laboratory Life. Sage, 1979.
50. Eric Livingston. The Ethnomethodology of Mathematics. Routledge & Kegan Paul,

1987.

What Is a Concept? 77

51. Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1998.
Second Edition.

52. Donald MacKenzie. Mechanizing Proof. MIT, 2001.
53. Till Mossakowski, Joseph Goguen, Razvan Diaconescu, and Andrzej Tarlecki. What

is a logic? In Jean-Yves Beziau, editor, Logica Universalis. Birkhauser, 2005. Pro-
ceedings, First World Conference on Universal Logic.

54. Peter Mosses, editor. CASL Reference Manual. Springer, 2004. Lecture Notes in
Computer Science, Volume 2960.

55. Nagarjuna. Mulamadhyamika Karaka. Oxford, 1995. Translated by Jay Garfield.
56. Charles Saunders Peirce. Collected Papers. Harvard, 1965. In 6 volumes; see

especially Volume 2: Elements of Logic.
57. Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT, 1991.
58. Simone Pribbenow. Merenymic relationships: From classical mereology to complex

part-whole relations. In Rebecca Green, Carol Bean, and Sung Hyon Myaeng,
editors, The Semantics of Relationships, pages 35–50. Kluwer, 2002.

59. Harvey Sacks. On the analyzability of stories by children. In John Gumpertz and
Del Hymes, editors, Directions in Sociolinguistics, pages 325–345. Holt, Rinehart
and Winston, 1972.

60. Marco Schlorlemmer and Yannis Kalfoglou. A channel-theoretic foundation for
ontology coordination. In Proceedings, 18th European Workshop on Multi-Agent
Systems. 2004.

61. John Sowa. Knowledge Representation: Logical, Philosophical and Computational
Foundations. Brooks/Coles, 2000.

62. Susan Leigh Star. The structure of ill-structured solutions: Boundary objects and
heterogeneous problem-solving. In Les Gasser and Michael Huhns, editors, Dis-
tributed Artificial Intelligence, volume 2, pages 37–54. Pitman, 1989.

63. Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some fundamental algebraic
tools for the semantics of computation, part 3: Indexed categories. Theoretical
Computer Science, 91:239–264, 1991. Also, Monograph PRG–77, August 1989,
Programming Research Group, Oxford University.

64. Lev Vygotsky. Thought and Language. MIT, 1962.
65. Lev Vygotsky. Mind in Society. Harvard, 1985.

Applications of Description Logics: State of the

Art and Research Challenges

Ian Horrocks

School of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK

horrocks@cs.man.ac.uk

Abstract. Description Logics (DLs) are a family of class based knowl-
edge representation formalisms characterised by the use of various con-
structors to build complex classes from simpler ones, and by an emphasis
on the provision of sound, complete and (empirically) tractable reasoning
services. They have a range of applications, but are mostly widely known
as the basis for ontology languages such as OWL. The increasing use of
DL based ontologies in areas such as e-Science and the Semantic Web is,
however, already stretching the capabilities of existing DL systems, and
brings with it a range of challenges for future research.

1 Introduction

Description Logics (DLs) are a family of class (concept) based knowledge repre-
sentation formalisms. They are characterised by the use of various constructors
to build complex concepts from simpler ones, an emphasis on the decidability of
key reasoning tasks, and by the provision of sound, complete and (empirically)
tractable reasoning services.

Description logics have been used in a range of applications, e.g., configura-
tion [1], and reasoning with database schemas and queries [2,3,4]. They are, how-
ever, best known as the basis for ontology languages such as OIL, DAML+OIL
and OWL [5]. As well as DLs providing the formal underpinnings for these lan-
guages (i.e., a declarative semantics), DL systems are widely used to provide
computational services for a rapidly expanding range of ontology tools and ap-
plications [6,7,8,9,10,11].

Ontologies, and ontology based vocabularies, are used to provide a common
vocabulary together with computer-accessible descriptions of the meaning of
relevant terms and relationships between these terms. Ontologies play a ma-
jor role in the Semantic Web [12,13], and are widely used in, e.g., knowledge
management systems, e-Science, and bio-informatics and medical terminologies
[14,15,16,17]. They are also of increasing importance in the Grid, where they
may be used, e.g., to support the discovery, execution and monitoring of Grid
services [18,19,20].

The success of the current generation of DLs and DL reasoning brings with
it, however, requirements for reasoning support which may be beyond the capa-
bility of existing systems. These requirements include greater expressive power,

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 78–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Applications of Description Logics 79

improved scalability and extended reasoning services. Satisfying these require-
ments presents a major research challenge, not only to the DL community, but
to the logic based Knowledge Representation community as a whole.

2 Ontology Languages and Description Logics

The OWL recommendation actually consists of three languages of increasing
expressive power: OWL Lite, OWL DL and OWL Full. Like OWL’s predecessor
DAML+OIL, OWL Lite and OWL DL are basically very expressive description
logics with an RDF syntax. OWL Full provides a more complete integration
with RDF, but its formal properties are less well understood, and key inference
problems would certainly be much harder to compute.1 For these reasons, OWL
Full will not be considered in this paper.

More precisely, OWL DL is closely related to the well known SHIQ DL [21];
it restricts the form of SHIQ number restrictions to be unqualified (see [22]),
and extends SHIQ with nominals [23] (i.e., concepts having exactly one in-
stance) and datatypes (often called concrete domains in DLs [24]). Following the
usual DL naming conventions, the resulting logic is called SHOIN (D) (where
O stands for nominals, N stands for unqualified number restrictions and (D)
stands for datatypes). OWL Lite is equivalent to the slightly simpler SHIF(D)
DL. These equivalences allow OWL to exploit the considerable existing body of
description logic research, e.g.:

– to define the semantics of the language and to understand its formal prop-
erties, in particular the decidability and complexity of key inference prob-
lems [25];

– as a source of sound and complete algorithms and optimised implementation
techniques for deciding key inference problems [21,26];

– to use implemented DL systems in order to provide (partial) reasoning sup-
port [27,28,29].

2.1 SHOIN Syntax and Semantics

The syntax and semantics of SHOIN are briefly introduced here (we will ignore
datatypes, as adding a datatype component would complicate the presentation
and has little affect on reasoning [30]).

Definition 1. Let R be a set of role names with both transitive and normal role
names R+ ∪ RP = R, where RP ∩ R+ = ∅. The set of SHOIN -roles (or roles
for short) is R ∪ {R− | R ∈ R}. A role inclusion axiom is of the form R � S,
for two roles R and S. A role hierarchy is a finite set of role inclusion axioms.

1 Inference in OWL Full is clearly undecidable as OWL Full does not include restric-
tions on the use of transitive properties which are required in order to maintain
decidability [21].

80 Ian Horrocks

An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI, called the
domain of I, and a function ·I which maps every role to a subset of ΔI × ΔI

such that, for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I
,

and if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI, then 〈x, z〉 ∈ RI .

An interpretation I satisfies a role hierarchy R iff RI ⊆ SI for each R � S ∈ R;
such an interpretation is called a model of R.

Definition 2. Let NC be a set of concept names with a subset NI ⊆ NC of
nominals. The set of SHOIN -concepts (or concepts for short) is the smallest
set such that

1. every concept name C ∈ NC is a concept,
2. if C and D are concepts and R is a role, then (C � D), (C � D), (¬C),

(∀R.C), and (∃R.C) are also concepts (the last two are called universal and
existential restrictions, resp.), and

3. if R is a simple role2 and n ∈ N, then �nR and �nR are also concepts
(called atmost and atleast number restrictions).

The interpretation function ·I of an interpretation I = (ΔI , ·I) maps, addition-
ally, every concept to a subset of ΔI such that

(C �D)I = CI ∩ DI , (C � D)I = CI ∪DI , ¬CI = ΔI \ CI ,
�oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ΔI | There is a y ∈ ΔI with 〈x, y〉 ∈ RI and y ∈ CI},
(∀R.C)I = {x ∈ ΔI | For all y ∈ ΔI , if 〈x, y〉 ∈ RI , then y ∈ CI},

�nRI = {x ∈ ΔI | �{y | 〈x, y〉 ∈ RI} � n},
�nRI = {x ∈ ΔI | �{y | 〈x, y〉 ∈ RI} � n},

where, for a set M , we denote the cardinality of M by �M .
For C and D (possibly complex) concepts, C �̇ D is called a general concept

inclusion (GCI), and a finite set of GCIs is called a TBox.
An interpretation I satisfies a GCI C �̇ D if CI ⊆ DI , and I satisfies a

TBox T if I satisfies each GCI in T ; such an interpretation is called a model
of T .

A concept C is called satisfiable with respect to a role hierarchy R and a
TBox T if there is a model I of R and T with CI �= ∅. Such an interpretation is
called a model of C w.r.t. R and T . A concept D subsumes a concept C w.r.t.
R and T (written C �R,T D) if CI ⊆ DI holds in every model I of R and T .
Two concepts C,D are equivalent w.r.t. R and T (written C ≡R,T D) iff they
are mutually subsuming w.r.t. R and T . (When R and T are obvious from the
context, we will often write C � D and C ≡ D.) For an interpretation I, an
individual x ∈ ΔI is called an instance of a concept C iff x ∈ CI .
2 A role is simple if it is neither transitive nor has any transitive subroles. Restricting

number restrictions to simple roles is required in order to yield a decidable logic [21].

Applications of Description Logics 81

Note that, as usual, subsumption and satisfiability can be reduced to each
other, and reasoning w.r.t. general TBoxes and role hierarchies can be reduced
to reasoning w.r.t. role hierarchies only [21,26].

2.2 Practical Reasoning Services

Most modern DL systems use tableaux algorithms to test concept satisfiability.
These algorithms work by trying to construct (a tree representation of) a model
of the concept, starting from an individual instance. Tableaux expansion rules
decompose concept expressions, add new individuals (e.g., as required by ∃R.C
terms),3 and merge existing individuals (e.g., as required by �nR.C terms). Non-
determinism (e.g., resulting from the expansion of disjunctions) is dealt with by
searching the various possible models. For an unsatisfiable concept, all possible
expansions will lead to the discovery of an obvious contradiction known as a
clash (e.g., an individual that must be an instance of both A and ¬A for some
concept A); for a satisfiable concept, a complete and clash-free model will be
constructed [31].

Tableaux algorithms have many advantages. It is relatively easy to design
provably sound, complete and terminating algorithms, and the basic technique
can be extended to deal with a wide range of class and role constructors. More-
over, although many algorithms have a higher worst case complexity than that of
the underlying problem, they are usually quite efficient at solving the relatively
easy problems that are typical of realistic applications.

Even in realistic applications, however, problems can occur that are much too
hard to be solved by naive implementations of theoretical algorithms. Modern
DL systems, therefore, include a wide range of optimisation techniques, the use
of which has been shown to improve typical case performance by several orders of
magnitude [32,33,34,29,35,36]. Key techniques include lazy unfolding, absorption
and dependency directed backtracking.

Lazy Unfolding In an ontology, or DL Tbox, large and complex concepts are
seldom described monolithically, but are built up from a hierarchy of named
concepts whose descriptions are less complex. The tableaux algorithm can take
advantage of this structure by trying to find contradictions between concept
names before adding expressions derived from Tbox axioms. This strategy is
known as lazy unfolding [32,34].

The benefits of lazy unfolding can be maximised by lexically normalising and
naming all concept expressions and, recursively, their sub-expressions. An ex-
pression C is normalised by rewriting it in a standard form (e.g., disjunctions are
rewritten as negated conjunctions); it is named by substituting it with a new con-
cept name A, and adding an axiom A ≡ C to the Tbox. The normalisation step
allows lexically equivalent expressions to be recognised and identically named,
and can even detect syntactically “obvious” satisfiability and unsatisfiability.
3 Cycle detection techniques known as blocking may be required in order to guarantee

termination.

82 Ian Horrocks

Absorption Not all axioms are amenable to lazy unfolding. In particular, so
called general concept inclusions (GCIs), axioms of the form C � D where C
is non-atomic, must be dealt with by explicitly making every individual in the
model an instance of D�¬C. Large numbers of GCIs result in a very high degree
of non-determinism and catastrophic performance degradation [34].

Absorption is another rewriting technique that tries to reduce the number
of GCIs in the Tbox by absorbing them into axioms of the form A � C, where
A is a concept name. The basic idea is that an axiom of the form A � D � D′

can be rewritten as A � D′ � ¬D and absorbed into an existing A � C axiom
to give A � C � (D′ � ¬D) [37]. Although the disjunction is still present, lazy
unfolding ensures that it is only applied to individuals that are already known
to be instances of A.

Dependency Directed Backtracking Inherent unsatisfiability concealed in
sub-expressions can lead to large amounts of unproductive backtracking search
known as thrashing. For example, expanding the expression (C1�D1)�. . .�(Cn�
Dn)� ∃R.(A�B)� ∀R.¬A could lead to the fruitless exploration of 2n possible
expansions of (C1 � D1) � . . . � (Cn � Dn) before the inherent unsatisfiability
of ∃R.(A � B) � ∀R.¬A is discovered. This problem is addressed by adapting a
form of dependency directed backtracking called backjumping, which has been
used in solving constraint satisfiability problems [38].

Backjumping works by labelling concepts with a dependency set indicating
the non-deterministic expansion choices on which they depend. When a clash is
discovered, the dependency sets of the clashing concepts can be used to identify
the most recent non-deterministic expansion where an alternative choice might
alleviate the cause of the clash. The algorithm can then jump back over inter-
vening non-deterministic expansions without exploring any alternative choices.
Similar techniques have been used in first order theorem provers, e.g., the “proof
condensation” technique employed in the HARP theorem prover [39].

3 Research Challenges for Ontology Reasoning

Ontology based applications will critically depend on the provision of efficient
reasoning support: on the one hand, such support is required by applications
in order to exploit the semantics captured in ontologies; on the other hand,
such support is required by ontology engineers to design and maintain sound,
well-balanced ontologies. Experience with a wide range of applications and the
development of user-oriented environments has highlighted a number of key re-
quirements that will need to be met by the next generation of DL reasoners if
they are to provide the basis for this support:

Greater expressive power For example, in ontologies describing complex
physically structured domains such as biology [40] and medicine [41], it is
often important to describe aggregation relationships between structures and
their component parts, and to assert that certain properties of the component

Applications of Description Logics 83

parts transfer to the structure as a whole (a femur with a fractured shaft
is a fractured femur) [42]. The importance of this kind of knowledge can be
gauged from the fact that various “work-arounds” have been described for
use with ontology languages that cannot express it directly [43].
Similarly, in grid and web services applications, it may be necessary to de-
scribe composite processes in terms of their component parts, and to express
relationships between the properties of the various components and those of
the composite process. For example, in a sequential composition of processes
it may be useful to express a relationship between the inputs and outputs of
the composite and those of the first and last component respectively, as well
as relationships between the outputs and inputs of successive components
[13].

Improved scalability Practical ontologies may be very large—tens or even
hundreds of thousands of classes. Dealing with large-scale ontologies already
presents a challenge to the current generation of DL reasoners, in spite of
the fact that many existing large-scale ontologies are relatively simple. In the
40,000 concept Gene Ontology (GO), for example, much of the semantics is
currently encoded in class names such as “heparin-metabolism”; enriching
GO with more complex definitions, e.g., by explicitly modelling the fact
that heparin-metabolism is a kind of “metabolism” that “acts-on” the car-
bohydrate “heparin”, would make the semantics more accessible, and would
greatly increase the value of GO by enabling new kinds of query such as
“what biological processes act on glycosaminoglycan” (heparin is a kind of
glycosaminoglycan) [40]. However, adding more complex class definitions can
cause the performance of existing reasoners to degrade to the point where
it is no longer acceptable to users. Similar problems have been encountered
with large medical terminology ontologies, such as the GALEN ontology [41].
As well as using a conceptual model of the domain, many applications will
also need to deal with very large volumes of instance data—the GO, for
example, is used to annotate millions of individuals, and practitioners want
to answer queries that refer both to the ontology and to the relationships
between these individuals, e.g., “what DNA binding products interact with
insulin receptors”. Answering this query requires a reasoner not only to iden-
tify individuals that are (perhaps only implicitly) instances of DNA binding
products and of insulin receptors, but also to identify which pairs of indi-
viduals are (perhaps only implicitly) instances of the interactsWith role. For
existing ontology languages it is possible to use DL reasoning to answer such
queries, but dealing with the large volume of GO annotated gene product
data is far beyond the capabilities of existing DL systems [44]. A require-
ment to store and query over large numbers of individuals is common in
many application areas, e.g., in the Semantic Web, where ontologies are to
be used in the annotation of web resources, and where users may want to an-
swer queries such as “which bioinformatics researchers work in a university
department where there is also a DL researcher?”.

Extended reasoning services The ability to explain unexpected inferences
is also crucial in ontology development and would be useful in query an-

84 Ian Horrocks

swering: when the DL reasoner returns an unexpected answer, such as an
unintended sub-class relationship, users often find it difficult to understand
(and if necessary fix) the causes of the unexpected inference; expert users
may even doubt the validity of such inferences, and lose confidence in the in-
ference system. Moreover, existing DL reasoners provide only a limited range
of reasoning services, such as class subsumption and instance retrieval. In
practice, users often want to ask questions for which it may only be possible
to provide an approximate answer. For example, the user may want to be
told “everything” that can be inferred about a class or individual, what it
is “reasonable” to assert about a class or individual, or what the difference
is between two classes or two individuals.

The following sections highlight interesting work in progress that addresses some
of the above problems; they do not constitute an exhaustive survey.

3.1 Expressive Power

Some of the above mentioned requirements may be met by tableau algorithms
that have recently been developed for DLs that are more expressive than those
currently implemented in state-of-the-art reasoners. These algorithms are able to
deal with, e.g., nominals (singleton classes) [26], complex role inclusion axioms
[45], the use of datavalues as keys [46], the representation of temporal constraints
[47], and the integration of reasoning over datatypes and built-in predicates [48].
The increased expressive power of these DLs would satisfy (at least partially) key
application requirements, e.g., supporting the description of complex structures
and the transfer of properties to and from structures and their component parts.

Some expressive requirements will, however, call for very expressive ontology
languages based on (larger fragments of) FOL, where key reasoning problems are
no longer decidable in general, e.g., the recently proposed SWRL language [49].
How to provide practical reasoning support for such languages is still an open
problem, but encouraging results have already been obtained using a state-of-the
art first order theorem prover with special optimisation and tuning designed to
help them cope with the large number of axioms found in realistic ontologies
[50].

3.2 Scalability

Even for SHIQ, class consistency/subsumption reasoning is ExpTime-complete,
and for SHOIN this jumps to NExpTime-complete [26]. There is encourag-
ing evidence of empirical tractability and scalability for implemented DL sys-
tems [34,51], but this is mostly w.r.t. logics that do not include inverse properties
(e.g., SHF 4). Adding inverse properties makes practical implementations more
problematical as several important optimisation techniques become much less

4 SHF is equivalent to SHIQ without inverse properties and with only functional
properties instead of qualified number restrictions [21].

Applications of Description Logics 85

effective. Work is required in order to develop more highly optimised implemen-
tations supporting inverse properties, and to demonstrate that they can scale as
well as SHF implementations. It is also unclear if existing techniques will be
able to cope with large numbers of class/property instances [52].

Coping with the large volumes of instance data that will be required by many
applications (i.e., millions of individuals) will be extremely challenging, given
that existing DL implementations cannot deal with more than (in the order
of) a few thousand individuals, even when the relational structure is relatively
simple [44]. It seems doubtful that, in the case of instance data, the necessary
improvement in performance can be achieved by optimising tableaux based algo-
rithms, which are inherently limited by the need to build and maintain a model
of the whole ontology (including all of the instance data).

Several alternative approaches are currently under investigation. One of these
involves the use of a hybrid DL-DB architecture in which instance data is stored
in a database, and query answering exploits the relatively simple relational struc-
ture encountered in typical data sets in order minimise the use of DL reasoning
and maximise the use of database operations. A successful prototype of this ar-
chitecture, the so-called instance store, has already been developed [44]. This
prototype is, however, only able to deal with data that has no relational struc-
ture (i.e., in which the instance data does not include any role assertions), and
so cannot answer queries involving relationships between individuals. Work is
underway to extend the prototype to deal with arbitrary instance data, but it
is too early to say if this will be successful.

Another technique that is under investigation is to use reasoning techniques
based on the encoding of SHIQ ontologies in Datalog [53]. On the one hand,
theoretical investigations of this technique have revealed that data complexity
(i.e., the complexity of answering queries against a fixed ontology and set of
instance data) is significantly lower than the complexity of class consistency
reasoning (i.e., NP-complete for SHIQ, and even polynomial-time for a slight
restriction of SHIQ) [54]; on the other hand, the technique would allow relatively
efficient Datalog engines to be used to store and reason with large volumes of
instance data. Again, it is still too early to determine if this technique will be
useful in practice.

3.3 Extended Reasoning Services

In addition to solving problems of class consistency/subsumption and instance
checking, explaining how such inferences are derived may be important, e.g., to
help an ontology designer to rectify problems identified by reasoning support, or
to explain to a user why an application behaved in an unexpected manner.

Work on developing practical explanation systems is at a relatively early
stage, with different approaches still being developed and evaluated. One such
technique involves exploiting standard reasoning services to identify a small set of
axioms that still support the inference in question, the hope being that presenting
a much smaller (than the complete ontology) set of axioms to the user will

86 Ian Horrocks

help them to understand the “cause” of the inference [55]. Another (possibly
complementary) technique involves explaining the steps by which the inference
was derived, e.g., using a sequence of simple natural deduction style inferences
[56,57].

As well as explanation, so-called “non-standard inferences” could also be
important in supporting ontology design; these include matching, approximation,
and difference computations. Non-standard inferences are the subject of ongoing
research [58,59,60,61]; it is still not clear if they can be extended to deal with
logics as expressive as those that underpin modern ontology languages, or if they
will scale to large applications ontologies.

4 Summary

Description Logics are a family of class based knowledge representation for-
malisms characterised by the use of various constructors to build complex classes
from simpler ones, and by an emphasis on the provision of sound, complete and
(empirically) tractable reasoning services. They have been used in a wide range
of applications, but perhaps most notably (at least in recent times) in providing
a formal basis and reasoning services for (web) ontology languages such as OWL.

The increasing use of DL based ontologies in areas such as e-Science and the
Semantic Web is, however, already stretching the capabilities of existing DL sys-
tems, and brings with it a range of challenges for future research. The extended
ontology languages needed in some applications may demand the use of more
expressive DLs, and even for existing languages, providing efficient reasoning
services is extremely challenging.

Some applications may even call for ontology languages based on larger frag-
ments of FOL. The development of such languages, and reasoning services to
support them, extends these challenges to the whole logic based Knowledge
Representation community.

Acknowledgements

I would like to acknowledge the contribution of the many collaborators with
whom I have been privileged to work. These included Franz Baader, Sean Bech-
hofer, Dieter Fensel, Carole Goble, Frank van Harmelen, Carsten Lutz, Alan
Rector, Ulrike Sattler, Peter F. Patel-Schneider, Stephan Tobies and Andrei
Voronkov.

References

1. McGuinness, D.L., Wright, J.R.: An industrial strength description logic-based
configuration platform. IEEE Intelligent Systems (1998) 69–77

2. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description
logic framework for information integration. In: Proc. of the 6th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’98). (1998) 2–13

Applications of Description Logics 87

3. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query contain-
ment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’98). (1998) 149–158

4. Horrocks, I., Tessaris, S., Sattler, U., Tobies, S.: How to decide query con-
tainment under constraints using a description logic. In: Proc. of the 7th Int.
Workshop on Knowledge Representation meets Databases (KRDB 2000), CEUR
(http://ceur-ws.org/) (2000)

5. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1 (2003) 7–26

6. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The protégé OWL plugin: An
open development environment for semantic web applications. In McIlraith, S.A.,
Plexousakis, D., van Harmelen, F., eds.: Proc. of the 2004 International Semantic
Web Conference (ISWC 2004). Number 3298 in Lecture Notes in Computer Science,
Springer (2004) 229–243

7. Liebig, T., Noppens, O.: Ontotrack: Combining browsing and editing with reason-
ing and explaining for OWL Lite ontologies. In McIlraith, S.A., Plexousakis, D.,
van Harmelen, F., eds.: Proc. of the 2004 International Semantic Web Conference
(ISWC 2004). Number 3298 in Lecture Notes in Computer Science, Springer (2004)
244–258

8. Rector, A.L., Nowlan, W.A., Glowinski, A.: Goals for concept representation in the
galen project. In: Proc. of the 17th Annual Symposium on Computer Applications
in Medical Care (SCAMC’93), Washington DC, USA (1993) 414–418

9. Visser, U., Stuckenschmidt, H., Schuster, G., Vögele, T.: Ontologies for geographic
information processing. Computers in Geosciences (to appear)

10. Oberle, D., Sabou, M., Richards, D.: An ontology for semantic middleware: ex-
tending daml-s beyond web-services. In: Proceedings of ODBASE 2003. (2003)

11. Wroe, C., Goble, C.A., Roberts, A., Greenwood, M.: A suite of DAML+OIL
ontologies to describe bioinformatics web services and data. Int. J. of Cooperative
Information Systems (2003) Special Issue on Bioinformatics.

12. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American
284 (2001) 34–43

13. The DAML Services Coalition: DAML-S: Web service description for the semantic
web. In: Proc. of the 2003 International Semantic Web Conference (ISWC 2003).
Number 2870 in Lecture Notes in Computer Science, Springer (2003)

14. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl-
edge Engineering Review 13 (1998)

15. Stevens, R., Goble, C., Horrocks, I., Bechhofer, S.: Building a bioinformatics on-
tology using OIL. IEEE Transactions on Information Technology in Biomedicine
6 (2002) 135–141

16. Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In: Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97),
AAAI Press, Menlo Park, California (1997)

17. Spackman, K.: Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass. (2000) Fall Symposium Special Issue.

18. Emmen, A.: The grid needs ontologies—onto-what? (2002)
http://www.hoise.com/primeur/03/articles/monthly/AE-PR-02-03-7.h% tml.

19. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Vander-
bilt, P.: Grid service specification (draft). GWD-I draft , GGF Open Grid Services
Infrastructure Working Group (2002) http://www.globalgridforum.org/.

88 Ian Horrocks

20. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid:
An open grid services architecture for distributed systems integration (2002)
http://www.globus.org/research/papers/ogsa.pdf.

21. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In Ganzinger, H., McAllester, D., Voronkov, A., eds.: Proc. of the 6th Int.
Conf. on Logic for Programming and Automated Reasoning (LPAR’99). Number
1705 in Lecture Notes in Artificial Intelligence, Springer (1999) 161–180

22. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

23. Blackburn, P., Seligman, J.: Hybrid languages. J. of Logic, Language and Infor-
mation 4 (1995) 251–272

24. Baader, F., Hanschke, P.: A schema for integrating concrete domains into con-
cept languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI’91). (1991) 452–457

25. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept
languages. Information and Computation 134 (1997) 1–58

26. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic.
In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001). (2001)
199–204

27. Horrocks, I.: The FaCT system. In de Swart, H., ed.: Proc. of the 2nd Int. Conf.
on Analytic Tableaux and Related Methods (TABLEAUX’98). Volume 1397 of
Lecture Notes in Artificial Intelligence., Springer (1998) 307–312

28. Patel-Schneider, P.F.: DLP system description. In: Proc. of the 1998 De-
scription Logic Workshop (DL’98), CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-11/ (1998) 87–89

29. Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001). Volume 2083 of Lecture Notes in
Artificial Intelligence., Springer (2001) 701–705

30. Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD
thesis, University of Manchester (2004)

31. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive de-
scription logics. J. of the Interest Group in Pure and Applied Logic 8 (2000)
239–264

32. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical
analysis of optimization techniques for terminological representation systems or:
Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management 4 (1994) 109–132

33. Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive de-
scription logics: Preliminary report. In: Proc. of the 1995 Description Logic Work-
shop (DL’95). (1995) 131–139

34. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98). (1998) 636–647

35. Patel-Schneider, P.F.: DLP. In: Proc. of the 1999 Description Logic Workshop
(DL’99), CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-22/
(1999) 9–13

36. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption. J.
of Logic and Computation 9 (1999) 267–293

Applications of Description Logics 89

37. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc.
of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000). (2000) 285–296

38. Baker, A.B.: Intelligent Backtracking on Constraint Satisfaction Problems: Exper-
imental and Theoretical Results. PhD thesis, University of Oregon (1995)

39. Oppacher, F., Suen, E.: HARP: A tableau-based theorem prover. J. of Automated
Reasoning 4 (1988) 69–100

40. Wroe, C., Stevens, R., Goble, C.A., Ashburner, M.: A methodology to migrate the
Gene Ontology to a description logic environment using DAML+OIL. In: Proc. of
the 8th Pacific Symposium on Biocomputing (PSB). (2003)

41. Rogers, J.E., Roberts, A., Solomon, W.D., van der Haring, E., Wroe, C.J., Zanstra,
P.E., Rector, A.L.: GALEN ten years on: Tasks and supporting tools. In: Proc. of
MEDINFO2001. (2001) 256–260

42. Rector, A.: Analysis of propagation along transitive roles: Formalisation of
the galen experience with medical ontologies. In: Proc. of DL 2002, CEUR
(http://ceur-ws.org/) (2002)

43. Schulz, S., Hahn, U.: Parts, locations, and holes - formal reasoning about anatom-
ical structures. In: Proc. of AIME 2001. Volume 2101 of Lecture Notes in Artificial
Intelligence., Springer (2001)

44. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The instance store: DL reasoning with
large numbers of individuals. In: Proc. of the 2004 Description Logic Workshop
(DL 2004). (2004) 31–40

45. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms.
Artificial Intelligence 160 (2004) 79–104

46. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete do-
mains. J. of Artificial Intelligence Research (2004) To Appear.

47. Wolter, F., Zakharyaschev, M.: Temporalizing description logics. In Gabbay, D.,
de Rijke, M., eds.: Frontiers of Combining Systems II. Studies Press/Wiley (2000)
379–401

48. Pan, J.Z., Horrocks, I.: Extending Datatype Support in Web Ontology Reasoning.
In: Proc. of the 2002 Int. Conference on Ontologies, Databases and Applications of
SEmantics (ODBASE 2002). Number 2519 in Lecture Notes in Computer Science,
Springer (2002) 1067–1081

49. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining owl and ruleml. W3C Member
Submission (2004) Available at http://www.w3.org/Submission/SWRL/.

50. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to reason
with OWL. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: Proc. of
the 2004 International Semantic Web Conference (ISWC 2004). Number 3298 in
Lecture Notes in Computer Science, Springer (2004) 471–485

51. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge
bases: A practical case study. In: Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2001). (2001) 161–168

52. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ. In McAllester, D., ed.: Proc. of the 17th Int. Conf. on Automated
Deduction (CADE 2000). Volume 1831 of Lecture Notes in Computer Science.,
Springer (2000) 482–496

53. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive
datalog programs. In: Proc. of the 9th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2004). (2004) 152–162

90 Ian Horrocks

54. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In:
Proc. of the 2004 International Semantic Web Conference (ISWC 2004). (2004)
549–563

55. Schlobach, S., Cornet, R.: Explanation of terminological reason-ing: A preliminary
report. In: Proc. of the 2003 Description Logic Workshop (DL 2003). (2003)

56. McGuinness, D.L.: Explaining Reasoning in Description Logics. PhD thesis, Rut-
gers, The State University of New Jersey (1996)

57. Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: Proc.
of the 14th Eur. Conf. on Artificial Intelligence (ECAI 2000). (2000)

58. Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description
logics. J. of Logic and Computation 9 (1999) 411–447

59. Brandt, S., Turhan, A.Y.: Using non-standard inferences in description logics —
what does it buy me? In: Proc. of KI-2001 Workshop on Applications of Description
Logics (KIDLWS’01). Volume 44 of CEUR (http://ceur-ws.org/). (2001)

60. Küsters, R.: Non-Standard Inferences in Description Logics. Volume 2100 of Lec-
ture Notes in Artificial Intelligence. Springer Verlag (2001)

61. Brandt, S., Küsters, R., Turhan, A.Y.: Approximation and difference in description
logics. In: Proc. of the 8th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2002). (2002) 203–214

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 91-106, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Methodologies for the Reliable Construction of
Ontological Knowledge

Eduard Hovy

Information Sciences Institute, University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292-6695, USA

hovy@isi.edu

Abstract. This paper addresses the methodology of ontology construction. It
identifies five styles of approach to ontologizing (deriving from philosophy,
cognitive science, linguistics, AI/computational linguistics, and domain reason-
ing) and argues that they do not provide the same results. It then provides a
more detailed example of one of the approaches.

1 Introduction

After nearly a decade in which statistical techniques made “ontology” a bad word in
various computational communities, there are encouraging signs that the pendulum is
swinging back. But ontologies will be most readily accepted by their traditional crit-
ics only if at least two conditions are met: good methodologies for building and
evaluating them are developed, and ontologies prove their utility in real applications.
This paper addresses the question of the/a methodology for ontology building, a topic
that has received relatively little attention.

Since ontologies have many aspects, Section 2 outlines the aspect of interest for
this paper, namely ontology content. Section 3 describes five alternative content
construction methodologies that have been adopted in the past. Section 4 provides a
generic ontology construction procedure, and Section 5 puts the previous two sections
together by illustrating the language-oriented methodology with a more detailed ac-
count of how ontology builders might proceed, and what they might produce. Fi-
nally, Section 6 expresses the hope that further work on developing this and other
ontology construction methodologies can be of use.

2 Ontology Content: Shallow Semantics

The construction and use of ontologies for computational purposes has a long and
varied history. In natural language processing (NLP), for example, ontologies were
initially seen as the ultimate answer to many problems, but later rejected by almost
everyone when it became clear that building adequate ones at the time was impossi-
ble. Recently, influential NLP figures are beginning to recognize that a certain type

92 Eduard Hovy

of semantics—very shallow semantics—is probably necessary to help statistical NLP
systems overcome the quality performance ceilings many of them seem to have
reached. Since statistical systems learn their operations from suitably prepared train-
ing material, the argument is generally that the nature and quality of these systems’
performance is limited by the nature of the information in the material. Just as you
cannot make gold from stone, you cannot obtain semantically adequate machine
translation, text summarization, information retrieval, question answering, dialogue
management, etc., without giving the system some access to semantics in its training.

A less extreme variant of this history was experienced in several other computa-
tional areas. Eventually, they all face the same core problem: semantics is important,
but which semantics? Turning to the Knowledge Representation (KR) community,
whose origin lies in the traditions of mathematics, logic, and philosophy, does not
help. It has not yet been able to build large, widely used, general-purpose semantic
theories or semantic resources required for practical use at the scale of NLP and simi-
lar applications; such semantic data and theories as do exist are almost always limited
to small-scale (or toy) applications. KR work has been excellent in developing for-
malisms for representation, and for investigating the properties and requirements of
various classes of deductive systems. But for practical applications such formalisms
need content; the deductive systems need to work on something. A semantic theory
of the kind needed to support NLP and other applications requires at least a collection
of (unambiguous) semantic symbols, each carrying a clear denotation; a set of rules
for composing these symbols, using a set of relations, into non-atomic representations
of more-complex meanings; and some method of validating the results of composi-
tion, deduction, and other semantic operations.

Because of the complexity involved, content building of this sophistication has
mostly occurred at a smaller scale. So despite the fact that the world is certainly
complex enough that it is reasonable to expect more than 20,000 individual ‘atoms’
of meaning to be used as building blocks, very few term collections of this size are
more than flat enumerations (for example, Standard Industrial Classification (SIC)
codes, lists of geographical entities and locations, lists of chemicals, or pumps, or
plants, all with their properties, etc.). Sets of symbols, taxonomized to enable inheri-
tance of information and to support inference, are often called ontologies. But except
for CYC [29], large-scale term sets (over 20,000 nodes) tend to contain little reason-
ing knowledge, providing mostly lexically anchored networks of words; the best-
known examples are WordNet [10,35] and its immediate derivates such as Eu-
roWordNet [46] and other languages’ WordNets (http://www.globalwordnet.org/),
though a few more-distant derivatives such as SENSUS [26] are also available. For
composing atomic meaning symbols into more-complex structures, most theories
provide relations, and typical sets of relations range from a dozen or so, such as Fill-
more’s early case roles [11], to maybe fifty by Sowa [43]. But no accepted standard
set of relations exists either.

Probably the most troublesome aspect of conceptual ‘content’ semantics, however,
is the near-complete absence of methodological discussion and emerging ‘methodol-
ogy theory’ that would provide to the general enterprise of ontology building and
relation creation the necessary rigor, systematicity, and eventually, methods for veri-
fication that would turn this work from an art to a science. (A notable exception is
the work on DOLCE, which makes a good beginning; see www.loa-

Methodologies for the Reliable Construction of Ontological Knowledge 93

cnr.it/DOLCE.html and [12].) Without at least some ideas about how to validate
semantic resources, both the semantics builder and the eventual semantics user are in
trouble. The builder does not know how to ensure that what is built today is consis-
tent, in a deep sense, with what was built yesterday (and indeed, problems of incon-
sistency have plagued all larger ontology-building efforts since their inception; for
example, CYC at one point discarded more than half its content and started anew).
The user does not know how to choose between various alternative semantic theories
and resources, and is forced to rely on unverifiable claims, the builders’ reputation
and/or erudition, or subjective preferences.

What to do?

3 Five Methodologies for Ontology Construction

The rest of this paper focuses on the problem of creating and organizing into an on-
tology a set of terms, primitive or not, with which to define meaning in some domain.
I use the word “ontology” quite informally here to denote any set of terms organized
hierarchically according to the general property inheritance relation following sub-
class, but without additional requirements that logical entailment or other inferences
be defined or that the terms obey such entailment. That is, “ontology” here includes
terminology taxonomies such as WordNet. While it would be nice to adopt such
requirements, the reality is that most people build ontologies to support their knowl-
edge representation needs in some practical application, and that they are more con-
cerned about the computational effectiveness and correctness of their application than
about the formal completeness, correctness, or consistency of the ontology per se.
(Should the system work well even if the ontology is somehow formally deficient, the
practical projects I know of would be quite satisfied.) Naturally, completeness, con-
sistency, etc., are ways to ensure that the ontology will not lead to unwelcome sur-
prises in system behavior. But unfortunately, the strictures introduced by these re-
quirements are usually so onerous that they make adopting the requirements tanta-
mount to placing a severe limitation on the eventual scope of the ontology and hence
of the whole practical enterprise. That is, especially for NLP applications, many
people build their ontologies as relatively simple term taxonomies with some inheri-
tance inference, but do not enforce stricter logical requirements.

When constructing an ontology (or domain model; the terms are used here inter-
changeably) one can either build everything de novo or one can start with the ontolo-
gies of others and combine, prune, and massage them together as needed. In recent
work, several ontology building projects have created interfaces to assist with the
manual merging of ontologies. Typically, these tools extend ontology building inter-
faces such as those of Ontolingua [97], Intraspect ([22] http://polaris-
md.pepperdine.edu/Overview.html) and the Stanford CML Editor [23] by incorporat-
ing one or more variants of name matching and other heuristics plus validation rou-
tines that check for consistency of edited results [26,20,38,34].

With regard to the creation or extension of new domain models, some work in
manual knowledge acquisition is developing interfaces that assist the knowledge
entry worker by continually verifying what is entered, actively eliciting information

94 Eduard Hovy

to complete partial specifications, etc., using strategies modeled after human tutoring
procedures [24,5].

However, what is still lacking in ontology construction is a systematic and theo-
retically motivated methodology that guides the builder and facilitates consistency
and accuracy, at all levels. The reason for this lack is evident: today, we still do not
have an adequate theory on which to base such a methodology. It is not even clear
how one would begin to approach the problem of designing theoretically motivated
procedures from a suitably general point of view. Consequently, although many
people build ontologies today—see for example the OntoSelect website at
http://views.dfki.de/Ontologies/ for over 750 ontologies in various domains—not one
of the builders would be able to provide a set of operationalizable tests that could be
applied to every concept and relation to inform in which cases his or her choices were
wrong.

How then would one approach such a methodology? Well, we can consider what
ontology builders actually do—the core operation(s)—and study how they justify
their actions. As discussed in [1,45,21], three situations can arise when aligning
terms from two ontologies: either the two terms are exactly equivalent, or one term is
more general than the other, or the terms are incompatible1. As soon as inconsisten-
cies are found, one has to make a choice2. It helps if one understands why the crea-
tors of the source ontologies did what they did. Based on lessons learned from prac-
tical experience in merging parts of several ontologies [20] and discussions with
numerous individuals, the author has identified five types of motivation, which can be
identified with five different research approaches: the philosophers [16,15,43]; the
cognitive scientists [35,10,27,2]; the linguists [31,39]; the Artificial Intelligence rea-
soners [30,13], which includes the computational linguists [3,36]; and the domain
specialists (too numerous to list). Each of these types of individuals operates in a
distinct way, resolving questions with arguments that appeal to different authorities
and patterns of reasoning, and (not unexpectedly) lead to very different results. (It is
important to point out right away that none of these are correct, compared to the
others; the notion of correctness is itself a point of methodological discussion. But
within each mode of thought, it is of course possible to be correct or wrong, to be
more or less elegant, and to develop a more or less satisfying solution.)

In generating each new (candidate) ontology item, the ontologizer performs an act
of creation. Stated as simply as possible, the ontologizer has to decide whether to
create a term, and if so, how to place it with regard to the other existing terms (which
constitutes some portion of the act of defining the term, of course). Then follows
additional specification and definition. This decision process plays out as follows for
the five ‘personality types’ of ontologizer:

1 This is not quite true; concepts can share parts of their meanings; see discussion later, and in

[28] and [8]. However, following general practice, in this paper we limit the discussion to
‘discrete’ ontologies, in which concepts do not overlap.

2 A reviewer of the paper points out that one does not have to make a choice; one can include
alternatives, separating them in different namespaces, as long as one is not tied to a specific
application. The point here is that when one is tied to an application, then one does have to
make this choice, and since one builds ontologies for applications, the problem is prevalent.

Methodologies for the Reliable Construction of Ontological Knowledge 95

Type 1: Abstract feature recombination (the philosophers). The procedure of con-
cept creation by additive feature specification—systematically adding new differen-
tiae—is the historical method of ontologization; interesting examples can be found all
the way back to Aristotle. A modern version is provided in [43], who defines several
highly abstract features (Concrete–Abstract; Positive–Negative; etc.) and then more
or less mechanically forms combinations of them as separate concepts, using these
features as differentiae. Sowa illustrates this procedure by generating the topmost
few dozen concepts and arranging them in their combinatory lattice structure, under
which he proposes a more traditionally-derived concept taxonomy be arranged. With
the DOLCE ontology (www.loa-cnr.it/DOLCE.html, [12] employ so-called identity
criteria to determine whether two concepts are the same or not, and how they may
differ; these differences help establish the appropriate differentiae. The rigor adopted
in this work, especially the use of identity criteria as a driving methodology, is a
model for others. In general, the ontologizers adopting this approach are of course
the philosophers; once they believe they have found the essential set of semantic
primitives, the rest follows by logic. The approach is elegant, but unfortunately
doesn’t work beyond the very most abstract levels, and is hence not very useful for
practical domain ontologies. Defining a list of the most abstract notions underlying
our conceptualizations is a complex enough task; but it is truly scary to consider cre-
ating a list of all the differentiae one would have to specify (and arrange in some
order, so as to avoid the full combinatory complexity) in order to define such notions
as Love, Democracy, and (even) Table.
Type 2: Intuitive ontological distinctions (the cognitive scientists). The oldest and
most natural reason for creating a new concept is simply the intuitive feeling that it is
not the same as anything else already defined, which means that one has to split it off
from its near-siblings and begin a new variation or subspecies. Unfortunately people
are not consistent in doing so, and ‘split off’ new ‘concepts’ quite actively as the
occasion demands, creating ad hoc subgroupings differentiated by whatever feature(s)
are relevant to their purposes. This playful freedom is useful for communication and
no doubt for thought in general; its results are sometimes recorded (by having words
that name the concepts), and sometimes not. The result is a hodge-podge of word-
sense families whose meanings partly overlap but differ on arbitrary dimensions, and
for which no regular correspondences are found across languages in general (see for
example [8] for a very nice paper on plesionyms3 in various languages). Determin-
ing this kind of concept formation is the specialty of the cognitive scientist (especially
the one interested in language), whose methodology (and proof) turns to devising
clever experiments to measure how people make distinctions between close concepts.
But the fluidity of the distinction process, being dependent on the person’s interests,
knowledge, task, and other circumstances, make this approach to ontology building
fraught with inconsistency to the point of hopelessness.
Type 3: Cross-linguistic phenomena (the linguists). For some people, concepts can
be motivated simply because words or expressions for them appear in many lan-
guages. When many cultures independently name a thought, is that not evidence for
the existence of that thought as a separate concept? Whether one believes Vygotsky

3 Near-synonyms, like jungle, forest, and woods.

96 Eduard Hovy

[47], Sapir [42] and Whorf [49], or Piaget [41] as to which of language and thought is
primary (if either), the very close intertwining of them in the mind is generally ac-
cepted. As shown for example in EuroWordNet [46] or the plesionym study [8],
analysis of cross-language differences uncovers complex and fascinating interrela-
tionships among meanings and meaning facets. Naturally, this approach fits the lin-
guistic tradition, and for some NLP applications, especially cross-lingual ones, paying
attention to many languages for ontology construction and lexicon development can
be rewarding (see for example [7], about which more below). But since there are
many concepts for which no words exist, and since it is easy to demonstrate shadings
of meaning from one concept to another that suggest continua of unimagined dimen-
sionality, no-one will accept the argument that “because it’s so in language(s), it has
to be exactly so in thought” as a final arbiter. Nonetheless, words, as the richest
component in our arsenal of tools to attack meaning, remain central. Therefore lan-
guage-inspired ontology work usually produces word networks such as WordNet that
are strongest in the (typically large) middle region, corresponding approximately to
language lexicons; at both the abstract (upper) and domain-specific and particular
(lower) region, they tend to lose expressive utility.
Type 4: Inference-based concept generalizations (the computational reasoners). For
computational systems, one creates in effect a data model. The ontology (and domain
model) is so arranged that those items in the domain that should be treated similarly
are grouped together and typed, so that they can in fact be recognized and treated
similarly. Such groupings tend to emphasize domain-specific concepts and produce
more abstract concepts (i.e., upper ontologies) only insofar as they are required for
grouping. For this methodology the validation method is simple and direct: Do I
need separate treatment of some thing(s) by the system? If I create an appropriate
new type, does the system work as required? The domain terms thus tend to mirror
the metadata and the system variables. They must be defined in enough detail to
support a reasonably powerful set of operators or rules, but not be so differentiated as
to require too many rules. This methodology is relatively clean, depending on the
elegance of the computational solution to the problem. Unfortunately, however, the
decision justifications offered by systems builders today are seldom interesting to
philosophers, psychologists, and linguists. Given how many ways there are to
achieve a computational result, system builders are seldom able to express their
analysis of the problem and its solution in terms of necessary information transforma-
tion operations, i.e., in compelling general information-theoretic terms that would
convince the other disciplines’ specialists of the logical necessity of organizing one’s
knowledge one way or another. This fact lies at the heart of the inevitable communi-
cation breakdown and decoupling that occurs when systems builders and any of the
other disciplines’ researchers set out jointly to build an ontology for some application,
a breakdown that requires significant effort to overcome.
Type 5: Inherited domain distinctions (the domain specialists). In many ontology
building enterprises, the reason for creating and arranging concepts stems neither
from abstract theoretical analysis nor experimentation, but from existing domain
theory and practice. Biologists, neuroscientists, aircraft builders, pump manufactur-
ers, legal scholars, and anyone else in knowledge-intensive enterprises find it per-
fectly natural to construct ontologies that reflect the way their fields view their

Methodologies for the Reliable Construction of Ontological Knowledge 97

worlds; this class of ontologies is thus one of the most common in practice; see for
example the over 700 ontologies listed on the OntoSelect website
(http://views.dfki.de/ontologies/), covering space, travel, music, wine, sports, science,
etc. [4]. Often the exercise of actually building an ontology is prompted by the desire
to work in a computational setting, and frequently the organizational discipline im-
posed by ontology software causes an experience of some enjoyment and even some
reorganization of the builder’s own understanding. Connecting a domain ontology to
a generic computational system (such as a sentence generator or parser) sometimes
requires realignment and/or reconceptualization of the domain terms into the catego-
ries interpretable by the computational engine; a typical solution is to embed such
domain model(s) under an Upper Model that supports the computation, as illustrated
for sentence generation in [3].

Addendum: Type 6: Taxonomic clarity. There is another motivation for introduc-
ing concepts, one that almost all ontology builders employ. Sometimes it is simply
useful for an ontology builder to insert some mid-level concepts in order to create
organizational clarity, without explicitly formulating the criteria that justify their
existence (esthetics and/or clarity of display are reasons not generally deemed suffi-
cient to measure up to serious insights derived from psychological experiment, phi-
losophical argument, computational necessity, or cross-linguistic comparison).

It is tempting to consider these approaches as complementary; one could for exam-

ple ask the philosophers to build the uppermost, most abstract, regions, the cognitive
scientists to provide some overall ontology framework that the computationalists and
domain specialists can then flesh out and refine, etc. But there is no guarantee that
the distinctions natural to ontology builders of one type will in fact correspond to or
be useful for others’ purposes. In practice, such admixture tends to require that all
parties learn a little about every approach, and that one of them becomes the ultimate
arbiter, usually on irrelevant grounds such as personality or loudness of argument.

4 Ontology Construction Procedure

Mismatches between ontologies are a source of never-ending discussion and wonder.
But they are not surprising; when concept creation decisions can be justified on such
different grounds as listed above, mismatches are to be expected and are not really
very interesting on an individual basis. The ontologies simply differ in content and
‘focus’. What is interesting is when one discipline delivers no insight and another
must come to its aid. To prevent disaster, a methodology of ontology creation should
recognize this fact and assign relative priorities to the various concept creation meth-
ods and justification criteria a priori, before any actual ontology building is done.

The above considerations apply for all ontology building efforts (although upper
ontologies, given their abstraction from domain particulars, are a somewhat special
case). To create a domain model, the methodology generally adopted (see for exam-
ple [14]), which can be called continual graduated refinement, is:
1. Determine the general characteristics of the ontology to be built. A list of such

characteristics (and additional ones) is provided in [19], and includes the domain

98 Eduard Hovy

of interest, the purpose of the ontology, the target level of granularity, the con-
ceptual and theoretical antecedents, etc. Central to these decisions is selecting
the principal criteria of ontologization (concept creation and justification meth-
ods) and specifying their order. In this step the task/enterprise is determinate: is
this domain model to be used in a computational system? Or is it a conceptual
product for domain analysis and description? Who are the intended users/readers
of the ontology, and what is their purpose with it? What justification criteria will
they find most understandable, and do these criteria match the purpose or task in
mind?

2. Gather all additional knowledge resources, including starter ontologies, upper
structures or microtheories (of, say, time and space), glossaries of domain terms,
supporting descriptive and definitional material, algorithms and tools, existing
theoretical descriptions, etc.

3. Delimit the major phenomena for consideration: identify the core concepts, types
of features allowed, principal differentiae, etc. To lay out the general area, start-
ing with an existing upper ontology, even one with just some dozen nodes, can
be helpful.

4. List all readily apparent terms/concepts important for the task or enterprise.
These terms may be derived from a (meta-)data model, from the algorithm of the
system (to be) built, from experts’ reports on the major components and proc-
esses in the domain, etc.

5. For each concept, explicitly record the principle(s) and factors that justify its
creation. The definition may still be incomplete and informal, but should contain
the principal differentiae and features of interest. Also identify interrelationships
between the concept and related concepts (including subclass hierarchicalization,
part-wholes, equivalence/synonymy, etc.), and specify/define them.

6. Inspect the nascent domain model for (ir)regularity, (im)balance, etc. Then for
each major region (types of entity, types of action, types of state, etc.) repeat
steps 3 to 5, refining existing concepts as needed. During this iterative refine-
ment, record all problematic issues; they may require extensions to the upper on-
tology or even to the basic criteria of ontologization.

7. When done, characterize the ontology or domain model by recording its essential
parameters, as spelled out in [19].

Working out the details of this methodology takes time and effort. Not all aspects
apply in all cases, and not to all domains or ontologization styles [44]. Careful study
of how domain ontologizers actually instantiate this procedure will help flesh out a
systematic methodology of ontologizing.

5 Example Language-Based Methodology: Annotator-Driven
Concept Granularity Using Wordsenses

The core ontologization decisions outlined in the preceding section can be viewed as
a question of concept granularity: given some semantic notion circumscribed by one

Methodologies for the Reliable Construction of Ontological Knowledge 99

or more near-synonymous words, how many concepts should one define for them,
how should one organize the concepts, and how should one validate these choices?
This section outlines, as example, a language-based methodology that starts by creat-
ing and validating wordsenses and then uses them to suggest concepts. It contains
two parts: experiences with wordsense annotation and converting wordsenses into
concepts.

5.1 Experiences in Wordsense Annotation

The OntoBank project (Weischedel et al., in prep.) is an ongoing attempt by research-
ers at BBN (Weischedel, Ramshaw, et al.), the University of Pennsylvania (Marcus,
Palmer, et al.) and ISI (Hovy et al.) to construct a shallow semantic version of a col-
lection of texts. Should continuation funding be achieved, the goal is to build by
hand a set of one million sentences with their associated shallow semantic frames. In
this project, shallow semantics includes disambiguated concept/wordsense symbols
for each noun, verb, and adjective; basic verb frames with relations to constituents;
resolved anaphoric links; canonicalized representations for straightforward dates,
numerical expressions, proper named entities, and a few other phenomena. Central to
OntoBank is the PropBank wordsense differentiation and annotation procedure [25].

The IAMTC project [7], which ended early for lack of continuation funding after
one year, had as goal to uncover the representational machinery required to support
an interlingua notation from an analysis of differences across seven languages. Pro-
ject members annotated some 150 translated texts, each one in both English and its
source language (one of Hindi, Arabic, Korean, Japanese, French, and Spanish).
Similar to OntoBank, annotation included selection of a disambiguated con-
cept/wordsense for each noun, verb, and adjective; the determination of an appropri-
ate verb frame (in this case, LCS theta role frames [6]) and its connections to sentence
constituents; and the design of a series of incrementally deepening representations en
route toward the interlingua.

The author participated in both OntoBank and IAMTC, in more or less the same
role, as ontology maintainer and developer. In both cases, ISI’s Omega ontology at
http://omega.isi.edu [40,18] was used as repository of all semantic symbols. In both
projects, all nouns, verbs, and adjectives were annotated by multiple people, who
selected the appropriate concept(s) to express the words’ meaning(s) in context. Both
projects paid considerable attention to the annotation interface, annotator training,
post-annotation reconciliation discussions, and annotator agreement measures.

Of primary interest for this paper is the ontological considerations that arise when
such annotation efforts are conducted. It is relatively straightforward, though not
always easy, to build ontologies of specific well-circumscribed domains for computa-
tional purposes. But the picture changes somewhat when the focus is annotation of
wide-coverage newspaper text in the interest of creating shallow semantic representa-
tions. In particular, the ontology maintainer is confronted with a stream of seemingly
unrelated decisions about concept granularity and ontology placement, more or less
one for every verb, noun, and adjective encountered. The OntoBank methodology is
illustrative. Following the PropBank annotation procedure [25], the most frequent N
words of a given type (say, verbs) are selected for annotation. For each verb, 100

100 Eduard Hovy

sentences containing it are extracted from the corpus. Two or more annotators each
see the same hundred sentences plus a list of candidate concept (sense) choices ex-
tracted from the ontology. Their task is to select just those concepts that express the
meaning(s) of the verb in a given context.

It is apparent that the nature of the concept alternatives and the quality of their
definition are of central importance. Omega, which for a large part is derived from
the lexical network WordNet, usually contains too many close alternatives, confusing
the annotators (annotator selection agreement when given WordNet senses as options
is only around 70% for nouns). For example, the verb “drive” has 22 senses in
WordNet, including separate senses for driving a car as chauffeur and driving a car as
one’s work. In an employment domain, the difference between chauffeur, taxi driver,
and other kind of employed driver may be important, but in general texts this distinc-
tion is often not made, or it is so implicit that many people don’t make it, leading to
different annotator choices.

In contrast, the MIKROKOSMOS ontology [33,32], another source of concepts for
Omega, almost always offers too little granularity; it has only one symbol for all ve-
hicles, including cars, buses, airplanes, etc. Ideally, one would like something in
between: just enough concepts to express the semantic differences that most people
easily agree on in the context of the text.

5.2 From Words to Concepts: Hierarchical Graduated Refinement

Palmer and colleagues use sense creation/compression to build PropBank; they have
developed a well-tested procedure. A slightly more elaborated and formalized proce-
dure was developed at ISI to mirror appropriate wordsenses in the Omega ontology,
which for this work was extended to accommodate separately wordsenses and con-
cepts [18]. This sense creation procedure is interesting to perform, and perfectly
illustrates the problem of the ontology builder, and the need for a strict methodology.
For example, how many senses (concepts) should one define for the word “drive”?
Different members of OntoBank produced quite different results, which differed from
the decisions of PropBank’s expert sense creator. The continual graduated refine-
ment procedure outlined above is as follows: starting with the word and a number of
example sentences representing all/most of its meanings, identify and split out the
most semantically different sense (cluster) and create a branch point in the evolving
tree; then for each branch, repeat the process downward. At each split write down the
criteria, or at least a description of the difference; these give a hint at the thought
process for later discussion and may eventually allow one to define more-formal
differentiae. For example, consider the following sentences for “drive”:

1. Drive the demons out of her and teach her to stay away from my husband!!

2. Shortly before nine I drove my jalopy to the street facing the Lake and parked
the car in shadows.

3. He drove carefully in the direction of the brief tour they had taken earlier.

4. Her scream split up the silence of the car, accompanied by the rattling of the
freight, and then Cappy came off the floor, his legs driving him hard.

Methodologies for the Reliable Construction of Ontological Knowledge 101

5. With an untrained local labor pool, many experts believe, that policy could
drive businesses from the city.

6. Treasury Undersecretary David Mulford defended the Treasury’s efforts this
fall to drive down the value of the dollar.

7. Even today range riders will come upon mummified bodies of men who at-
tempted nothing more difficult than a twenty-mile hike and slowly lost direc-
tion, were tortured by the heat, driven mad by the constant and unfulfilled
promise of the landscape, and who finally died.

8. Cows were kept in backyard barns, and boys were hired to drive them to and
from the pasture on the edge of town.

How many concepts/senses should one create? In WordNet, “drive” has 22
senses. Employing our procedure of hierarchical graduated refinement on these (and
additional) sentences, the author and a student separately found 7 major senses, in the
order of the wordsense hierarchy below (hints for differentiate are indicated in angle
brackets, as well as sentence numbers with focal words):

“drive”

 <move in desired direction> <other, various>

7: “drive mad”

 <physical> <non-physical>

 5: business 6: dollar 1: demons

 <direct> <propel> <motivate>

 2,3: car 4: legs 8: cattle

Given more sentences, additional subsenses can be found, including driving a tool

(“drive the hammer”) under <propel>, driving non-cars (“drive a bulldozer”) under
<direct>, employment (“drive a taxi for work”) or phrasal expressions (“drive a hard
bargain”) under <other>, etc.

Adopting the above hierarchical graduated refinement procedure4 is useful for sev-
eral reasons. It supports human analysis and agreement by systematically removing
the most glaringly different cases. It helps suggest differentiae. It allows one to vary
the granularity at will by simply ending the differentiation process sooner or later,
and by grouping together as undifferentiated all senses lower than the chosen level.

4 Sense differentiation in PropBank is not performed hierarchically as shown here; the expert

produces a flat list. Nonetheless, trained staff can easily estimate the level of granularity that
will ensure an inter-annotator agreement of over 90% (the target value in OntoBank; this
figure, on average, required a 50% reduction of WordNet senses, for example).

102 Eduard Hovy

This capability is extremely useful when one separates word senses from ontology
concepts. As argued in for example [37] and discussed in [17], not all wordsenses in
the sense hierarchy need (or should) be converted into ontological categories (con-
cepts). The sense hierarchicalization for “drive” above, for example, requires at least
three distinct concepts, namely “drive mad” (i.e., something like Cause-Mental-
Instability), the nonphysical sense group (rooted in something like Cause-State-
Change-toward-Desired-Value), and the physical group (rooted in Cause-Movement-
in-Desired-Direction) respectively. Being so different, the first of these will be in-
serted into the ontology at a point quite remote from the other two. Further, sentence
1, “drive the demons out of her”, may be treated at two levels: the surface-
metaphorical (in which case “demons” metaphorically stands for “illness” and the
driving is nonphysical), or the ‘true’ semantic (in which case the meaning is some-
thing like Heal-of-Mental-Disorder, and there is no driving, even metaphorically). In
the latter case, sentence 1 would also be classified in a region of the ontology quite
remote from the other concepts.

One can continue ontologizing the sense hierarchy to the extent one wishes to (or
can) formalize the differentiae and one believes further distinction provides valuable
additional explanatory or computational utility. Each step of ontologization requires
placing the newly formed concept into the growing ontology where appropriate. This
procedure makes apparent that there is no direct homomorphism of the sense hierar-
chy into the ontology, though as senses are ‘closer’ lower down in the hierarchy, one
would expect their ontological equivalents also to be closer in the ontology.

It is a good reason to stop ontologizing the sense hierarchy when no obviously
most-different sense or sense group can be identified, that is, when it is possible to
split the remaining group in several equally good ways according to different criteria.
At this point, one has most probably reached a level of semantic homogeneity at
which several features combine in equal measure to form the concept’s unique iden-
tity.

Cross-language studies are useful in helping to identify a division between ‘sense
space’ and ‘ontology space’. In the IAMTC project, when the languages in question
(Hindi, Arabic, Korean, French, Spanish, and Japanese) provided different words
(and hence usually also senses) after translation (by various professional-quality
translators) into English, then the granularity of the concept in question had to be
such as to represent the senses common across the various translations, while their
individual, language-idiosyncratic, facets of difference remained in the sense hierar-
chy. One can thus think of ‘ontology space’ as the interlingual representation sym-
bols (symbols capturing common, or common enough, meaning aspects); of ‘sense
space’ as the multi-lingual representation symbols (symbols for senses that may or
may not co-occur across languages, but that are mapped to meanings no more specific
than they denote themselves), and of ‘lexical space’ as the monolingual representa-
tion symbols (namely, the words of each language). There is a complex many-to-
many mapping across both gaps.

Methodologies for the Reliable Construction of Ontological Knowledge 103

6 Conclusion

The two-stage methodology—creating wordsenses and annotating them to determine
granularity, followed by conversion of (part of) the sense hierarchy into ontology
concepts has several desirable properties. It is ‘empirical’, in the sense that the se-
mantic distinctness of a set of wordsense (concept) candidates can be validated
through annotator agreement. This gives an upper bound on the granularity of con-
cepts, and interestingly blends linguistic and cognitive motivations in a computational
setting. The hierarchical graduated refinement procedure is easily extensible to finer
detail, and provides suggested differentiae for formalization. The overall methodol-
ogy accommodates comparison across and incorporation of different languages by
separating language-dependent wordsenses from language-independent concepts.

It is not claimed that the methodology described here is a proven, or even ade-
quately explored, methodology for ontology creation. But given the increasingly
pressing need for more attention to methodology in current-day ontology creation, it
is to be hoped that these thoughts will inspire further exploration. In addition, hope-
fully the new interest in ontologies will usher in more work on methodology as well.
It is a fascinating and rewarding direction of research.

Acknowledgements

I am indebted to Graeme Hirst and Patrick Pantel for their comments, both in print
and in person.

References

1. Aguado, G., A. Ba1on, J. Bateman, S. Bernardos, M. Fernández, A. Gómez-Pérez, E.
Nieto, A. Olalla, R. Plaza, and A. Sánchez. 1998. ONTOGENERATION: Reusing Do-
main and Linguistic Ontologies for Spanish Text Generation. Proceedings of the ECAI
Workshop on Applications of Ontologies and Problem Solving Methods, 1–10. ECAI Con-
ference. Brighton, England.

2. Alberdi, E., D.H. Sleeman, and M. Korpi. 2000. Accommodating Surprise in Taxonomic
tasks: The Role of Expertise. Cognitive Science 24(1), 53–92.

3. Bateman, J.A., Kasper, R.T., Moore, J.D., and Whitney, R.A. 1989. A General Organiza-
tion of Knowledge for Natural Language Processing: The Penman Upper Model. Unpub-
lished research report, USC/Information Sciences Institute, Marina del Rey, CA. A ver-
sion of this paper appears in 1990 as: Upper Modeling: A Level of Semantics for Natural
Language Processing. Proceedings of the 5th International Workshop on Language Gen-
eration. Pittsburgh, PA.

4. Buitelaar, P., T. Eigner, and T. Declerck. 2004. OntoSelect: A Dynamic Ontology Library
with Support for Ontology Selection. Proceedings of the Demo Session at the Interna-
tional Semantic Web Conference. Hiroshima, Japan.

5. Chklovski, T., V. Ratnakar, and Y. Gil. 2005. User Interfaces with Semi-Formal Repre-
sentations: A Study in Designing Augmentation Systems. Proceedings of the Conference
on Intelligent User Interfaces (IUI05). San Diego, CA.

104 Eduard Hovy

6. Dorr, B.J., M. Olsen, N. Habash, and S. Thomas. 2001. The LCS Verb Database. Techni-
cal Report Online Software Database, University of Maryland, College Park.
http://www.umiacs.umd.edu/bonnie/LCS_Database_Docmentation.html.

7. Dorr, B., D. Farwell, R. Green, N. Habash, S. Helmreich, E.H. Hovy, L. Levin, K. Miller,
T. Mitamura, O. Rambow, F. Reeder, A. Siddharthan. (submitted). Interlingual Annota-
tion of Parallel Corpora. Submitted to Journal of Natural Language Engineering.

8. Edmonds, P. and G. Hirst. 2002. Near-synonymy and Lexical Choice. Computational
Linguistics 28(2), 105–144.

9. Farquhar, A., R. Fikes, and J. Rice. 1997. The Ontolingua Server: A Tool for Collabora-
tive Ontology Construction. International Journal of Human-Computer Studies 46, 707–
727.

10. Fellbaum, C. 1998. (ed.) WordNet: An On-Line Lexical Database and Some of its Applica-
tions. Cambridge: MIT Press.

11. Fillmore, C. 1976. The Case for Case. In E. Bach and R. Harms (eds) Universals in Lin-
guistic Theory, 1–88. Holt, Rinehart, and Winston.

12. Gangemi, A., N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. 2002. Sweetening
Ontologies with DOLCE. In A. Gomez-Perez and V.R. Benjamins (eds), Knowledge En-
gineering and Knowledge Management. Proceedings of Ontologies and the Semantic Web
at the 13th EKAW Conference. Siguenza, Spain. Springer Verlag, 166–181.

13. Gil, Y., R. MacGregor, K. Myers, S. Smith, and W.R. Swartout. 1999. CommonP: A
Common Plan Representation for Air Campaign Plans. USC/ISI Technical Report avail-
able at http://www.isi.edu/isd/HPKB/planet/alignment.

14. Gruber, T.R. 1993. Toward principles for the design of ontologies used for knowledge
sharing. In N. Guarino and R. Poli (eds.), International Workshop on Formal Ontology,
Padova, Italy. Revised August 1993. Published in International Journal of Human-
Computer Studies, special issue on Formal Ontology in Conceptual Analysis and Knowl-
edge Representation (guest editors: N. Guarino and R. Poli) (to appear). Available as
technical report KSL-93-04, Knowledge Systems Laboratory, Stanford University.

15. Guarino, N. 1998. Some Ontological Principles for Designing Upper Level Lexical Re-
sources. Proceedings of the First International Conference on Lexical Resources and
Evaluation (LREC), 527–534. Granada, Spain.

16. Guarino, N. and C. Welty. 2004. An Overview of OntoClean. In S. Staab and R. Studer
(eds), Handbook on Ontologies. Springer Verlag, 151–159.

17. Hirst, G. 2004. Ontology and the Lexicon. In S. Staab and R. Studer (eds), Handbook on
Ontologies. Springer Verlag, 209–229.

18. Hovy, E.H., A. Philpot, P. Pantel, M.B. Fleischman. (in prep.) The Omega Ontology.
19. Hovy, E.H. 2002. Comparing Sets of Semantic Relations in Ontologies. In R. Green, C.A.

Bean, and S.H. Myaeng (eds), The Semantics of Relationships: An Interdisciplinary Per-
spective, 91–110. Dordrecht: Kluwer.

20. Hovy, E.H. 1998. Combining and Standardizing Large-Scale, Practical Ontologies for
Machine Translation and Other Uses. Proceedings of the 1st International Conference on
Language Resources and Evaluation (LREC), 535–542. Granada, Spain.

21. Hovy, E.H. and S. Nirenburg. 1992. Approximating an Interlingua in a Principled Way.
Proceedings of the DARPA Speech and Natural Language Workshop. Arden House, NY.

22. Intraspect Corp. 1999. http://www.intraspect.com/product_info_solution.htm.
23. Iwasaki, Y., A. Fraquhar, R. Fikes, and J. Rice. 1997. A Web-Based Compositional Mod-

eling System for Sharing of Physical Knowledge. Nagoya: Morgan Kaufmann.
24. Kim, J., Y. Gil, and M. Spraragen. 2004. A Knowlesdge-Based Approach to Interactive

Workflow Composition. Proceedings of the Workshop on Planning and Scheduling for
Web and Grid Services at the International Conference on Automatic Planning and Sched-
uling (ICAPS 04). Whistler, Canada.

Methodologies for the Reliable Construction of Ontological Knowledge 105

25. Kingsbury P. and M. Palmer. 2002. From Treebank to PropBank. Proceedings of the 3rd
International Conference on Language Resources and Evaluation (LREC-2002). Las Pal-
mas, Spain.

26. Knight, K. and S.K. Luk. 1994. Building a Large-Scale Knowledge Base for Machine
Translation. Proceedings of the AAAI Conference, 773–778.

27. Korpi, M. 1988. Making Conceptual Connections: An Investigation of Cognitive Strate-
gies and Heuristics for Inductive Categorization with Natural Concepts. Ph.D. disserta-
tion, Stanford University.

28. Lakoff, G. 1987. Women, Fire, and Dangerous Things: What Categories Reveal about the
Mind. Chicago: University of Chicago Press.

29. Lenat, D.B. and R.V. Guha. 1990. Building Large Knowledge-Based Systems. Reading:
Addison-Wesley.

30. Lenat, D.B. 1995. CYC: A Large-Scale Investment in Knowledge Infrastructure. Commu-
nications of the ACM 38(11), 32–38.

31. Levin, B. 1993. English Verb Classes and Alternations. Chicago: University of Chicago
Press.

32. Mahesh, K. and S. Nirenburg. 1995. A Situated Ontology for Practical NLP. Proceedings
of the Workshop on Basic Ontological Issues in Knowledge Sharing, International Joint
Conference on Artificial Intelligence (IJCAI-95). Montreal, Canada.

33. Mahesh, K. 1996. Ontology Development for Machine Translation: Ideology and Meth-
odology (CRL report MCCS-96-292). Las Cruces: New Mexico State University.

34. McGuinness, D.L., R. Fikes, J. Rice, and S. Wilder. 2000. An Environment for Merging
and Testing Large Ontologies. Proceedings of the Seventh International Conference on
Principles of Knowledge Representation and Reasoning (KR2000).

35. Miller, G.A. 1990. WordNet: An Online Lexical database. International Journal of Lexi-
cography 3(4) (special issue).

36. Nirenburg, S., V. Raskin and B. Onyshkevych. 1995. Apologiae Ontologia. Proceedings
of the International Conference on Theoretical and Methodological Issues (TMI). Leuven,
Belgium.

37. Nirenburg, S. and Y. Wilks. 2001. What’s in a Symbol: Ontology, Representation and
Language. Journal of Experimental and Theoretical Artificial Intelligence 13(1), 923.

38. Noy, N.F. and M.A. Musen. 1999. An Algorithm for Merging and Aligning Ontologies:
Automation and Tool Support. Proceedings of the Workshop on Ontology Management at
the Sixteenth National Conference on Artificial Intelligence (AAAI-99). Orlando, FL. Also
available a <http://www-smi.stanford.edu/pubs/SMI_Reports/SMI-1999-0799.pdf>.

39. Palmer, M., J. Rosenzweig, and W. Schuler. 1998. Capturing Motion Verb Generaliza-
tions with Synchronous TAGs. In P. St. Dizier (ed.) Predicative Forms in NLP. Boston,
MA: Kluwer Academic Press.

40. Philpot, A., M. Fleischman, E.H. Hovy. 2003. Semi-Automatic Construction of a General
Purpose Ontology. Proceedings of the International Lisp Conference. New York, NY.
October 2003. Invited.

41. Piaget, J. 1959 (English translation). Language and Thought of the Child. London:
Routledge Classics.

42. Sapir, E. 1929/1964. The Status of Linguistics as a Science. Language 5, 207–214. Re-
printed in D.G. Mandelbaum (ed) Culture, Language, and Personality: Selected Essays of
Edward Sapir. Berkeley, CA: University of California Press.

43. Sowa, J. 1999. Knowledge Representation.
44. Uschold, M., P. Clark, M. Healy, K. Williamson, and S. Woods. 1998. Ontology Reuse

and Application. Proceedings of the International Workshop on Formal Ontology in In-
formation Systems, 179–192. Held in association with the KR-98 Conference. Trento, It-
aly.

106 Eduard Hovy

45. Visser, P., D. Jones, T. Bench-Capon, and M. Shave. 1998. Assessing Heterogeneity by
Classifying Ontology Mismatches. Proceedings of the International Workshop on Formal
Ontology in Information Systems, 148–162. Held in association with the KR-98 Confer-
ence. Trento, Italy.

46. Vossen, P. (ed) 1998. EuroWordNet: A Multilingual Database with Lexical Semantic
Networks. Dordrecht: Kluwer Academic Publishers.

47. Vygotsky, L.S. 1978 (English edition). Mind in Society: The Development of Higher
Psychological Processes. Cambridge, MA: Harvard University Press.

48. Weischedel, R., E.H. Hovy, M. Marcus, M. Palmer, L. Ramshaw. (in prep.) The Onto-
Bank Project.

49. Whorf, B.L. 1940/1972. Science and Linguistics. Technology Review 42(6), 227–231,
247–248. Reprinted in J.B. Carroll (ed) Language, Thought, and Reality: Selected Writ-
ings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.

Using Formal Concept Analysis and Information Flow
for Modelling and Sharing Common Semantics:

Lessons Learnt and Emergent Issues

Yannis Kalfoglou1 and Marco Schorlemmer2

1 Advanced Knowledge Technologies (AKT), School of Electronics and Computer Science,
University of Southampton, UK

y.kalfogou@ecs.soton.ac.uk
2 Institut d’Investigació en Intel·ligència Artificial,

Consell Superior d’Investigacions Cientı́fiques, Spain
marco@iiia.csic.es

Abstract. We have been witnessing an explosion of user involvement in knowl-
edge creation, publication and access both from within and between organisa-
tions. This is partly due to the widespread adoption of Web technology. But, it
also introduces new challenges for knowledge engineers, who have to find suit-
able ways for sharing and integrating all this knowledge in meaningful chunks. In
this paper we are exposing our experiences in using two technologies for captur-
ing, representing and modelling semantic integration that are relatively unknown
to the integration practitioners: Information Flow and Formal Concept Analysis.

1 Introduction

Since the early nineties there exists a continuing effort to produce machine-processable
common sense knowledge models that aim at capturing real-world conceptualisations
for the benefit of reusing and sharing knowledge-base and information-system compo-
nents. Well into the second decade of this research and development endeavour we have
already profited from outcomes such as ontologies (as understood within the informa-
tion systems and artificial intelligence communities, see [11]), and we have also seen
significant advances in knowledge engineering technology. In recent years, we have also
witnessed a renewed interest in globally accessed conceptual structures by using WWW
technology, in particular, by using the Web’s ambitious extension, Semantic Web (SW).

The advances in knowledge engineering technology and the SW are evidently inter-
twined in that they use and depend on each other. Knowledge engineering technologies
nowadays use the SW to support knowledge management for dispersed and distinct sys-
tems, whereas the SW depends on these technologies as the means to reason over and
deliver semantic information about a topic of interest.

Another sociological change that is emerging is the role that users and their commu-
nities of practice can play in knowledge sharing and reuse. In an open and distributed
environment, like the SW, anyone can publish, retrieve, and access semantic informa-
tion about a topic of interest. The challenge for engineers is then to ensure that com-
munities are provided with the right means for: (a) capturing and attaching semantic

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 107–118, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 Yannis Kalfoglou and Marco Schorlemmer

information about their topics of interest, (b) publishing and accessing semantic in-
formation in a distributed environment that facilitates sharing and reuse (SW), and (c)
reasoning over this information.

This is indeed the holy grail for knowledge engineering: to capture, represent, model
and share semantics among diverse communities in a open and distributed environment
like the SW. In this paper we elaborate on our own experiences in dealing with tech-
nologies that could be harnessed to help us achieve some of these goals: Information
Flow (IF) as the means to capture, represent and model semantic integration (section 3),
Formal Concept Analysis (FCA) as the means for modelling and analyzing semantic in-
formation (section 4). We also speculate on emergent issues with respect to the adoption
of these relatively unknown technologies to the larger SW and knowledge engineering
community (section 5).

Initially though, we elaborate in the next section on the role of common semantics
as they are exposed by communities in an environment like the SW, and on the need for
semantically integrating these communities for the benefits of knowledge sharing and
reuse.

2 From Common Semantics to Semantically Integrated
Communities

Communities of practice (or communities of interest) have always been indispensable
for knowledge management systems. Their use in various parts of a knowledge arti-
fact’s life-cycle, from creation to expiration, is vital, because communities represent
the knowledge of a group and incorporate individuals’ expertise. Most of knowledge
management has been using computational means for assisting these communities in
closed or controlled environments, like organisational intranets. This made it possi-
ble for knowledge engineers to design, develop and deploy conceptual structures upon
which knowledge sharing processes are based. Ontologies are the most used example of
these structures as they are suitable for capturing and representing common semantics.

The situation becomes somewhat more complicated though, when we face the emer-
gent SW and operate in an open and distributed environment like the Web. There, we
no longer have the luxury of a centrally controlled repository of semantics. As users
are encouraged to participate in knowledge management processes (either as mem-
bers of a community or individually) the danger of flooding the Web (or the SW) with
semantically-rich information is becoming a reality.

One has to find ways of extracting meaningful chunks of knowledge from user infor-
mation as these are disseminated in all forms using all possible mediums. For example,
one of the least anticipated trends for disseminating knowledge, and one that is witness-
ing unprecedented success, is the use of blogs with more than 50 million blogs available
online. Most of this information would probably not be of interest for a specific system;
however, this is something that we can only tell once we capture the semantics of this
information and represent it in a way that allows us to reason with it.

In order to move from an environment where semantics are exposed and published
en masse, to an environment where common semantics are identified—and hence se-
mantic integration is possible—the focus has to be on technologies that can capture,

Using Formal Concept Analysis and Information Flow 109

model, and share semantics. We also need methodologies that go beyond the use of tra-
ditional constructs found in most conceptual structures (such as classes and attributes).
For example, in his work for sharing ontologies in distributed environments, Kent ad-
vocates for the use of instances as the main piece of information that is passed around
[18].

In the next two sections, we will elaborate on how we used IF and FCA to capture,
model, and represent common semantics for the sake of semantic integration.

3 Information Flow

In this paper we refer to IF in accordance with Barwise and Seligman’s theory of in-
formation flow, as put forth in [4]. Their work has put within the context of the general
endeavour to develop a mathematics of information. The first mathematical theory ad-
dressing the idea of information in a rigorously formal way was Shannon’s communica-
tion theory [24]; but his was a quantitative, syntactic theory of amounts of information
and channel capacity that did not focus on the semantic content of communicated mes-
sages.

Building upon Shannon’s probabilistic theory, and using his insight of seeing infor-
mation as an objective commodity that can be studied independently of the means of
transmission, Dretske developed a qualitative, semantic theory of information, in which
he was able to formulate a definition of information content of concrete messages [9].
However, the probabilistic approach did not captured satisfactorily the semantic link
between the information generated at the source and that arriving at the receiver.

What was needed was a theory that accounted for the mechanism by which signals
encode information. Such mechanism was addressed by Barwise and Perry in situation
semantics [3], by abandoning Shannon’s and Dretske’s probabilistic approach. Devlin
further developed situation semantics in order to shift the emphasis that classical logic
was putting on the mathematical concepts of truth and proof (which proved ill-suited
for tackling problems which lay outside the scope of the mathematical realm, such
as common-sense reasoning, natural language processing, or planning) to address the
issues of information and information flow [8].

3.1 The Logic of Distributed Systems

The latest comprehensive theory within the effort towards a mathematics of informa-
tion is channel theory [4], which constitutes an abstract account of Dretske’s theory of
information flow in which Barwise and Seligman assume some of Dretske’s most fun-
damental observations and principles, but also abandon the problematic probabilistic
approach. Barwise and Seligman see flow of information as a result of the regularities
in a distributed system of components, and they use techniques borrowed from category
theory and algebraic logic to formalise these regularities in their theory. Barwise and
Seligman’s is a mathematical model that succeeds in describing partial flow of informa-
tion between components. Like Dretske’s theory, but unlike Shannon’s communication
theory, it was not originally developed as a tool for engineers facing real world needs;
rather it is a descriptive theory of information flow in distributed systems. Later in this

110 Yannis Kalfoglou and Marco Schorlemmer

paper though, we report on how we have been using the Barwise-Seligman theory of
information flow to address realistic scenarios of semantic heterogeneity in large-scale
distributed environments such as the Web.

In channel theory, each component of a distributed system is represented by an IF
classification A = 〈tok(A), typ(A), |=A〉, consisting of a set of tokens, tok(A), a set
of types, typ(A), and a classification relation, |=A⊆ tok(A) × typ(A), that classifies
tokens to types.3

The flow of information between components in a distributed system is modelled in
channel theory by the way the various IF classifications that represent the vocabulary
and context of each component are connected with each other through infomorphisms.
An infomorphism f = 〈f ,̂ f 〉̌ : A � B from IF classifications A to B is a con-
travariant pair of functions fˆ : typ(A) → typ(B) and fˇ : tok(B) → tok(A) satis-
fying, for each type α ∈ typ(A) and token b ∈ tok(B), the fundamental property that
f (̌b) |=A α iff b |=B f (̂α):

α

|=A
	
	

	 fˆ �� f (̂α)

f (̌b) b
	

fˇ
��

|=B

	
	

The basic construct of channel theory is that of an IF channel—two IF classifica-
tions A1 and A2 connected through a core IF classification C via two infomorphisms
f1 and f2:

typ(C)

typ(A1)

f 1̂ ��������
typ(A2)

f 2̂��������

tok(C)

|=C

	
	
	

f 1̌
��������

f 2̌
��������

tok(A1)

|=A1

	
	
	

tok(A2)

|=A2

	
	
	

According to Barwise and Seligman, this basic construct captures the information flow
between components A1 and A2. In Barwise and Seligman’s model it is by virtue of the
existing connection between particular tokens (captured by projections f 1̌ and f 2̌) that
components carry information of other components in a distributed system: information
flow crucially involves both types and tokens.

3.2 Duality in Knowledge Sharing

Our own interest in the Barwise-Seligman theory of information flow arose from the ob-
servation by Corrêa da Silva and his colleagues [6] that, although ontologies were pro-
posed as a silver bullet for knowledge sharing, for some knowledge-sharing scenarios
the integration of ontologies by aligning, merging, or unifying concepts and relations
as specified by their respective theories alone turned out to be insufficient. A closer
analysis of these scenarios through the lenses of Barwise and Seligman’s approach to
information flow revealed that successful and reliable knowledge sharing between two

3 We are using the prefix ‘IF’ in front of some channel-theoretic constructions to distinguish
them from their usual meaning.

Using Formal Concept Analysis and Information Flow 111

systems went closely together with an agreed understanding of an existing duality be-
tween the merging of local ontologies into a global one, and the identification of par-
ticular situations in which the sharing of knowledge was going to take place. Actually,
such duality is a recurrent theme in logic and mathematics, which has been thoroughly
studied within category theory by means of Chu spaces [12,2,20]. Chu spaces lie at the
foundations of both FCA and IF, and the relationship between FCA and IF resulting
from this common foundation has also been explored by Wolff [26] and Kent [19].

Consequently, Schorlemmer proposed in [22] categorical diagrams in the Chu cate-
gory as a formalisation of knowledge-sharing scenarios. This approach made the duality
between merged terminology and shared situations explicit, which accounted for the in-
sufficiencies put forth in Corrêa da Silva’s work, and provided a deeper understanding
and more precise justification of sufficient conditions for reliable flow of information in
a scenario for sharing knowledge between a probabilistic logic program and Bayesian
belief networks, proposed by Corrêa da Silva in [7].

3.3 Information-Flow Theory for Semantic Interoperability

Our research has been driven by the observation that the insights and techniques gained
from an information-theoretic analysis of the knowledge sharing problem could also
help us in tackling the increasing challenge of semantic heterogeneity between ontolo-
gies in large-scale distributed environments such as the Web. A thorough survey on
existing ontology mapping techniques in this domain revealed a surprising scarcity of
formal, theoretically-sound approaches to the problem [16]. Consequently we set out to
explore information-flow theoretic methods in various ways and scenarios:

IF-Map: In [15] we describe a novel ontology mapping method and a system that
implements it, IF-Map, which aims to (semi-)automatically map ontologies by repre-
senting them as IF classifications and automatically generate infomorphisms between
them. We demonstrated this approach by using the IF-Map system to map ontologies in
the domain of computer science departments from five UK universities. The underlying
philosophy of IF-Map follows the assumption that the way communities classify their
instances with respect to local types reveals the semantics which could be used to guide
the mapping process. The method is also complemented by harvesting mechanisms for
acquiring ontologies, translators for processing different ontology representation for-
malisms, and APIs for Web-enabled access of the generated mappings (all in the form
of infomorphisms).

Theory of Semantic Interoperability: Beyond the application of information-flow
theory to guide the automatic mapping of ontologies, we have also explored the suitabil-
ity of the theory to define a framework that captures semantic interoperability without
committing to any particular semantic perspective (model-theoretic, property-theoretic,
proof-theoretic, etc.), but which accommodates different understandings of semantics
[17]. We articulated this framework around four steps that, starting from a characteri-
sation of an interoperability scenario in terms of IF classifications of tokens to types,

112 Yannis Kalfoglou and Marco Schorlemmer

defines an information channel that faithfully captures the scenario’s semantic interop-
erability. We used this framework in an e-Government alignment scenario, where we
used our four-step methodology to align UK and US governmental departments using
their ministerial units as types and their respective set of responsibilities as tokens which
were classified against those types.

Ontology Coordination: Our most recent work in this front applies information-flow
theory to address the issues arising during ontology coordination [23]. Since a priori
aligned common domain ontologies need to be as complete and as stable as possible,
they are mostly useful in clearly delimited and stable domains, but they are untenable
and even undesirable in highly distributed and dynamic environments such as the Web.
In such an environment, it is more realistic to progressively achieve certain levels of
semantic interoperability by coordinating and negotiating the meaning attached to syn-
tactic constructs on-the-fly. We have been modelling ontology coordination with the
concept of a coordinated information channel, which is an IF channel that states how
ontologies are progressively coordinated, and which represents the semantic integra-
tion achieved through interaction between two agents. It is a mathematical model of
ontology coordination that captures the degree of participation of an agent at any stage
of the coordination process, and is determined both, at the type and at the token level.
Although not yet a fully-fledged theory of ontology coordination, nor an ontology co-
ordination methodology or procedure, we have illustrated our ideas in a scenario taken
from [25] where one needs to coordinate different conceptualisations in the English
and French language for the concepts of river and stream on one side, and fleuve and
reivière on the other side.

4 Formal Concept Analysis

Formal Concept Analysis (FCA)[10] provides a fertile ground for exploitation with its
generic structure of lattice building algorithms to visualise the consequences of partial
order that the underlying mathematical theory builds on. However, there is little sup-
port for the modeller to help in identifying appropriate conceptual structures to capture
common, domain, semantics.

FCA has been applied at various stages of a system’s life cycle: for example, in
the early stages, when analyzing a domain for the purpose of building and using a
knowledge-rich representation of that domain—like the work of Bain in [1] where FCA
was used to assist building an ontology from scratch—or at later stages, in order to
enhance an existing system for the purpose of providing a specific service—like the
CEM email management system described in [5].

The core modelling ingredient underpinning FCA is a formal context: objects and
attributes4 related by an incidence relation. This stems from predicative interpretations
of set theory (notice the common underlying mathematical foundation of FCA contexts
and IF classifications as already pointed out in section 3). Thus, for a given object, one

4 Priss points out in [21] these can be elements, individuals, tokens, instances, specimens and
features, characteristics, characters, defining elements, respectively.

Using Formal Concept Analysis and Information Flow 113

performs a “closure” operation to form a set of objects which is the intersection of the
extension of the attributes that the object is characterised by. These are defined as the
concepts in any particular formal context, with the order ideal (or down set) ↓ m of any
attribute m.

In the AKT project 5, we experimented with scenarios taken from the scientific
knowledge management realm, in which we were confronted with loosely defined ob-
jects and attributes. We describe the scenarios in detail in [14] but here we recapitulate
on our experiences using FCA. Our aim was to use FCA to help us performing certain
knowledge management tasks, such as:

Analyzing Programme Committee Memberships: One could assume that pro-
gramme committee membership for a conference or similar events requires that those
on the programme committee (PC) are the current and prominent figures in the field at
question. Using this as a working hypothesis and the year in which they served at a spe-
cific PC as temporal marker of recognised prominence, we then applied FCA techniques
like concept lattice exploration to visualise the distribution of PC members over a num-
ber of years. This could, arguably, give us an idea of how the specific event evolved
over a period of time by virtue of the changes (or otherwise) in their PCs.

In our experiments the objects were PC members and attributes were EKAW con-
ferences in which these members served. A visual inspection of this sort of lattice can
reveal trends of how the event has evolved over the years. For example, we can identify
people who where in PCs of early EKAWs but not in more recent EKAWs, whereas
others have a continuous presence in PCs throughout the whole period of 1994 to 2002.
If we correlate this information with information regarding the research interests of the
PC’ members, we could end up with a strong indication of the evolution of research
themes for EKAW conferences.

Analyzing the Evolution of Research Themes: This analysis can be supported by
another lattice which depicts the evolution of research themes in EKAW conferences,
based on the designated conference session topics. We show this lattice in figure 1.
From the lattice drawing point of view, and in contrast with conventions followed when
drawing these sort of lattices, we deliberately changed the position of the nodes in the
line diagrams produced. We did that to enhance its readability and ease its illustration
when depicted on paper as we wanted to include full textual descriptions for all labels
for objects and attributes. That compromised the grid projection property of the diagram
without, however, affecting the representation of partial order between nodes.

Again, a close inspection shows some trends which are evident in today’s research
agendas in many organisations: knowledge modelling frameworks and generic compo-
nents were popular in the early 90s whereas nowadays the research focus is on semantic
web and knowledge management. The inherited taxonomic reasoning of concept lattices
can also reveal interesting relationships between research topics, as for instance, the
subsumption of ontologies from knowledge management, knowledge acquisition and
semantic web topics.

5 http://www.aktors.org

114 Yannis Kalfoglou and Marco Schorlemmer

Fig. 1. Concept lattice depicting session topics of the EKAW conferences from 1994 to
2002.

Analyzing Research Areas Attributed to Published Papers: We also applied FCA
techniques, in particular context reduction algorithms like those described in the FCA
textbook (p.27 in [10]), to analyze the formal context of online academic journals. Our
aim was to expose relationships between research areas used to classify published pa-
pers. The premise of our analysis is the very algorithm that Ganter and Wille describe
in [10] for clarifying and reducing formal contexts: “[. . .] we merge objects with the
same intents and attributes with the same extents. Then we delete all objects, the intent
of which can be represented as the intersection of other object intents, and correspond-
ingly all attributes, the extent of which is the intersection of other attributes extents.”.
This process, if captured in a step-wise fashion, will expose the objects and attributes
that are about to be merged with others, hence allowing us to infer that they are related.

For our data sets, we used a small number of articles from the ACM Digital Li-
brary portal6 focusing on the ACM Intelligence journal7. The formal context consists
of 20 objects (articles) and 58 attributes (research areas). The research areas originate
from a standard classification system, the ACM Computing Classification System8. We
also used a second data set, the Data and Knowledge Engineering (DKE) journal from

6 http://portal.acm.org
7 http://www.acm.org/sigart/int/
8 http://www.acm.org/class/1998/

Using Formal Concept Analysis and Information Flow 115

Elsevier9. In this context we had the same articles (objects) as in the ACM context,
but this time we classified them against the DKE’s own classification system, Elsevier’s
classification of DKE fields10, which uses 27 research areas (attributes) for classifying
the aforementioned articles.

For both data sets we chose as objects for their context, papers that appeared in the
journals. For instance, for the ACM Intelligence journal we chose papers that appeared
over a period of three years, from 1999 to 2001 and were accessible from the ACM Dig-
ital Library portal. As these were already classified according to the ACM Computing
Classification System, we used their classification categories as attributes. We then ap-
plied typical context reduction techniques in a step-wise fashion. While we were getting
a reduced context, we captured the concepts that are deemed to be interrelated by virtue
of having their extents (objects that represent articles in the journal) intersected. For
instance, the ACM classification category H.3.5 on Web-based services is the intersec-
tion of H.5 on Information Interfaces and Presentation and H.3 on Information Storage
and Retrieval by virtue of classifying the same articles. This sort of analysis supports
identification of related research areas by using as supporting evidence the classification
of articles against standardised categories (originating from the ACM Computing Clas-
sification System), and the inherited taxonomic reasoning which FCA concept lattices
provide.

5 Emergent Issues

The main focus of the SW research community is, at the moment, on infrastructure
with concrete deliverables such as the OWL family of ontology web languages 11, and
metadata description formats like RDF 12, which are backed by standardisation bodies
like the W3C (www.w3c.org). Despite these deliverables and progress made in the in-
frastructure front, it was argued in [13] that in order to realise the SW vision we need to
tackle four dark areas which remain relatively untouched: (a) agency coordination, (b)
mechanise trust, (c) robust reasoning, and (d) semantic interoperability. These areas are
concerned with designing, developing and most importantly, operationalising services
on the SW which could potentially change the way we use the Web.

These challenges, however, cover a broad area of scientific research and it is not
realistic to expect them to be fully resolved before the SW will be available and com-
mercially exploitable. It will take time to come up with sound scientific and practical
solutions to the problems of robust reasoning, agency coordination, and semantic inter-
operability, to name a few. In the meantime, the SW will continue to grow and attract
attention based on short to medium term solutions. We see this maturity phase of the
SW as an opportunity for technologies like IF and FCA. As most of the SW machinery
is Description Logic (DL) based, there are calls for something that goes beyond or at
least complements DLs. For example with respect to IF, in [13] the authors point out
that we need:

9 http://www.elsevier.com/locate/issn/0169023X/
10 http://www.elsevier.com/homepage/sac/datak/dke-classification-2002.pdf
11 http://www.w3c.org/2004/OWL/
12 http://www.w3c.org/RDF/

116 Yannis Kalfoglou and Marco Schorlemmer

“[. . .] alternative approaches for a logic based on precise mathematical mod-
els of information as a necessary requirement for designing and operating
information-processing systems have been advocated [. . .] We have recently
explored how mathematical theories of information may provide a different
angle from which to approach the distributive nature of semantics on the Se-
mantic Web. As it seems, an information-theoretic approach such as that of
Barwise and Seligman’s channel theory may be suitable to accommodate vari-
ous understandings of semantics like those occurring in the Web [. . .]”

On the other hand, FCA provides a set of tools that allows for formalizing a set of
informal descriptions of a domain, thus providing the basis for ontology building. As
the availability of (semi-) formal descriptions of vast amounts of data on the Web will
become the key to any successful SW endeavour, FCA could play a vital role in helping
the knowledge engineer to automate the task of processing these data. That could lead
to automation of ontology building methods which in turn will make ontologies—the
cornerstone of semantically-rich services on the SW—readily available.

Once these ontologies are built and made available on the SW, then the need for
semantically integrating them will naturally arise. At this stage a number of technolo-
gies to assist achieve this ambitious goal are available (see, for example the survey in
[16]), but IF-based approaches occupy a promising part of this landscape. Therefore,
both FCA and IF based tools could be valuable components of an engineer’s toolkit in
order to tackle SW challenges.

A key issue that emerges seems to be the slow adoption and low profile that these
technologies have in the larger SW community. This is not surprising, as IF is still at
a premature phase for being technologically exploited, and FCA is mostly known and
used in other fields. However, this shouldn’t stop us using them to tackle SW challenges
as it is the best way for raising their awareness among the SW researchers. As with
the adoption of DLs13, it is not the community (or research field) that will change to
accommodate a new technology, but the technology itself has to be adopted in order
to be appealing for a fields’ practitioners. In the context of the SW that will mean
incorporating SW standards, like OWL and RDF, into the mechanisms that FCA and IF
are based on.

For example, it should be possible to adopt a popular technique in FCA, concep-
tual scaling, to accommodate the various representations of class information that are
possible with the OWL family of languages. As there are different degrees of detail
that each OWL version allows you to express, this granularity could be captured in a
many-valued context (G,M,W,I) that FCA conceptual scaling provides. It has been dis-
cussed already in [14] that FCA contexts (G,M,I) could be used to represent OWL class
information, then similarly, the many-valued context could be used to represent extra
information that an OWL class has when encoded in more expressive versions of the
language (OWL Full).

Similarly, as we discussed in section 3, IF could be used to assist mapping OWL on-
tologies where the mapped constructs are modelled as infomorphisms and represented

13 DLs evolved from a purely theoretical AI-based exercise in the early nineties, to a mainstream
tool for the SW researchers nowadays.

Using Formal Concept Analysis and Information Flow 117

with OWL’s sameAs construct. This construct is not the only one to express equiva-
lence between OWL constructs. Others like equivalentClass could express more
detailed equivalent conditions. A possible use of IF’s infomorphisms would be to repre-
sent different semantic understandings of the intuitive notion of equality. For example,
in OWL Lite and OWL DL, sameAs declares two individuals identical 14 whereas in
OWL Full sameAs could be used to equate anything (a class to an individual, a prop-
erty to a class, etc.).

6 Conclusions

Both FCA and IF have been developed and used by communities which are not closely
related to the SW (or its predecessor). They have also been used in closed, controlled
environments where the assurances of consistency, and possibly completeness made it
possible to explore them in knowledge representation. However, they are also suitable
for tackling some of the most prevalent problems for the ambitious SW endeavour: that
of semantic integration. In this paper we exposed some of our experiences in using them
to tackle this problem. Their adoption by the wider community depends on their ability
to evolve and incorporate emerging standards.

Acknowledgments. This work is supported under the Advanced Knowledge Tech-
nologies (AKT) Interdisciplinary Research Collaboration (IRC), which is sponsored
by the UK Engineering and Physical Sciences Research Council under grant num-
ber GR/N15764/01 and which comprises the Universities of Aberdeen, Edinburgh,
Sheffield, Southampton and the Open University; and it is also supported under the
UPIC project, sponsored by Spain’s Ministry of Science and Technology under grant
number TIN2004-07461-C02-02. M. Schorlemmer is also supported by a Ramón y Ca-
jal Fellowship from Spain’s Ministry of Science and Technology.

References

1. M. Bain. Inductive construction of ontologies from formal concept analysis. In Proceedings
of the 11th International Conference on Conceptual Structures (ICCS’03), Springer LNAI
2746, Dresden, Germany, July 2003.

2. M. Barr. The Chu construction. Theory and Applications of Categories, 2(2):17–35, 1996.
3. J. Barwise and J. Perry. Situations and Attitudes. MIT Press, 1983.
4. J. Barwise and J. Seligman. Information Flow: the Logic of Distributed Systems. Cambridge

Tracts in Theoretical Computer Science 44. Cambridge University Press, 1997. ISBN: 0-
521-58386-1.

5. R. Cole and G. Stumme. CEM - a conceptual email manager. In Proceedings of the 8th
International Conference on Conceptual Structures (ICCS’00), Darmstadt, Germany, Aug.
2000.

6. F. Corrêa da Silva, W. Vasconcelos, D. Robertson, V. Brilhante, A. de Melo, M. Finger, and
J. Agusti. On the insufficiency of ontologies: Problems in knowledge sharing and alternative
solutions. Knowledge Based Systems, 15(3):147–167, 2002.

14 http://www.w3.org/TR/2004/REC-owl-guide-20040210/

118 Yannis Kalfoglou and Marco Schorlemmer

7. F. Corrêa da Silva. Knowledge Sharing Between a Probabilistic Logic and Bayesian Belief
Networks. In in Proceedings of the International Conference on Processing and Manage-
ment of Uncertainty, 2000.

8. K. Devlin. Logic and Information. Cambridge University Press, 1991.
9. F. Dretske. Knowledge and the Flow of Information. MIT Press, 1981.

10. B. Ganter and R. Wille. Formal Concept Analysis: mathematical foundations. Springer,
1999. ISBN: 3-540-62771-5.

11. T. Gruber. A Translation Approach for Portable Ontology Specifications. Knowledge Engi-
neering, 5(2):199–220, 1993.

12. V. Gupta. Chu Spaces: A Model of Concurrency. PhD thesis, Stanford University, 1994.
13. Y. Kalfoglou, H. Alani, M. Schorlemmer, and C. Walton. On the emergent semantic web

and overlooked issues. In Proceedings of the 3rd International Semantic Web Confernece
(ISWC’04), LNCS 3298, Hiroshima, Japan, page 576, 2004.

14. Y. Kalfoglou, S. Dasmahaptra, and J. Chen-Burger. FCA in Kowledge Technologies: Expe-
riences and Opportunities. In Proceedings of the 2nd International Confernece on Formal
Concept Analysis (ICFCA’04), Sydney, Australia, Feb. 2004.

15. Y. Kalfoglou and M. Schorlemmer. IF-Map: an ontology-mapping method based on
information-flow theory. Journal on Data Semantics, 1:98–127, Oct. 2003. LNCS2800,
Springer, ISBN: 3-540-20407-5.

16. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The Knowledge
Engineering Review, 18(1):1–31, 2003.

17. Y. Kalfoglou and M. Schorlemmer. Formal Support for Representing and Automatic Seman-
tic Interoperability. In Proceedings of 1st European Semantic Web Symposium (ESWS’04),
Crete, Greece, May 2004.

18. R. Kent. The Information Flow Foundation for Conceptual Knowledge Organization. In
Proceedings of the 6th International Conference of the International Society for Knowledge
Organization (ISKO), Toronto, Canada, Aug. 2000.

19. R. Kent. Distributed Conceptual Structures. In Proceedings of RelMiCS 2001, LNCS 2561,
pp. 104–123. Springer, 2002.

20. V. Pratt. The Stone gamut: A coordinatization of mathematics. Logic in Computer Science,
pages 444–454, 1995.

21. U. Priss. Formalizing botanical taxonomies. In Proceedings of the 11th International Con-
ference on Conceptual Structures (ICCS’03), Springer LNAI 2746, Dresden, Germany, July
2003.

22. M. Schorlemmer. Duality in Knowledge Sharing. In Proceedings of the 7th International
Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida,USA, Jan.
2002.

23. M. Schorlemmer and Y. Kalfoglou. A channel theoretic foundation for ontology coordina-
tion. In Proceedings of the Meaning, Negotiation and Coordination workshop (MCN’04) at
the ISWC04, Hiroshima, Japan, Nov. 2004.

24. C. Shannon. A Mathematical Theory of Communication. Bell Systems Technical Journal,
27:379–243, 1948.

25. J. Sowa. Knowledge Representations: Logical, Philosophical, and Computational Founda-
tions. Brooks/Cole, 2000.

26. K. E. Wolff. Information Channels and Conceptual Scaling. In Working with Conceptual
Structures. Contributions to ICCS 2000, Shaker Verlag, 2000.

On the Need to Bootstrap Ontology Learning

with Extraction Grammar Learning

Georgios Paliouras

Institute of Informatics and Telecommunications, NCSR “Demokritos”, Greece

Abstract. The main claim of this paper is that machine learning can
help integrate the construction of ontologies and extraction grammars
and lead us closer to the Semantic Web vision. The proposed approach
is a bootstrapping process that combines ontology and grammar learn-
ing, in order to semi-automate the knowledge acquisition process. After
providing a survey of the most relevant work towards this goal, recent re-
search of the Software and Knowledge Engineering Laboratory (SKEL)
of NCSR “Demokritos” in the areas of Web information integration,
information extraction, grammar induction and ontology enrichment is
presented. The paper concludes with a number of interesting issues that
need to be addressed in order to realize the advocated bootstrapping
process.

1 Introduction

The task of information extraction from text has been the subject of significant
research in the past two decades. Primarily, this work has focussed on the extrac-
tion of very specific pieces of information from documents that belong in a very
narrow thematic domain. The typical example is the extraction of information
about mergers and acquisitions from business news articles, e.g. the information:

{Buying-company:“MacroHard Corp”,
Company-bought:“Africa Off-Line Ltd”,
Amount:“3 billion rupees”}

could be extracted from the text:

“MacroHard Corp bought Africa Off-Line Ltd for 3 billion rupees.”

or from the text

“Africa Off-Line was sold to MacroHard. . . . The acquisition has costed
three Bil. Rup.”

Based solely on this limited example, one can understand the difficulty of the in-
formation extraction task, which is arguably as hard as full text understanding.
However, when limiting the domain and the information to be extracted there are
various ways to avoid full understanding and produce good results with shallow
parsing techniques. These techniques usually involve lexico-syntactic patterns,

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 119–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

120 Georgios Paliouras

coupled with a conceptual description of the domain and domain-specific lex-
icons. The manual construction and maintenance of these resources is a time-
consuming process that can be partially automated with the use of learning
techniques. For that reason, a significant part of the research in information
extraction has refocussed on learning methods for the automatic acquisition of
grammatical patterns, lexicons and even conceptual descriptions.

The rapid growth of the Web has brought significant pressure for practical
information extraction solutions that promise to ease the problem of the user’s
overload with information. This has led to a new research direction, which aimed
to take advantage of the uniform presentation style followed typically within par-
ticular Web sites. Information extraction systems designed for specific Web sites
and based mainly on the HTML formatting information of Web pages have been
termed wrappers. Despite the apparent ease of constructing wrappers, as op-
posed to free-text information extraction, the knowledge acquisition bottleneck
remained, due to the frequent change in the presentation style of a specific Web
site and most importantly due to the large number of different wrappers needed
for any practical information integration system. This has led again to linguis-
tically richer information extraction solutions and the use of learning methods.

More recently, a new goal was set for the information society: to move from
the Web to the Semantic Web, which will contain many more resources than
the Web and will attach machine-readable semantic information to all of these
resources. The first steps towards that goal addressed the issue of knowledge
representation for all this semantic information, which translated to the devel-
opment of ontologies. Realizing the difficulty of designing the grand ontology for
the world, research on the Semantic Web has focussed on the development of
domain or task-specific ontologies which have started making their appearance
in fairly large numbers. Having provided an ontology for a specific domain, the
next step is to annotate semantically all related Web resources. If done manually,
this process is very time-consuming and error-prone. Information extraction is
the most promising solution for automating the annotation process. However, it
comes along with the aforementioned knowledge acquisition bottleneck and the
need for learning. At the same time, constructing and maintaining ontologies for
various domains is also a hard knowledge acquisition task. In order to automate
this process, the new research activity of ontology learning and population has
emerged, which combines information extraction and learning methods.

Thus, information extraction makes use of various resources, among which a
conceptual description of the domain, while at the same time ontology construc-
tion and maintenance is partly based on information extraction. The study of
this interaction between the two processes and the role of learning in acquiring
the required knowledge is the subject of this paper. The paper aims to initiate
the interdisciplinary discussion and research that will lead to the uniform treat-
ment of the problem of knowledge acquisition for information extraction and
ontology maintenance. This effort is driven by the Semantic Web vision and the
proposed vehicle is machine learning methods.

On the Need to Bootstrap Ontology Learning 121

The rest of the paper is organized as follows: Section 2 highlights the state
of the art in the related fields, focussing on key contributions that could fa-
cilitate the interdisciplinary effort. Section 3 presents related current research
effort at the Software and Knowledge Engineering Laboratory (SKEL) of NCSR
“Demokritos”, where the author belongs1. Section 4 discusses key issues that
should be addressed, in order to move this discussion forward. Finally section 5
summarizes the presented ideas.

2 State of the Art

This section presents recent approaches in the areas of information extraction
and ontology learning. Rather than providing an extensive survey of these areas,
the focus is on those efforts that seem most promising in terms of the desired
convergence of the different approaches.

2.1 Information Extraction

Practical information extraction systems focus on a particular domain and a
narrow extraction task. Within this domain, they require a number of resources,
in order to achieve the required analysis of the text and identify the pieces of
information to be extracted. These resources mainly consist of grammars, lex-
icons and semantic models. The number and complexity of the resources that
are used varies according to the approach. Early approaches focussed on lin-
guistically rich resources, with the hope that they can capture a wide variety of
linguistic phenomena (e.g. [22], [18]). This approach did not prove effective in
practice, as the construction and the use of the resources was very expensive.
As a result, a turn towards “lighter” task-specific approaches took place (e.g.
[1], [2]). These approaches combined simple grammars, e.g. regular expressions,
with existing generic dictionaries, e.g. the Wordnet [17], task-specific list names,
known as gazetteers, and rather simple semantic models, template schemata. As
a solution to the narrow scope of these approaches, the use of machine learn-
ing methods was proposed, which allowed for the quick customization of the
resources to new extraction tasks (e.g. [53], [36], [44]). This approach was taken
to the extreme with the introduction of Web site wrappers and the automatic
learning of these (e.g. [25], [29]).

More recently, a move towards deeper analysis of the text has started, in or-
der to improve the performance of the extraction systems, which seemed to have
exhausted their capabilities, reaching what is known as the 60% performance bar-
rier. These new efforts include the use of more complex grammars, e.g. HPSG, for
deeper structural analysis, and the use of semantic models, e.g. domain-specific
ontologies, for semantic disambiguation. These developments were made possi-
ble by the improvement in deep analysis methods and the increase in available
computational power.

1 SKEL: http://www.iit.demokritos.gr/skel

122 Georgios Paliouras

DFKI2 research on information extraction [31] provides an interesting ex-
ample of the progress towards deeper analysis. Starting with the use of finite-
state transducers [32] for shallow analysis and moving onto the incorporation of
domain-specific ontologies and Head-driven Phrase Structure Grammars (HPSG)
for deep structural and semantic analysis [11]. The main aim of this work is to
combine the best of shallow and deep analysis, i.e., speed and accuracy. In or-
der to achieve that, various integration strategies have been studied, focussing
the use of deep analysis to those cases that are most likely to help improve the
accuracy of shallow analysis. This controlled use of deep analysis minimizes the
computational overhead of the approach. Furthermore, initial efforts have been
made [51] to use machine learning techniques to acquire basic semantic enti-
ties, such as domain-specific terms, and parts of the extraction grammars, in
particular domain-specific lexico-syntactic patterns.

This multi-strategy approach that attempts to combine the advantages of
shallow and deep analysis, as well as the strengths of automated knowledge ac-
quisition through learning with the use of rich syntactic and semantic resources,
is indicative of the general trend towards optimal combination of methods at var-
ious levels. Recent research at the University of Sheffield, UK also follows that
trend, starting from simple wrapper-type information extraction approaches [8]
and moving towards learning methods that incorporate more linguistic informa-
tion, as well as domain-specific ontologies [9]. However, the focus of this work is
still on the minimization of human effort in producing linguistic resources and
as a result the extraction grammars are much simpler than the HPSGs.

A related strand of work has been using conceptual graphs as the represen-
tation for the extracted information. Typically, these approaches require deep
syntactic analysis of the text and some domain knowledge, e.g. in the form of
an ontology, in order to construct a graph for each sentence that is analyzed
(e.g. [21], [45], [33]). These approaches face similar difficulties in acquiring the
required knowledge for the mapping between syntax and semantics. Machine
learning has been proposed as a partial solution to the problem, e.g. for learning
the mapping rules between syntactic parses and conceptual graphs [54].

Most of the generic information extraction platforms have been extended to
use ontologies, instead of the simpler template schemata of the past. Reeve and
Han [40] provide a brief survey of the use of ontologies in information extraction
platforms. For the majority of these systems though, ontologies are only used as
a rich indexing structure, adding possibly to the variety of entities and relations
that are sought for in the text (e.g. [41]). A notable exception is the concept of
‘information extraction ontologies’ [15], where the ontology plays the role also of
a simple extraction system. This is achieved by incorporating lexical constraints
in the ontology, using the data frame approach [14]. Data frames associate reg-
ular expressions with the domain-specific concepts, in order to allow for their
direct extraction from the text. In a similar manner, Patrick [35] uses Systemic
Functional Grammars, which combine high-level conceptual descriptions with

2 DFKI: Deutsches Forschungszentrum fur Kuenstliche Intelligenz;
http://www.dfki.de/

On the Need to Bootstrap Ontology Learning 123

low-level textual and linguistic features. This work shows initial signs of conver-
gence of extraction grammars with ontologies, whereby a conceptual structure
incorporates sufficient information to be used for the extraction of instances of its
concepts from text. Whether this extended structure is a grammar, an ontology
or a completely different representation is of less importance.

2.2 Ontology Learning

Machine learning methods have been used extensively to acquire various re-
sources required for information extraction, in particular grammars and lexicons
for part-of-speech tagging, sentence splitting, noun phrase chuncking, named-
entity recognition, coreference resolution, sense disambiguation, etc. They have
also been used to acquire the lexico-syntactic patterns or grammars that are
used for information extraction (e.g. [53], [36], [44]), in particular the simpler
regular expressions used in wrappers (e.g. [25], [29]). More recently this line of
work has been extended to target the semantic model needed for information
extraction, which is in most cases an ontology. Thus, the new research activity
of ontology learning and population has emerged.

Ontology learning methods vary significantly according to their dependence
on linguistic processing of the training data. At one extreme, the learning process
is driven completely by the results of language processing [5]. Following this ap-
proach, the OntoLT toolkit allows the user to define or tune linguistic rules that
are triggered by the data and result in the modification of the ontology. In other
words, each rule defines linguistic preconditions, which, if satisfied by a sentence,
lead to a change in the existing ontology, usually extending the ontology with
new concepts and their properties. This is a deductive approach to concept learn-
ing, which has been the subject of dispute in the early days of machine learning,
as it has been argued that it does not cause generalization and therefore is not
learning at the knowledge level [13]. Nevertheless, it can be an effective method
for enriching an ontology, although it requires significant expertise in defining
the linguistic rules. The Ontology Express system [34] follows a similar linguistic
approach to ontology learning, with two notable exceptions: (a) it concentrates
on the discovery of new concepts, based on the identification of specific pat-
terns in the text that usually denote particular relations, e.g. introduction of a
new term as a subtype of an existing one, (b) it uses a frequency-based filter
and non-monotonic reasoning to select the new concepts and add them to the
ontology.

Term identification and taxonomic association of the discovered terms has
been the most researched aspect of ontology learning. One of the earliest systems
to adopt this approach was ASIUM [16], which uses lexico-syntactic patterns, in
the form of subcategorization frames that are often used for information extrac-
tion, in order to identify interesting entities in text. Starting with a few generic
patterns that are instantiated in the text, ASIUM uses syntactic-similarity in or-
der to cluster terms into groups of similar functionality in the text. This process
is repeated, building the taxonomy of an ontology in a bottom-up fashion. A
similar approach is followed by the DOGMA system [42]. Verb-driven syntactic

124 Georgios Paliouras

relations, similar to generic subcategorization frames, are used to cluster terms
with syntactic similarity. Term clustering is also employed by the OntoLearn sys-
tem [30]. However, OntoLearn differs from the other two systems in two ways:
(a) it combines statistics about term occurrence with linguistic information for
the identification of terms, and most importantly (b) clustering is based on se-
mantic interpretation through a mapping of the terms onto an existing ontology,
such as Wordnet. Thus, the resulting ontology is a domain-specific subset of the
generic one. Wordnet is also used in [51] to identify an initial set of examples
of the hyponymy relation in an untagged corpus. Given these examples, generic
extraction patterns are learned. These patterns are combined with the results
of a statistical term identification method and the collocation patterns learned
by a different statistical method, to provide a set of candidate concepts for the
new ontology. More recently, Wordnet and lexico-syntactic patterns have been
combined in [7] using a simple voting strategy, in order to identify terms and
organize them in a taxonomy. Despite the simplicity of the voting strategy, the
combination of various evidence from different methods seems to provide added
value to the ontology learning process.

Another promising approach to ontology learning is based on the use of
Formal Concept Analysis for term clustering and concept identification. In [43]
concept lattices are constructed from data with the use of a knowledge acquisi-
tion method known as ’ripple-down rules’. The acquired conceptual structures
are then used to define domain ontologies, with the cooperation of a human
expert. In a related approach, Corbett [10] represents ontologies with the use
of Conceptual Graphs and uses Conceptual Graph Theory, in order to auto-
mate ontology learning through merging of conceptual graphs. Given the use of
conceptual graphs in information extraction from text, as discussed in 2.1, this
approach provides an interesting link between extraction and ontology learning.
For instance, a clustering approach for conceptual graphs, such as the one pre-
sented in [52], could be used to learn ontologies, in the form of contextual graphs,
from text.

The highlights of ontology learning research presented in this subsection in-
dicate the close relation between extraction patterns and concept discovery. One
usually learns the extraction patterns at the same time as identifying new terms
and relations among them with the aim to construct or refine an ontology. The
work of Hahn and Markó [19] emphasizes this interaction, providing a method to
learn grammatical in parallel with conceptual knowledge. Adopting a deductive
learning approach, like OntoLT, the proposed method refines a lexicalized de-
pendency grammar and a KL-ONE-type conceptual model, through the analysis
of text and the qualitative assessment of the results.

The interaction between information extraction and ontology learning has
also been modelled at a methodological level as a bootstrapping process that
aims to improve both the conceptual model and the extraction system through
iterative refinement. In [27] the bootstrapping process starts with an information
extraction system that uses a domain ontology. The system is used to extract
information from text. This information is examined by an expert, who may

On the Need to Bootstrap Ontology Learning 125

decide to modify the ontology accordingly. The new ontology is used for further
information extraction and ontology enrichment. Machine learning assists the
expert by suggesting potentially interesting taxonomic and non-taxonomic rela-
tions between concepts. Brewster et al. [3] propose a slightly different approach
to the bootstrapping process. Starting with a seed ontology, usually small, a
number of concept instances are identified in the text. An expert separates these
as examples and counter-examples which are then used to learn extraction pat-
terns. These patterns are used to extract new concept instances and the expert
is asked to re-assess these. When no new instances can be identified, the expert
examines the extracted information and may decide to update the ontology and
restart the process. The main difference between the two approaches is in the
type of extraction system that is used, which is linguistically richer in the case
of [27] and uses the ontology as a component.

3 Recent Research Results by SKEL

The Software and Knowledge Engineering Laboratory (SKEL) of the Institute
of Informatics and Telecommunications in the National Center for Scientific Re-
search “Demokritos” has set as its main goal for the past decade to advance
knowledge technologies that are required for overcoming the obstacle of infor-
mation overload on the Web. Towards that goal, it has produced innovative
research results in the whole chain of technologies employed by intelligent in-
formation integration systems: information gathering (retrieval, Web crawling),
information extraction (named entity recognition and classification, role iden-
tification, wrappers), personalization (user communities and stereotypes). The
recent emphasis of our research has been on the automation of intelligent sys-
tem development, customization and maintenance, which involves mainly the
employment of machine learning methods for knowledge acquisition.

This section highlights SKEL’s most recent research activity in the area of
machine learning for information extraction and ontology enrichment. It starts
by presenting briefly the CROSSMARC architecture for information integra-
tion, which is the main result of the European research project CROSSMARC
and provides the framework for our research in this area. It then moves on to
present briefly our meta-learning approach to information extraction from Web
pages, an efficient learning method for context-free grammars and a bootstrap-
ping methodology for ontology enrichment.

3.1 The CROSSMARC Approach to Web Information Integration

CROSSMARC (Cross-lingual Multi Agent Retail Comparison)3 was a Euro-
pean research project that was completed at the end of 2003. The main result
of CROSSMARC was an open, agent-based architecture for cross-lingual infor-
mation integration, incorporating the full chain of technologies involved in the

3 http://www.iit.demokritos.gr/skel/crossmarc/

126 Georgios Paliouras

process. Initially, CROSSMARC was meant to focus on retail comparison sys-
tems that collect product information from various suppliers and present it to
customers in a localized and personalized manner. In addition to this appli-
cation however, the CROSSMARC architecture has proven equally useful for
other information integration tasks, such as employment search engines. Figure
1 presents the CROSSMARC architecture.

Fig. 1. CROSSMARC’s agent based architecture.

As mentioned above, CROSSMARC implements the full information inte-
gration process, using independent agents that communicate via a blackboard
and share the same domain ontology. The information gathering stage is sep-
arated into a crawling and a spidering step, collecting interesting sites from
the Web and relevant pages from these sites, respectively. Machine learning is
used to learn to identify relevant pages and the most promising paths to those
pages. The information extraction agent serves as a controller for a number
of different information extraction systems, each handling a different language
(English, French, Italian and Greek are currently covered). The results of infor-
mation extraction are stored into the fact database, which is accessed by the
end-users through a personalized Web interface. The agent-based design of the

On the Need to Bootstrap Ontology Learning 127

CROSSMARC architecture allows it to be open, distributed and customizable.
The agents implementing each step of the process can be replaced by any other
tool with the same functionality that respects the XML-based communication
with the blackboard and the ontology. Furthermore, new information extraction
systems, covering different languages can easily be connected to the information
extraction agent. The ontology also plays an essential role in all stages, providing
terms for modeling the relevance of Web pages, language-independent fact ex-
traction, parameterization of the user models, etc. By collecting domain-specific
knowledge in the ontology, the various agents become less dependent on the do-
main. More details about the CROSSMARC architecture and the prototype can
be found in [24] and [47].

3.2 Meta-learning for Web Information Extraction

As we have seen in section 2 several approaches to information extraction and
ontology learning attempt to combine the strengths of multiple methods in or-
der to obtain better performance. Following this basic idea, our research in the
area of Web information extraction has focussed on the combination of different
learning methods in a meta-learning framework, aiming to improve recognition
performance. For this reason, we have developed a stacked generalization frame-
work that is suitable for information extraction, rather than classification which
is the typical use of this approach. Figure 2 illustrates the use of the stacking
framework proposed in [46], both at training and at run-time.

Base-level dataset

Dj D\Dj

� �

C1(j) . . . CN (j)

�
�

�
�� L1 . . . LN

� Feature vectors

MDj

(a)

New Instance

�

C1 . . . CN

�� �	
�

CM

�� �	
�

Class value

(b)

Fig. 2. (a) Illustration of the J-fold cross-validation process for creating the
meta-level dataset. (b) The stacking framework at runtime.

At training time, the usual cross-validation approach of stacked generaliza-
tion is followed, which trains all base-level learners (L1 . . . LN) on various subsets
of the training dataset (D\Dj) and applies the learned systems (C1(j) . . . CN (j))
on the unseen parts of the dataset (Dj), in order to construct the meta-level

128 Georgios Paliouras

dataset (MDj). However, in the case of information extraction the trained sys-
tems may extract different or contradictory information from the same subset of
the data. Based on the confidence scores of the information extraction systems,
the proposed framework combines their results into a common dataset that is
suitable for training a classifier to choose whether to accept or reject an ex-
tracted piece of information and if accepted to recognize its type. This approach
has led to considerable improvement in recognition performance, which is due
to the complementarity of the trained base-level systems.

3.3 Grammar Induction

The importance of grammars for information extraction has become apparent
in the description of relevant systems in section 2. With the exception of simple
regular patterns, the acquisition of grammars using learning methods is limited
to the refinement of specific parameters of hand-made grammars. This is due
to the fact that the learning of more complex grammars from text is a hard
task. Even harder is the induction of these grammars from positive only exam-
ples, which is practically the only type of example that a human annotator can
provide. This is the reason why there are very few learning methods that deal
with this problem, which are usually only applicable to datasets of small size
and complexity. In an attempt to overcome this problem we have developed the
e-GRIDS algorithm [37], which is based on the same principles as the GRIDS
[26] and the SNPR [50] algorithms, but improves them substantially, in order to
become applicable to realistic problems.

e-GRIDS performs a beam search in the space of grammars that cover the
positive examples, guided by the MDL principle. In other words, it favors sim-
pler grammars, in the sense that the sum of their code length and the code
length of the data, assuming knowledge of these grammars, should be small.
The starting state for the search is the most specific grammar, which covers
only the training data. The search operators compress and generalize the gram-
mars, by merging symbols and creating new ones. The latest version of e-GRIDS,
called eg-GRIDS [38], replaces the beam search with a genetic one, within which
the grammar-modification operators are treated as mutation operators. Figure
3 depicts graphically the eg-GRIDS architecture. The use of genetic search has
provided a speed-up of an order of magnitude, facilitating the inclusion of more
operators that allow the algorithm to search a larger part of the space and
produce much better results. Thus, eg-GRIDS can handle larger datasets, and
produce better estimates of the “optimal grammar”.

3.4 Ontology Enrichment

Our approach to ontology enrichment [48] follows the basic bootstrapping method-
ology presented in section 2. Figure 4 illustrates the proposed methodology. The
bootstrapping process commences with an existing domain ontology, which is
used to annotate a corpus of raw documents. In this manner, a training corpus
for information extraction is formed, without the need for a human annotator.

On the Need to Bootstrap Ontology Learning 129

Fig. 3. The architecture of the eg-GRIDS algorithm. (NT: Non-Terminal sym-
bol)

This can lead to a significant speed-up in the development of the information
extraction system. The trained system usually generalizes beyond the annotated
examples. Therefore, if applied again on the corpus it provides some new in-
stances that do not appear in the initial ontology. These instances are screened
by an expert who is responsible for maintaining the ontology. Once the ontology
is updated, it can be used again to annotate a new training corpus that will lead
to a new information extraction system. This process is repeated until no new
instances are added to the ontology. Our initial experiments have shown that
this approach works impressively well, even when the initial ontology is very
sparsely populated.

As a further improvement of this method, COCLU [49], a novel compression-
based clustering algorithm, was developed, which is responsible for identifying
lexical variations of existing instances and clustering the lexical variations of new
instances. This improvement minimizes the human effort in ontology enrichment,
as the extracted instances can be treated in groups of lexical synonyms.

4 Discussion

The combination of ontology learning and information extraction under a boot-
strapping framework of iterative refinement seems to be a promising path to-
wards the Semantic Web vision. The use of machine learning for the (partial)
automation of knowledge acquisition also seems to be a vital part of this process.
However, there are various issues that arise under this framework and need to

130 Georgios Paliouras

Fig. 4. Ontology enrichment methodology. (IE: Information Extraction)

be researched, in order to arrive at theoretically sound and practically effective
solutions. This section raises some of these issues, together with some initial
thoughts about them.

4.1 Knowledge Representation Issues

The most straightforward option in terms of knowledge representation is to keep
the extraction grammars and the ontologies as separate entities, which will allow
us to take full advantage of the work that has been done in each of the two
research areas. This is the approach that is adopted in most of the work following
the bootstrapping paradigm. However, in section 2 we have also seen some work
on alternative representations that combine conceptual and syntactic knowledge
under the same representation. This option would simplify the bootstrapping
process, but may also have disadvantages, such as the fact that the combined
representation needs to be task-specific, which limits the ability of the ontology
to provide interoperability and knowledge sharing. Therefore, the combination
of the ontology with the grammar remains an open issue to be studied.

If a combination is the preferred solution, a number of new questions arise,
such as what type of grammars and what type of ontology one should use.
A number of solutions already exist, as we have seen in section 2. However,
the choice of an appropriate solution depends largely on the extraction task
and the need for syntactic and conceptual support. Recently, the use of more
complex grammars and ontologies has been proposed as a solution to the barrier
in the performance of extraction systems. Nevertheless, there is still a number
of problems that may be addressed with simpler solutions. Therefore, work on
the typology of the extraction tasks and the need for resources is necessary.

On the Need to Bootstrap Ontology Learning 131

Finally, in those cases where a combined representation is preferred, we
should also study solutions that are inspired by the early work on knowledge
representation, e.g. frames and semantic nets. Formal concept analysis and con-
ceptual graphs, as well as probabilistic graphical models are examples of such
representations, which have advanced considerably since their conception. Such
solutions have started being studied in the context of the bootstrapping frame-
work [6] and may prove very effective in practice.

4.2 Machine Learning Issues

The choice of knowledge representation affects directly the machine learning
methods that will be used for knowledge acquisition. If grammars and ontolo-
gies are kept separate, the main question is which aspects of the ontology and
the grammar will be learned and which will be provided by a human. So far,
we have seen almost full automation for simple grammatical patterns and basic
conceptual entities and relations. However, there is a host of other methods,
such as those that induce context-free grammars, which have not been stud-
ied sufficiently in the context of information extraction. An additional issue is
whether grammar learning can assist ontology learning and vice versa, i.e., can
the elements of the representation acquired through learning be useful at both
the conceptual and syntactic level? The answer to these questions depends very
much on the type of training data that is available.

Supervised learning of complex representations requires data that may not
be possible to acquire manually. Therefore, efforts to automate the generation of
training data, such as in [48], are very interesting. Furthermore, unsupervised or
partially supervised methods may prove particularly useful. Along these lines, we
also need to find better ways to take into account existing background knowledge.
Deductive learning methods are the extreme solution in that sense, but inductive
learning methods can also benefit from existing knowledge resources.

If we opt for combined representations, it is more than likely that the learning
methods will need to be extended, or existing methods will need to be combined
in an intelligent way. Multi-strategy learning can prove particularly useful in
this respect, as it aims to combine the strengths and special features of different
learning methods in the best possible way.

4.3 Content Type Issues

Another major issue that affects directly the typology of extraction and learning
tasks is what type of content we want to process. We have already seen that the
semi-structured format of Web data can facilitate significantly the information
extraction task and the learning of Web site wrappers. Further to that, some
semantically annotated content has started appearing. We need to think about
how we can make use of that, e.g. as training data for learning new extraction
systems, or as background knowledge. An interesting alternative presented in
[12] is to treat a set of resources, linked through RDF annotations, as a graph
and construct a conceptual model from it.

132 Georgios Paliouras

Multimedia content is increasing on the Web. We need to examine more care-
fully the task of extracting information from such data, which is more demanding
and less studied than text. Can we make assumptions that will allow us to pro-
duce practical extraction systems for multimedia data? At what conceptual level
can we expect the extracted information to be placed? We need to go beyond
the basic low-level features, but how feasible is object recognition within specific
domains? Can multimedia ontologies assist in that process (e.g. [20]). There is
even some initial work on enriching multimedia ontologies, through the process-
ing of multimedia data [28]. Extraction grammars and the bootstrapping process
advocated in this paper could be particularly useful in that respect. Initial ideas
on how this can be achieved are presented in [23].

5 Summary

This paper advocates the need for a bootstrapping process, combining ontol-
ogy learning and grammar learning, in order to semi-automate the construction
of ontologies and information extraction systems. The aim of the paper was
to present the most relevant work for this purpose, focussing on recent work at
SKEL, the laboratory where the author belongs. Several related strands of SKEL
research were presented: Web information integration, meta-learning for Web
information extraction, induction of context-free grammars and ontology en-
richment, through bootstrapping with information extraction learning. Finally,
several research issues that need to be addressed towards the realization of the
bootstrapping process were discussed. In summary, the main claim of this paper
is that machine learning is the vehicle that could help integrate the construction
of ontologies and extraction grammars and lead us closer to the Semantic Web.

Acknowledgments

This paper includes ideas and work that are not solely of the author. A number
of current and past SKEL members have been involved in the presented work.
This research was partially funded by the EC through the IST-FP5 project
CROSSMARC (Cross-lingual Multi Agent Retail Comparison), contract num-
ber IST-2000-25366. The development of the CROSSMARC architecture has
been carried out jointly by the partners of the project: National Center for Scien-
tific Research ”Demokritos” (GR), VeltiNet A.E. (GR), University of Edinburgh
(UK), Universita di Roma Tor Vergata (IT), Lingway (FR).

References

1. Douglas E. Appelt, Jerry R. Hobbs, John Bear, David J. Israel, and Mabry Tyson.
Fastus: A finite-state processor for information extraction from real-world text. In
Ruzena Bajcsy, editor, IJCAI, pages 1172–1178, 1993.

2. Daniel M. Bikel, Scott Miller, Richard L. Schwartz, and Ralph M. Weischedel.
Nymble: a high-performance learning name-finder. In ANLP, pages 194–201, 1997.

On the Need to Bootstrap Ontology Learning 133

3. Christopher Brewster, Fabio Ciravegna, and Yorick Wilks. User-centred ontology
learning for knowledge management. In Birger Andersson, Maria Bergholtz, and
Paul Johannesson, editors, NLDB, volume 2553 of Lecture Notes in Computer
Science, pages 203–207. Springer, 2002.

4. Paul Buitelaar, Siegfried Handschuh, and Bernardo Magnini, editors. Proceedings
of the ECAI Ontology Learning and Population Workshop, Valencia, Spain, 22-24
August., 2004.

5. Paul Buitelaar, Daniel Olejnik, and Michael Sintek. A protégé plug-in for ontol-
ogy extraction from text based on linguistic analysis. In Christoph Bussler, John
Davies, Dieter Fensel, and Rudi Studer, editors, ESWS, volume 3053 of Lecture
Notes in Computer Science, pages 31–44. Springer, 2004.

6. Philipp Cimiano, Andreas Hotho, Gerd Stumme, and Julien Tane. Conceptual
knowledge processing with formal concept analysis and ontologies. In Peter W.
Eklund, editor, ICFCA, volume 2961 of Lecture Notes in Computer Science, pages
189–207. Springer, 2004.

7. Philipp Cimiano, Lars Schmidt-Thieme, Aleksander Pivk, and Steffen Staab.
Learning taxonomic relations from heterogeneous evidence. In Buitelaar et al.
[4].

8. Fabio Ciravegna. Adaptive information extraction from text by rule induction
and generalisation. In Bernhard Nebel, editor, IJCAI, pages 1251–1256. Morgan
Kaufmann, 2001.

9. Fabio Ciravegna, Alexiei Dingli, David Guthrie, and Yorick Wilks. Integrating in-
formation to bootstrap information extraction from web sites. In Subbarao Kamb-
hampati and Craig A. Knoblock, editors, IIWeb, pages 9–14, 2003.

10. Dan Corbett. Interoperability of ontologies using conceptual graph theory. In
ICCS, volume 3127 of Lecture Notes in Computer Science, pages 375–387. Springer,
2004.

11. Berthold Crysmann, Anette Frank, Bernd Kiefer, Stefan Mueller, Günter Neu-
mann, Jakub Piskorski, Ulrich Schäfer, Melanie Siegel, Hans Uszkoreit, Feiyu Xu,
Markus Becker, and Hans-Ulrich Krieger. An integrated archictecture for shallow
and deep processing. In ACL, pages 441–448, 2002.

12. Alexandre Delteil, Catherine Faron, and Rose Dieng. Building concept lattices by
learning concepts from rdf graphs annotating web documents. In Priss et al. [39],
pages 191–204.

13. T. G. Dietterich. Learning at the Knowledge Level. Machine Learning, 1(3):287–
316, 1986.

14. David W. Embley. Programming with data frames for everyday data items. In
NCC, page 301305, 1980.

15. David W. Embley. Towards semantic understanding – an approach based on in-
formation extraction ontologies. In Klaus-Dieter Schewe and Hugh E. Williams,
editors, ADC, volume 27 of CRPIT, page 3. Australian Computer Society, 2004.

16. David Faure and Claire Nedellec. Knowledge acquisition of predicate argument
structures from technical texts using machine learning: The system asium. In
Dieter Fensel and Rudi Studer, editors, EKAW, volume 1621 of Lecture Notes in
Computer Science, pages 329–334. Springer, 1999.

17. Christiane Fellbaum, editor. WordNet An Electronic Lexical Database. Bradford
Books, 1998.

18. R. Gaizauskas, T. Wakao, K. Humphreys, H. Cunningham, and Y. Wilks. Uni-
versity of sheffield: Description of the lasie system as used for muc-6. In MUC-6,
pages 207–220, 1995.

134 Georgios Paliouras

19. Udo Hahn and Kornél G. Markó. An integrated, dual learner for grammars and
ontologies. Data Knowl. Eng., 42(3):273–291, 2002.

20. Asaad Hakeem, Yaser Sheikh, and Mubarak Shah. Casee: A hierarchical event
representation for the analysis of videos. In Deborah L. McGuinness and George
Ferguson, editors, AAAI, pages 263–268. AAAI Press / The MIT Press, 2004.

21. Jeff Hess and Walling R. Cyre. A cg-based behavior extraction system. In
William M. Tepfenhart and Walling R. Cyre, editors, ICCS, volume 1640 of Lecture
Notes in Computer Science, pages 127–139. Springer, 1999.

22. Paul S. Jacobs and Lisa F. Rau. Scisor: Extracting information from on-line news.
Communications of the ACM, 33(11):88–97, 1990.

23. Vangelis Karkaletsis, Georgios Paliouras, and Constantine D. Spyropoulos. A
bootstrapping approach to knowledge acquisition from multimedia content with
ontology evolution. In Timo Honkela and Olli Simula, editors, AKRR. Helsinki
University of Technology, 2005.

24. Vangelis Karkaletsis and Constantine D. Spyropoulos. Cross-lingual information
management from web pages. In PCI, 2003.

25. Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence, 118(1-2):15–68, 2000.

26. Pat Langley and Sean Stromsten. Learning context-free grammars with a simplicity
bias. In Ramon López de Mántaras and Enric Plaza, editors, ECML, volume 1810
of Lecture Notes in Computer Science, pages 220–228. Springer, 2000.

27. Alexander Maedche and Steffen Staab. Mining ontologies from text. In Rose Dieng
and Olivier Corby, editors, EKAW, volume 1937 of Lecture Notes in Computer
Science, pages 189–202. Springer, 2000.

28. Joseph Modayil and Benjamin Kuipers. Bootstrap learning for object discovery.
In IROS. IEEE Press, 2004.

29. Ion Muslea, Steven Minton, and Craig A. Knoblock. A hierarchical approach to
wrapper induction. In Agents, pages 190–197, 1999.

30. Roberto Navigli and Paola Velardi. Learning domain ontologies from document
warehouses and dedicated websites. Computational Linguistics, 30(2), 2004.

31. Guenter Neumann and Feiyu Xu. Course on intelligent information extraction. In
ESSLI, 2004.

32. Günter Neumann and Jakub Piskorski. A shallow text processing core engine.
Computational Intelligence, 18(3):451–476, 2002.

33. Stéphane Nicolas, Bernard Moulin, and Guy W. Mineau. Sesei: A cg-based filter
for internet search engines. In Aldo de Moor, Wilfried Lex, and Bernhard Ganter,
editors, ICCS, volume 2746 of Lecture Notes in Computer Science, pages 362–377.
Springer, 2003.

34. Norihiro Ogata and Nigel Collier. Ontology express: Statistical and non-monotonic
learning of domain ontologies from text. In Buitelaar et al. [4], pages 19–24.

35. Jon Patrick. The scamseek project: Text mining for finanical scams on the internet.
In S.J. Simoff and G.J. Williams, editors, ADMC, pages 33–38, 2004.

36. Georgios Petasis, Alessandro Cucchiarelli, Paola Velardi, Georgios Paliouras, Van-
gelis Karkaletsis, and Constantine D. Spyropoulos. Automatic adaptation of proper
noun dictionaries through cooperation of machine learning and probabilistic meth-
ods. In Nicholas J. Belkin, Peter Ingwersen, and Mun-Kew Leong, editors, SIGIR,
pages 128–135. ACM, 2000.

37. Georgios Petasis, Georgios Paliouras, Vangelis Karkaletsis, Constantine Halatsis,
and Constantine D. Spyropoulos. e-grids: Computationally efficient grammatical
inference from positive examples. Grammars, 2004.

On the Need to Bootstrap Ontology Learning 135

38. Georgios Petasis, Georgios Paliouras, Constantine D. Spyropoulos, and Constan-
tine Halatsis. eg-grids: Context-free grammatical inference from positive examples
using genetic search. In Georgios Paliouras and Yasubumi Sakakibara, editors,
ICGI, volume 3264 of Lecture Notes in Computer Science, pages 223–234. Springer,
2004.

39. Uta Priss, Dan Corbett, and Galia Angelova, editors. Conceptual Structures: In-
tegration and Interfaces, 10th International Conference on Conceptual Structures,
ICCS 2002, Borovets, Bulgaria, July 15-19, 2002, Proceedings, volume 2393 of
Lecture Notes in Computer Science. Springer, 2002.

40. Lawrence Reeve and Hyoil Han. The survey of semantic annotation platforms. In
ACM/SAC, 2005.

41. D. Reidsma, J. Kuper, T. Declerck, H. Saggion, and H. Cunningham. Cross doc-
ument ontology based information extraction for multimedia retrieval. In Supple-
mentary proceedings of the ICCS03, Dresden, 2003.

42. Marie-Laure Reinberger and Peter Spyns. Discovering knowledge in texts for the
learning of dogma-inspired ontologies. In Buitelaar et al. [4], pages 19–24.

43. Debbie Richards. Addressing the ontology acquisition bottleneck through reverse
ontological engineering. Knowledge and Information Systems, 6(4):402–427, 2004.

44. Ellen Riloff and Rosie Jones. Learning dictionaries for information extraction by
multi-level bootstrapping. In AAAI/IAAI, pages 474–479, 1999.

45. G. Angelova S. Boytcheva, P. Dobrev. Cgextract: Towards extraction of concep-
tual graphs from controlled english. In Supplementary proceedings of the ICCS01,
Stanford, USA, 2001.

46. Georgios Sigletos, Georgios Paliouras, Constantine D. Spyropoulos, and Takis
Stamapoulos. Stacked generalization for information extraction. In Ramon López
de Mántaras and Lorenza Saitta, editors, ECAI, pages 549–553. IOS Press, 2004.

47. Constantine D. Spyropoulos, Vangelis Karkaletsis, Claire Grover, Maria-Teresa
Pazienza, Dimitris Souflis, and Jose Coch. Final report of the project crossmarc
(cross-lingual multi agent retail comparison). Technical report, 2003.

48. Alexandros G. Valarakos, Georgios Paliouras, Vangelis Karkaletsis, and George A.
Vouros. Enhancing ontological knowledge through ontology population and en-
richment. In Enrico Motta, Nigel Shadbolt, Arthur Stutt, and Nicholas Gibbins,
editors, EKAW, volume 3257 of Lecture Notes in Computer Science, pages 144–156.
Springer, 2004.

49. Alexandros G. Valarakos, Georgios Paliouras, Vangelis Karkaletsis, and George A.
Vouros. A name-matching algorithm for supporting ontology enrichment. In
George A. Vouros and Themis Panayiotopoulos, editors, SETN, volume 3025 of
Lecture Notes in Computer Science, pages 381–389. Springer, 2004.

50. Gerry Wolff. Grammar discovery as data compression. In AISB/GI, pages 375–379,
1978.

51. Feiyu Xu, Daniela Kurz, Jakub Piskorski, and Sven Schmeier. Term extraction
and mining of term relations from unrestricted texts in the financial domain. In
BIS, 2002.

52. Manuel Montes y Gómez, Alexander F. Gelbukh, and Aurelio López-López. Text
mining at detail level using conceptual graphs. In Priss et al. [39], pages 122–136.

53. Roman Yangarber, Winston Lin, and Ralph Grishman. Unsupervised learning of
generalized names. In COLING, 2002.

54. Lei Zhang and Yong Yu. Learning to generate cgs from domain specific sentences.
In Harry S. Delugach and Gerd Stumme, editors, ICCS, volume 2120 of Lecture
Notes in Computer Science, pages 44–57. Springer, 2001.

Conzilla — A Conceptual Interface to the

Semantic Web

Matthias Palmér and Ambjörn Naeve

KMR group at NADA/KTH (Royal Institute of Technology)
Lindstedtsv. 5, 100 44 Stockholm, Sweden

{matthias,amb}@nada.kth.se

http://kmr.nada.kth.se/

Abstract This paper describes our approach to managing the complex-
ity of semantic web-based information by creating conceptual informa-
tion landscapes (context-maps) and connecting them into a structure
called a knowledge patch. The aim is to support the creation of overview
and clarity by providing mechanisms for presenting and hiding informa-
tion in flexible ways. Moreover, we present our concept browser Conzilla
as a knowledge management tool for navigating and editing knowledge
patches, and we show how it provides a way to link the human-semantic
and the machine-semantic perspectives.

1 Introduction

Today, it is well known that knowledge workers experience difficulties in man-
aging complexity. This includes creating overview as well as supporting collabo-
ration within the plethora of available information sources.

Our concept browser [10] Conzilla[12] originated from a need to build and
present complicated knowledge structures that can enhance the learning process
in various ways.

The concept browser approach can be summarized as ”content in context
through concept”, meaning that concepts define an inside called content and
a number of outsides called contexts. Conzilla context-maps capture ”concep-
tual information landscapes” and connect them into a knowledge patch[8, 9]
through their common concepts, making use of the contextual neighbourhood
topology[10]. A context-map represents a focused selection in terms of highlight-
ing some of the available concepts and concept-relations.

Conzilla context-maps are inspired by object-oriented modeling, most no-
tably UML. Moreover, they include navigational support such as hyperlinks and
occurrence relations similar to Topic Maps[15], as well as support for informa-
tion filtering. In order to enhance the comprehensiveness and intuitiveness of the
context-maps, we have used a more linguistically coherent modeling technique
called Unified Language Modeling (ULM) [10], which focuses on depicting how
we speak about concepts and their relations.

The technical basis for the semantic web is the description language RDF[5].
We have chosen to equip Conzilla with an RDF backend because we wanted to

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 136–151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Conzilla — A Conceptual Interface to the Semantic Web 137

strengthen the bridge between human- and machine-understandable semantics.
Moreover, RDF represents an important step in the right direction with regard to
scalability and extensibility. In general, with millions of users on the web - users
with diverse and sometimes very conflicting opinions - it is crucial that RDF
is designed to support knowledge representation in a scalable manner. It is also
very important that items of knowledge can refer to other such items. Otherwise,
questions like ’who said this’ will not be answerable in a standardized manner.
From a learning perspective these issues are equally important, especially since
we believe that learning should not be regarded as an activity that is separated
from other activities.

This paper presents Conzilla as a concept browser, which provides functional-
ity such as hyperlinks between contex-maps and the specific separation between
context and content. We believe that these features - beyond being useful in the
context of a concept browser - are beneficial for the Semantic Web, since they
contribute to providing a better overview and navigability of the rather verbose
and obscure expressions in RDF.

The paper describes how context-maps are defined in RDF in order to en-
able generic user interfaces to edit and present knowledge expressed in RDF.
Inspired by the needs of technology enhanced learning environments, we show
how to design context-maps that allow parts of RDF expressions to be sum-
marized, suppressed and presented in a form that is more comprehensible to
humans. An effort has been made to design the management of context-maps in
such a way that they can be kept in tune with a variety of different knowledge
sources. In order to support flexible annotation and querying in Conzilla, we have
used a framework called SHAME[4], which provides form-based presentations of
information1.

The paper is structured in the following way: In section 2 we discuss the
Conzilla concept browser and present an overview of its different capabilities. In
section 3 we compare Conzilla with similar tools, surveying the state of the art.
In section 4 we discuss the design of context-maps, in section 5 we focus on their
expression in RDF, and in section 6 we present our conclusions and outline some
future work in this area. A few more technical issuses on how to handle RDF
graphs are presented in an appendix.

2 Short Conzilla Interface Overview

In this section we introduce Conzilla as a conceptual browsing and editing tool
and examplify the three aspects of presentation, surf, view, and info. We conclude
by explaining the use of sessions in order to keep track of a knowledge patch,
i.e. a set of context-maps that belong together.

2.1 Conceptual Browsing

Conzilla allows you to browse context-maps and inspect concepts and concept-
relations. Figure 1 depicts two context-maps and a popup menu over the concept
1 SHAME stands for Standardized Hyper-Adaptable Metadata Editor

138 Matthias Palmér and Ambjörn Naeve

’Brew Coffee’ (in the map to the right) showing the alternatives surf, view and
info on that concept.

Surf shows the contextual neighbourhood of the concept ’Brew Coffee’, i.e.
which other maps this concept occurs in. In this case ’Brew Coffee’ occurs in
precisely the two maps in the figure. Note that the ’Brew and serve Coffee’
map is greyed out, since it is this context-map that is being navigated.

View allows the user to inspect content, or open up the ’inside’ of a concept,
creating a list of its content-components within its present context. For the
’Brew Coffee’ concept, its list of content-components within the ’Brew and
serve coffe’ context is shown in the map to the right.

Info allows the user to bring up hidden information that is not directly shown
in the map. The information is shown in a metadata inspector, similar to
the form-based metadata editor shown to the right in figure 2. Part of the
information is displayed as transparent popups in the context-maps as a
result of the mouse hovering over something.

2.2 Conceptual Editing

Figure 2 depicts one of the context-maps from figure 1 - but this time in edit
mode. It also shows a Dublin Core [1] metadata editor for the newly created con-
cept of type ’Activity’ with the English title ’Drink’. In order to edit other meta-
data fields than those provided by Dublin Core, you can change the metadata-
form in the choice-box at the top, where it says ’Dublin Core’. Only a few
metadata-forms are provided by default, e.g. Dublin Core, LOM and FOAF.
However, via the Formulator application of the SHAME framework, you can
create new metadata-forms or reuse parts from established standards / schemas.
Which metadata-form that should be used in the browse mode can be speci-
fied in the style layer. The metadata can be filtered according to your language
preferences, which are controlled from the ’settings’ menu.

The menu shown in figure 2 is of the ’create’ type, where you choose what
kinds of concepts to create in the context-map.

2.3 Sessions for Adminstrating a Knowledge Patch

The context-maps of a knowledge patch are edited in sessions. Among other
things, a session specifies containers 2 for storing concepts and concept-relations
- as well as graphics and style information. From a collaboration perspective
it is important to be able to use sessions with different containers for the same
context-map. If these containers are loaded, the map shows everything combined.
In editing mode, you can still see everything, but you can only edit according
to the priviledges of your session. The container-manager can be used in order

2 presently, containers are restricted to be regular RDF/XML files accessible locally
or via ftp. We plan to support remote containers using RDF-stores like SCAM[13]
or SESAME[3].

Conzilla — A Conceptual Interface to the Semantic Web 139

Fig. 1. The context-map in the back displays a ULM class/instance diagram with three
transparent pop-ups showing Dublin Core information around the concept ’SHAME’,
a relation named ’kind of’ (similar to rdfs:subclassof), and a relation named ’is a’
(similar to rdf:type). The concept ’Brew Coffee’ is highlighted (in both maps) in order
to indicate that it has been selected. In the context-map in front we see a ULM activity
diagram with a popup-menu showing the three alternatives, Surf, View and Info on
the selected concept. The surf-submenu shows the conceptual neighborhood with the
present context-map (Brew and Serve Coffee) grayed out. Since the ’Info’ alternative
was previously chosen, the list of content-components for the concept ‘Brew Coffee’ is
still shown to the right.

to investigate context-maps that have mixed origin. The concepts and concept-
relations can also be grouped into different layers in order to simplify the editing
process or aid in a certain presentation perspective.

3 State of the Art

As a remedy for the web’s lack of semantics - as well as to meet the rapidly
increasing need to express metadata about web resources - the W3C has defined
RDF[5]. At its basic level RDF has very little semantics. However, with the
help of the RDF Vocabulary description language[2], people are encouraged to

140 Matthias Palmér and Ambjörn Naeve

Fig. 2. A context-map showing how to brew coffe as a ULM Activity diagram. The
activity ’Drink’ has just been inserted, and the user is choosing the property ’transition’
in the ’type’ menu in order to connect the activity to the synchronization bar (which
contains an “AND” sign to the right indicating the semantics of the join). To the right
is a Dublin Core metadata editor for the ’Drink’ activity, with Swedish translations of
its ’Title’ and ’Description’.

introduce new layers of semantics on top of the old ones. For more complicated
data, the Web Ontology Language, OWL[14] is probably more suitable. It is
important to notice that the base of RDF is agnostic to the kind of informtion
that is actually expressed. There are many applications for working with RDF
and the more specific languages expressed with the help of it. General frameworks
such as RedLand 3, KAON 4, Jena2 5, Sesame 6 and SCAM 7 for parsing,
storing, querying and making connections to inference engines are sufficient for
their respective purposes. However, generic authoring tools, especially visual,
graph-based interfaces for end users, still seem to be lacking.

We will now compare a set of tools that aim towards filling this gap, quali-
fying by either being capable RDF editing tools (preferrably graph-based) or by

3 http://www.redland.opensource.ac.uk
4 http://kaon.semanticweb.org/
5 http://jena.sourceforge.net/
6 http://www.openrdf.org/
7 http://scam.sourceforge.net/

Conzilla — A Conceptual Interface to the Semantic Web 141

being modeling tools, especially if their functionality resembles that of a concept
browser. In figure 3 we compare our tools Conzilla 8 and Meditor 9 with IsaViz
10, VUE 11 RDFAuthor 12, InferEd 13, and Protege 14.

We claim neither that this list of tools is complete, nor that the features
considered are exhaustive with respect to the capabilities of the other tools.
Instead, the features brought up reflect what we believe to be important in the
design of a concept browser/RDF editor. Hence, it is no mystery that Conzilla
stands out as the most feature-rich tool in this comparision.

�

� � � � � � 	

������

������� � � � � � � � � �

������ � � � � � � � � �

��� � � � � � � � � �

������ �! � � � � � � � � �

�"#!�$ � � � � � � � � �

%!��#&# � � � � � � � � �

'#$���! � � � � � � � � �

��	
���

�������

�#���!#(�(��(�(!#)��!#�(� ��(� #

�����(*�(#$��(�!(#+,�!�(��(���

�#���!#(�(��(
(!#)��!#�(� ��(� #(

����(��,,�!��(�(-�����(&!�, (-�#.

��	
���

�������
����

�
(/
(0

�
!1
�
(
�
��-
#
�2
(.
��
(�
�
�

�
(/
(3
�
4
#
(5*
�
4
,
�
��6
�#
5(!#

,
!#
�
#

��
���

(�(/
(7
�
�(�
,
,
��*
�
6
�#

�
(/
(�
$
���
(�

2
(1
�
$
(�
"(�

�
�

�
(/
(�
$
���

&
(!#

�
�!�*

�#
$
(�
�
4
#

�
.

(�(/
(7
�
�(�
,
,
��*
�
6
�#

�
(/
(�
�
4
6
�
#
�
(4

�
���,

�#
(�
�
�
(4

�
$
#
��

�
(/
('
�
$
#
�(*
#

�!�*

(�(/
(7
�
�(�
,
,
��*
�
6
�#

�
(/
(�
��
�
�
�(8
(&
!�
,

(��1

#
(-
�#
.

�
(/
(�

�2
(�#

+
�(�
!�#

�#
$
(-
�#
.

(�(/
(7
�
�(�
,
,
��*
�
6
�#

�
(/
(9
�
�
(0

:
3
�0

:
;
(#
$
���

&

�
(/
(3
#
,
�
!�
�#
$
(#
$
���

&

(�(/
(7
�
�(�
,
,
��*
�
6
�#

�
(/
(�
�

(�
�
,
,
!#
�
�
(�
"�
!4

�
���

�
(/
(%
!#
�
#

��
(#
-
#
!2
�
�
&

(�(/
(7
�
�(�
,
,
��*
�
6
�#

�
(/
(�
�
�
��
4
��
�
6
�#
(��
2
�
�
�

�
(/
(�
�
��
4
�
��*
(��
2
�
�
�(�

�2

(�(/
(7
�
�(�
,
,
��*
�
6
�#

�
(/
(�
,
,
#
�
!�

*
#
(*
�

�!�

��#
$
(6
2
(�
�2
�#

�
(/
(�
,
,
#
�
!�

*
#
("�+

#
$
(6
2
(�
#
(��

�
�

(�(/
(7
�
�(�
,
,
��*
�
6
�#

�
(/
(7
�
-
�&
�
���

(6
#
�.
#
#

(-
�#
.
�

�
(/
(7
�
(
�
-
�&
�
���

(�(/
(7
�
�(�
,
,
��*
�
6
�#

Fig. 3. A feature overview of RDF and/or conceptual modeling tools with respect to
nine features ranging from representation format to apperance and navigation.

Let us perform a more qualitative investigation of IsaViz and VUE. We se-
lect IsaViz because it is a capable graph-based RDF-editor, and we select VUE
because it is a capable knowledge-structuring and modeling tool.

VUE is a concept-mapping tool that connects to - and filters - the content
of various digital repositories. The focus is on maps and the management of
content in nodes and links. It has many nice features, including the filtering
of content and presentation paths through maps. However, in comparison with
8 http://www.conzilla.org/
9 Meditor is an application of the SHAME framework, http://kmr.nada.kth.se/shame

10 http://www.w3.org/2001/11/IsaViz/
11 http://vue.tccs.tufts.edu/
12 http://rdfweb.org/people/damian/RDFAuthor/
13 http://www.intellidimension.com/pages/site/products/infered/default.rsp
14 http://protege.stanford.edu/

142 Matthias Palmér and Ambjörn Naeve

Conzilla it lacks a visual language strong enough for modeling in e.g. UML and
since nodes cannot occur in several maps the navigational aspects (feature 9) are
rather weak compared to the capabilities of a concept browser. Furthermore the
separation between information and presentation is done only for content, while
the nodes and links appear in the presentation layer only. From the perspective
of comparing VUE with Conzilla it would be interesting if the presentation
file format used RDF. And provided machine understandable semantics for the
concepts, concept-relations, navigational aspects and the relation to content.
However, as it stands now, VUE is not an RDF tool (feature 1,2, and 3), even
though it might integrate content from repositories that uses RDF internally.

IsaViz on the other hand has a strong focus on the information representation
as is mainly an RDF editor. It has a lot of nice features like a zoomable interface
and the ability to apply Graphical Stylesheets[16] to customize the presentation
of individual graphs or schemas. However, because of how RDF is designed,
there are problems with referring to parts of graphs from the outside. This has
as a consequence that the IsaViz designers have chosen to use their own format
(feature 1) for saving graphs whenever the appearance is customized (e.g. when
doing your own layout or suppressing information). Unfortunately this has some
serious drawbacks, e.g. you cannot customize the presentation of an RDF graph
without making a snapshot of it, and therefore, independent subsequent changes
cannot be incorporated without starting all over. IsaViz is oriented around RDF,
not around maps and consequently has no navigational primitives beyond the
navigation within the customized view of a single RDF-graph (feature 9).

4 Context-Map Design

Context-map should present concepts and concept relations in a manner that
fullfills the requirement of a concept browser, basically supporting the three
presentation modes of surf, view, and info. Moreover, from the perspective of
authoring context-maps there are some additional design requirements:

1. Concepts and concept-relations are human expressions that may be more or
less formal depending on the usage scenario. Still, it is important that the
underlying expression has the potential for being machine readable. Hence,
the expressibility of RDF and the formal languages that are available on top
of it, makes RDF a good choice for expressing concepts and concept-relations.

2. Expressing information is often a task that requires collaboration or at least
positioning within a larger setting. Hence, it is important that authors can
work with separate information sources and still have access to a unified view.
Therefore, we have to allow context-maps as - well as concepts and concept-
relations - to be distributed in several RDF-graphs and to be separately
editable.

3. Human expression is seldom uncontroversial, and it is important to allow
the same information to be viewed from different perspective without loos-
ing sight of the similarities. Reuse of information without making copies

Conzilla — A Conceptual Interface to the Semantic Web 143

requires precise referencing techniques, where the presentation of the origi-
nating context-maps can be left out. Hence, it is important to provide good
separation between the information and presentation layers of a context-map.

Support for some of the reasoning behind these design issues can be found
e.g in [17] and [6]. In the following subsections we will describe the context-map
design in terms of three different layers, an information, a presentation and a
style layer. This division in layers is inspired by how the regular web has evolved
into a division between data storage (typically a database), HTML (typically
generated via some template language) and a stylesheet (typically CSS or XSL).

4.1 Information Layer

The information in the information layer is made up of statements around re-
sources expressed in RDF. In most cases the actual resources have an extent that
cannot be captured in the information layer. This extent may include things with
digital representations like documents or pictures or it might equally well include
things like ideas, processes or people. A concept in a context-map is constituted
of a subgraph of RDF-statements centered around a specific RDF-resource that
represents it. In a similar manner a concept-relation in a context-map is con-
stituted of a subgraph of RDF-statements centered around the reification of a
specific RDF statement.

The expression of the information may follow a schema, a standard or be
locally defined, it depends on what is suitable for the domain and the user.

As mentioned above, information presented in one context-map may reside
in several RDF graphs.

4.2 Presentation Layer

The focus of the presentation is the idea of a context-map as introduced in [10].
In short it is a map of concepts and connecting concept-relations presented by
boxes and lines. There might be text in the form of a label within the box and
on the side of the line, both excavated from the information layer.

Every concept or concept-relation has its own integrity, i.e. its existence is
not bound to a specific context-map. The concepts or concept-relations are in-
cluded in a context-map via layouts. Layouts are intermediate resources holding
information regarding position, size, and in-line styles such as text-alignment,
visibility etc. Observe that the same concept or concept-relation may be inserted
several times in the same map yielding different layouts. There is a special kind
of layout, which groups other layouts. Such layouts are typically used for creating
context-map layers.

In addition to the context-map presentation it is possible to interact with
concepts and concept-relations in various ways. The three interactions presented
below are central to the the idea of a concept browser and quite useful for an
RDF editor as well:

144 Matthias Palmér and Ambjörn Naeve

Surfing First of all, there are hyperlinks on concepts and concept-relations lead-
ing to other context-maps. A hyperlink is stored on the layout, hence for a con-
cept / concept-relation there might be different hyperlinks depending on where it
is encountered. Second, since the same concept (or concept-relation) may occur
in different context-maps it is possible to provide a contextual neighborhood [10]
which is a list of all context-maps where the given concept (or concept-relation)
occurs.

Since it is possible to include concepts / concept-relations in context-maps
without anyone else’s knowledge, it is impossible to be sure that you have a
complete listing of contextual neighbourhoods. We have considered and tested
to use the p2p network Edutella [11] for finding contextual neighbourhoods.
However, in the long run it might be neccessary to develop a specific service
which specializes in keeping track of contextualizations of concepts / concept-
relations for efficiency reasons. The current implementation of Conzilla only
checks all RDF-graphs that are loaded already.

Viewing Content One of the main design principles of a concept browser is
to have content-components separated from their initial context. Content-com-
ponents can then be assigned to relevant concepts or concept-relations as e.g.
explanations, examples, motivations, discussions, or knowledgable people. It is
possible to assign content-components to a concept or concept-relation within
the scope of a context-map. These content-components will not be visible on
that concept in any other context-map.

Just like a concept or a concept-relation a content-component might have an
extent which goes beyond what is expressible in the information layer. Hence, it
is only if a content-component is detected as a retrievable digital resource, it can
be shown in a content browser. In most cases a regular web browser is suitable
as a content browser, at least as an intermediate step in order to launch a better
suited application.

Inspecting Further Information Presenting labels on concepts and concept-re-
lations is nice but in general just represents “a scratch on the surface”. For
example, imagine that we are using the RDF version of the metadata standard
Dublin Core [1] to express e.g. title, description, creator, creation date, subject,
relations, and rights. The title is obviously suitable to use as a label and the
relations can clearly be shown as conceptual relations. A context-map can, if
needed, present the other fields in a graph manner as well, e.g. the date as
a relation to a literal. However, in most cases it is more suitable to present
metadata fields with string values as pure text in a form.

A set of fixed forms, to cover all possible situations, is not flexible enough.
Instead we rely on the SHAME framework 15[4] to generate forms from small
form-snippets called formlets. Much like how Conzilla separates information from
its presentation SHAME formlets uses queries to capture elements of the RDF-
graph and form templates to generate actual forms. Which formlets that should

15 Documentation for SHAME can be found at http://kmr.nada.kth.se/shame

Conzilla — A Conceptual Interface to the Semantic Web 145

be used in a certain setting might be specified statically in the context-map
or triggered via a type as specified in a stylesheet. Furthermore, by switching
manually among available forms, more relevant information can be discovered.
Another approach, yet to be perfected, is to let relevant formlets be automat-
ically detected from the information itself, allowing all relevant information to
be presented at once.

In the editing mode of Conzilla, SHAME is also used as the basis for a
metadata editor, see figure 2.

4.3 Style Layer

A style describes the apperance of boxes and lines, typically their form, linetype,
linewith, text alignment etc. A local style is a style applied to a specific layout
of a given resource. A global class style is a style that is applied to an RDF
Class or an RDF Property. A global instance style is a style that is applied to
a specific resource, independently of context. More specifically, a global class
style applies to all concepts or concept-relations that are expressed as instances
of the RDF Class or RDF Property in this global class style. When detecting
instances, we also take into account RDF Schema information, i.e. subClassOf
and subPropertyOf. OWL ontologies are not yet taken into account because it
is still unclear to us how they relate to the scope of context-maps, which relies
heavily on an open-world assumption.

If a local style and a global style are simultaneously relevant, then the local
style takes precedence. Observe that we have to override all parts of a style
explicitly. As an example, if we provide a local style of a concept, which changes
the label alignment but not the form of the box, this form will be determined by
the global style - if one has been provided. Moreover, Conzilla offers a “fallback
style” that applies if there is no other style that does so.

The present lack of an intermediate style level means that a context-maps
cannot be associated with a specific and reusable set of styles. Of course you
could force inline styles everywhere but that is not a recommended approach.
Instead we plan to introduce a style set which would be the equivalence of a
CSS style sheet. A style set would need to have a selector construction - similar
to the ones in CSS or preferrably GSS [16]. A style set would override a global
style, but be overridden by an local style.

Currently the style information makes use of a fixed set of hardcoded graph-
ical primitives.

5 Context-Maps Expressed in RDF

In this section we will consider the RDF-expressions of the three layers in more
detail. This will also include some nitty-gritty details of how RDF represents
information in the information layer and how we can refer to that information
via referring to RDF-constructs. In order to avoid confusion, we will refer to the
RDF-expression of the information as information triples, to the RDF expression

146 Matthias Palmér and Ambjörn Naeve

of context-maps as the presentation triples and to the RDF expression of styles
as style triples.

5.1 General Thoughts on the Context-Map Construction in RDF

There are several reasons why we have chosen to express context-maps in RDF.
First, this enables good integration with the information triples using internal
referencing techniques such as URIs and the reification mechanism. Second, it
allows inference engines to easily make use of the combination of information and
presentation triples. Third, it allows context-maps to be extended and reused in
other contexts. Fourth, it allows flexible authoring and annotation of the context-
maps themselves, effectively allowing statements like,“I agree with what was said
about that information”.

There are several reasons why context-maps should have the ability to present
information without changing it. The simplest one is that you may just have
read-only access to the information triples. Hence, it is neccessary that the pre-
sentation triples can be located in different RDF-graphs than the information
triples. Equally important is the condition that the presentation triples of the
context-maps should not express anything that would change the semantics of
the information triples. This is important if the two graphs are to be stored
together or managed by tools without prior knowledge of context-maps. Ob-
serve that if the intention of the user is to express information that adds to - or
changes - the semantics of existing information, he or she should of course be
allowed to do this. But the presentation triples of context-maps should not do
this automatically by their mere existence.

From this we clearly recognize the need for references to RDF-constructs
across the borders of RDF-graphs.

5.2 Referring to Resources and Triples

As pointed out above, the layouts of a context-map should refer to the informa-
tion triples. But we also need to reference the resources that are spoken about in
the triples. Lets first note that a resource is something that is in general outside
of RDF, it is merely referenced by a URI. You have to use a domain specific
interpretation function[7] to get from the URI to the actual resource. This is
quite natural since URIs can denote anything from e.g. a car to the idea of a
perfect circle.

Hence, a layout-resource references a resource simply via its URI just like how
the information triples references it. However, since we actually are interested
in information around a resource as well as the resource itself we have to add a
reference to the container where the information triples is stored. Currently the
reference to the container is calculated 16 rather than explicitly stored on the
layout or context-map.
16 In some cases this is not possible, it remains to define an unambigous scheme for

when it has to be expressed and when it can be calculated.

Conzilla — A Conceptual Interface to the Semantic Web 147

Triples, by default, have no identifiers, instead a layout-triple refers to a
reification which in RDF is a standardized and identifiable representation of a
specific triple 17. Since a resource may be presented by several layout-resources,
the layout-triple must indicate which layout-resources it refers to. Obviously,
the layout-triples indicated layout-resources should match the ends of the reifi-
cation referred to by the layout-triple, see Figure 4. If they do not match, the

Fig. 4. An overview of the three layers (information, presentation and style) behind
the fact that “Eric knows Stephen”. The top left box shows the corresponding context-
map, while the other three boxes show the underlying RDF representations. More
specifically, the presentation layer (middle box to the left) shows three layouts: two
layout-resources referring to their respective resources in the information layer (bottom
left box), and one layout-triple (the one in the middle) referring indirectly to the triple
in the information layer via a reification resource named ’knows-reification’.

layout-triple is incorrectly constructed. For a layout-triple we need to apply the
interpretation function twice, since we first have to interpret the reification re-
source in order to get to the triple in the information triples, and then we must
interpret the triple in order to get to the information that it expresses.

17 In a given RDF graph there is only one triple with a given subject, predicate and
object.

148 Matthias Palmér and Ambjörn Naeve

5.3 Referring Literals and Anonymous Resources from Layouts

It is not enough that context-maps can present resources and their connecting
triples. Both literals and anonymous resources occur frequently and therefore we
should be able to present them individually. Hence, we should try to find some
way to refer to them from layouts.

Unfortunately, there is no perfect solution in standard RDF unless we force
the presentation and information triples to be stored together. However, since
the requirement to be able to keep them separate is vital, we choose to live
with imperfect solutions and encourage people to use the integrated form based
approach based on SHAME for displaying anonymous nodes and literals in con-
nection with non anonymous resource. In the appendix we scetche an approach
which have been partially implemented in Conzilla as of when this paper was
published.

5.4 Style Expression

Figure 4 shows two different global class styles - one for the RDF Class foaf:Person
and one for the RDF Property foaf:knows. The RDF-expressions for a global in-
stance style and local style are almost identical. The only difference is that they
are connected via the styleInstance property to the corresponding resources and
layouts. The RDF-design of style sets remains to be developed.

6 Conclusions and Future Work

In this paper we have shown how context-maps can be designed and implemented
(in Conzilla) in order to effectively present information expressed on the semantic
web. The context-maps have been designed and implemented in a manner that
allows WYSIWYG editing. Moreover, the context-maps have been expressed via
a three-layered solution, where the lowest layer - the information layer - has been
allowed to remain independent of the other two layers - the presentation layer
and the style layer. In the presentation layer, the author is allowed to combine
several sources into one or several maps, as well as to customize the layout and
to specify the navigation through hyperlinks or contextual neighbourhoods. The
style layer provides the final touch - together with the form-based metadata
displays that are leveraged by the SHAME framework.

Future work will include the investigation of a better design for styles that are
bound to maps, which we presently think of in terms of style sets. We will also
think more about how to reference anonymous resources and literals. We also
want to provide integration with RDF-based storage-and-access solutions like
SCAM and Sesame. Also, in order to support inference-type business rules, the
relations to OWL will be worked out, and in order to enable process management,
a workflow engine will be interfaced. And of course, the interface of Conzilla needs
improvements, which will be achieved through user-testing and feedback. We also
plan to develop thin clients for use in browsers or mobiles. In fact, preparatory
work in this direction is already under way.

Conzilla — A Conceptual Interface to the Semantic Web 149

References

[1] The Dublin Core Metadata Initiative. http://dublincore.org.
[2] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF

Schema. http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.
[3] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture

for Storing and Querying RDF.
[4] H. Eriksson. Query Management For The Semantic Web.

http://kmr.nada.kth.se/papers/SemanticWeb/CID-216.pdf.
[5] K. Graham and J. J. Carroll. Resource Description Framework (RDF): Con-

cepts and Abstract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

[6] T. Gruber. Every Ontology is a treaty - a social agreement - among people with
some common motive in sharing. AIS Sigsemis Bulletin 1(3), October 2004.

[7] P. Hayes. RDF Semantics. http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.
[8] A. Naeve. The Garden of Knowledge as a Knowledge Manifold - A Conceptual

Framework for Computer Supported Subjective Education. CID17 project report:
http://kmr.nada.kth.se/papers/KnowledgeManifolds/cid 17.pdf, 1997.

[9] A. Naeve. The knowledge manifold - an educational architecture that supports
inquiry-based customizable forms of e-learning. Proc. of the 2nd European Web-
based Learning Environments Conference (WBLE 2001), pp. 200-212, Lund, Swe-
den, 2001.

[10] A. Naeve. The Concept Browser: a new form of knowledge management tool. In
Proceedings of the 2 nd European Web-based Learning Environments Conference
(WBLE 2001), pp. 151-161, Lund, Sweden, 2001.

[11] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: A P2P Networking Infrastructure Based on RDF.
Proceedings of the 11th World Wide Web Conference, 2002.

[12] M. Nilsson. The conzilla design - the definitive reference. CID project report:
http://kmr.nada.kth.se/papers/ConceptualBrowsing/conzilla-design.pdf, 2000.

[13] M. Palmér, A. Naeve, and F. Paulsson. The SCAM Framework: Helping Semantic
Web Applications to Store and Access Metadata. In ESWS, pages 167–181, 2004.

[14] F. P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Lan-
guage Semantics and Abstract Syntax. http://www.w3.org/TR/2004/REC-owl-
semantics-20040210/.

[15] S. Pepper. The TAO of Topic Maps.
http://www.ontopia.net/topicmaps/materials/tao.html.

[16] E. Pietriga. Graph Stylesheets (GSS) in IsaViz.
http://www.w3.org/2001/11/IsaViz/gss/gssmanual.html.

[17] A. Sheth. The Informations Systems Perspective on Semantic Web Research. AIS
Sigsemis Bulletin 1(1), April 2004.

Appendix — An Approach to Referencing Literals and
Anonymous Nodes

By definition, anonymous resources have no identifiers outside of the RDF-graph
where they occur. Therefore an anonymous resource cannot be referenced di-
rectly - except from triples in the same RDF-graph. If we want to refer to an

150 Matthias Palmér and Ambjörn Naeve

anonymous resource, we need to invent an indirect referencing technique. Be-
low we describe an approach called graph-patterns that captures anonymous
resources and literals as a special case.

Referencing Anonymous Resources We will here define and state some findings
without proof, a more formal treatment remains to be done.

Def: The marked-graph of a anonymous resources A consists of the RDF-
graph where A occurs, and an extra marker-triple wherein A is the subject18.
It follows that two anonymous resources are indistinguishable if their marked-
graphs are isomorphic (defined in [7]). Even though it is not always possible,
it is nevertheless interesting to consider the graph-pattern19 that provides the
most detailed matching of an anonymous resource.

Def: for an anonymous resource A, we say that a graph-pattern is complete
relative to A, if the graph pattern captures the anonymous closure20 of A. It
can be shown that a complete graph pattern for A matches A - as well as each
of its indistinguishable anonymous resources - which is the best you can expect
under these circumstances.

Moreover, small independent changes to the surrounding RDF-graph should
not invalidate the graph-pattern and break the references to its anonymous re-
sources. From this perspecitve we can identify two inherently conflicting require-
ments on graph-patterns:

1. If we want to reference anonymous resources uniquely, the best we can do is
use complete graph-patterns.

2. If we want to minimize the risk of broken references, a smaller graph-pattern
reduces this risk.

It should be noted that in most practical situations complete graph-patterns are
quite small and hence the conflict between the two requirements is neglible. A
second somewhat weaker approach, which in most practical situations coincides
with complete graph-patterns, is to use graph-patterns that capture all incoming
and outgoing triples. A third - and even weaker - approach, is to use graph-
patterns that only capture the incoming and outgoing triples that are shown
in the context-map from where the anonymous resource is being referenced. In
the last approach, the context-map itself can function as the graph-pattern, no
secondary expression is neccessary. Whenever it is not enough to reuse context-
maps as graph-patterns, an external query language is needed. The Edutella
Query Language (QEL) [11] is a good alternative. In fact, the RDF-expression
of QEL uses reifications that refer to variables instead of fixed resources, which
is precisely how we will reference anonymous nodes in the triple- and resource-
layouts described in section 5.2.

18 the predicate and object should not have been introduced in the RDF-graph already.
19 a graph-pattern is a query where the required anonymous resource is captured in a

specific variable
20 i.e. reachable graph from a node where only anonymous nodes may be traversed.

Conzilla — A Conceptual Interface to the Semantic Web 151

Referencing Literals Referencing literals constitutes a special case of referencing
anonymous resources. In the case where you do not have an anonymous resource
as the subject of the triple where the literal is expressed as object, the graph-
pattern will be comparable to a reification. Moreover, if literals change often
compared to resource URIs it is a bad idea to rely on exact string matching of
the literal in the graph-pattern. The simplest solution is to replace the literal
with a variable. However, this does not work when there are several triples that
differ only in their literals. In such cases a constraint could be added on the
variable in order to distinguish the literal in question. However, this approach
would have to rely on heuristics and further investigation is needed to decide
wether it would be worth the effort.

Variables in Concept Graphs

Frithjof Dau

Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, D-64289 Darmstadt
dau@mathematik.tu-darmstadt.de

Abstract A main feature of many logics used in computer science is
a means to express quantification. Usually, syntactical devices like vari-
ables and quantifiers are used for this purpose. In contrast to that, in
conceptual graphs, a single syntactical item, the generic marker ‘∗’ is
used. Nonetheless, sometimes conceptual graphs with variables have to
be considered. If the generic marker is replaced by variables, it has to be
investigated how this syntactical difference is reflected by the semantics
and transformation rules for conceptual graphs. In this paper, this task
is carried out for the system of concept graph with cuts (CGwCs). Two
different classes of CGwCs with variables are introduced, and for both,
a semantics and an adequate calculus for CGwCs is provided.

1 Introduction

A main feature of many logics used in computer science, like the different ver-
sions of description logic, first oder logic (FOL), conceptual graphs or the re-
source description framework (RDF), is a means to express quantification. In
any linear symbolic notion of logic (like the common notions for FOL or descrip-
tion logic), variables and quantifiers are the syntactical entities which are used
for this purpose. Even in RDF, which can be understood as a diagrammatic
reasoning system, so-called blanks, which are very much used like variables, are
used to express existential quantification.

The use of variables has some consequences for the handling of formulas. A
variable may occur several times in a formula. In order to grasp the meaning
of a formula, one has to keep track of these different occurrences, particularly,
whether they are in the same scope of an (existential or universal) quantifier.
Particularly, we have to distinguish between variables and their occurrences in a
formula. Moreover, one needs some means to rename variables, which has to be
captured either by a convention like the so-called alpha conversion of formulas,
or by some rules in the calculus.

For conceptual graphs, the situation is different. There exists only one syn-
tactical element which is used to express existential quantification: the generic
marker ‘∗’. In a conceptual graph, different occurrences of ‘∗’ as referent in dif-
ferent concept boxes refer to (not necessarily) different entities. As only one sign
for quantification is used, one does not have to keep track of generic markers.
Moreover, in the handling of conceptual graphs, there is no need to distinguish

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 152–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Variables in Concept Graphs 153

between the sign and its occurrences, and a convention like the alpha-conversion
of symbolic logic is not needed. This makes conceptual graphs easier to read
and handle by humans, which is one of their mains goals. Using ‘∗’ instead of
variables is a strong means to achieve this goal.

Nonetheless, sometimes it is reasonable to use variables in conceptual graphs
as well. For example, finding a linear notation for conceptual graphs (the linear
form) is much easier if generic markers are replaced by variables.1 The use of
variables instead of generic markers in any fragment of conceptual graphs has
to be reflected by the semantics, as well by any calculus. Approaches for some
specific forms of concept graphs with variables are investigated be Klinger in
[7, 8] and Wille in [14, 15]. But, to the best of my knowledge, a comprehen-
sive discussion between the differences of conceptual graphs with variables and
conceptual graphs with generic markers has not been provided yet.

For simple conceptual graphs, which do not provide nestings or any means
of negation, the use of variables instead of generic markers does not lead to
major problems. The definition of their syntax and semantics is straightforward.
Moreover, a calculus based on projections can easily provided. For example, the
projections of [2] for conceptual graphs or the projection-like mappings for RDF
(see [6, 1]) could be adopted for simple conceptual graphs, or the diagrammatic
calculus of a work in preparation ([4]) could be used. But we run into problems
if we add a means to express negation to conceptual graphs.

Recall that in conceptual graphs, a negation box ¬ G is used to negate
the enclosed subgraph G. Let us first consider some simple examples to see some
problems we have to cope with. Assume that we allow that arbitrary concept
boxes are labeled with the same variable. Consider the following two graphs:

: x S and : x S: xR

The intuitive meaning of the left graph is clear: It is ‘it is not true that there
exists an x with S(x)’, i.e., no object has the property R. But what about the
right graph? As we have no special sign like the quantifiers of symbolic logic
for indicating the scope of variables, it is usually assumed that all variables in
a conceptual graph denote the same object, thus the scope of a variable (i.e.,
the context where the existential quantification takes place) is the innermost
context which contains all boxes which are labeled with x. For our right graph,
this is the sheet of assertion. Realizing that the scope of a variable x can be
a context where it does not occur (the sheet of assertion in our example) is
counter-intuitive, and finding adaquate semantics and derivation rules for such
graphs leads to unnecessary technical difficulties. Due to this problem, Sowa
considers only conceptual graphs where each coreference set has a defining label.

1 It is well known that conceptual graphs are based on Peirce’s diagrammatical existen-
tial graphs, where lines of identity are used to express existential quantification and
identity. But even Peirce replaced in some places the lines of identity by variables,
which he called selectives (but he strongly recommended to avoid them).

154 Frithjof Dau

The graph we consider is semantically equivalent to the graph below which has
defining labels.

: x S: x: xR

So, if we add a means to express negation, we have to be careful in the definition
of the syntax and semantics of conceptual graphs with variables.

It is possible to consider conceptual graphs with variables where each variable
occurs almost once. Or graph is equivalent to each of the two graphs below which
satisfy this restriction.

S: xR : y : z and : xR S

Of course, the semantical equivalence of all the graphs we considered has to
reflected by any calculus as well, i.e. in any calculus, we need rules which meet
the specific properties of variables. For example, we need rules which allow to
rearrange boxes which are labeled with the same variable, and we have to discuss
how a renaming of variables has to he handled. A calculus like this goes beyond
a simple one-to-one-translation of the calculus for CGwCs with generic markers.

In [3], the system of Concept Graphs with Cuts (CGwCs) is comprehensively
investigated. CGwCs can be understood as a mathematical elaboration (in terms
of mathematical graph theory) of conceptual graphs with negation boxes, where
the negation boxes are replaced by a syntactical elements called cuts, and the
coreference links are replaced by identity edges. Recall that cuts are graphically
represented as bold ovals. In [3], a contextual semantics and a sound and com-
plete calculus, based on Peirce’s calculus for existential graphs, for CGwCs is
provided.

In this paper, the differences between generic markers and variables are dis-
cussed. The scrutiny will be carried out on CGwCs, i.e. it will be shown how
the results of [3] for CGwCs with generic markers can be transferred to CGwCs
with variables. But although the remaining paper mainly focuses on CGwCs,
the discussion should be helpful for other formalizations of conceptual graphs
with variables as well.

In the next section, the basic definitions for CGwCs with variables are pro-
vided. In the third section, we start our investigation with a discussion of CG-
wCs with variables where each variable occurs almost once. These graphs will
be called purified CGwCs with variables. This is no loss of expressivity, as each
CGwCs with variables is semantically equivalent to a purified one. Purified CG-
wCs stand in one-to-one-correspondence to CGwCs with generic markers. Based
on this correspondence, the adequate calculus for CGwCs with generic markers
is translated into an adequate calculus for purified CGwCs with variables. This
will be done in the next section of this paper. In the fourth section, we extend the
class of purified CGwCs with variables to CGwCs with variables where variables
may occur more than once. The calculus of the preceeding section is extended
in order to obtain an adequate calculus for this bigger class of CGwCs with
variables. Finally, a short discussion of the results is provided.

Variables in Concept Graphs 155

2 Basic Definitions and Semantics

We start with the definition of the underlying alphabet for CGwCs.

Definition 1 (Variables, Alphabet). Let Var := {x1, x2, . . .} be a countably
infinite set. The elements of Var are called variables. Let ∗ be a further sign,
which is called the generic marker.

An alphabet is a triple A := (G, (C,≤C), (R,≤R)) where G is a finite set of
object names, (C,≤C) is a finite ordered set of concept names with a greatest
element �, and (R,≤R) is a family of finite ordered sets (Rk,≤Rk

), k = 1, . . . , n
of relation names. Let id ∈ R2 be a special name which is called identity. We
will sometimes write (G,G,G) instead of (G, (C,≤C), (R,≤R)).

Next, we define two classes of CGwCs with variables. In [3], CGwCs with
generic markers are provided as structures (V,E, ν,�, Cut, area, κ, ρ), where ρ :
V → G ∪ {∗} is a mapping which assigns to each vertex v ∈ V its referent
ρ(v), being an object name or the generic marker. Now we consider a modified
version of these graphs with a label mapping ρ : V → G ∪ Var. Let G be such
a graph. Let VarG := {α ∈ Var | ∃v ∈ V : ρ(v) = α} be the set of the variables
which occur in G. In the introduction, we already discussed that the scope of
a variable α is the innermost context which contains all vertices labeled with
x. Mathematically, for α ∈ VarG, we set scope(α) :=

∨
{c ∈ Cut ∪ {�} | ∃v ∈

area(c) : ρ(v) = α}.2 Finally, similar to the definition of V ∗ and V G in [3], we
set V Var := {v ∈ V | ρ(v) ∈ Var}, and the vertices in V Var are called variable
vertices or variable boxes.

Similar to Sowa’s defining labels of coreference sets, we define dominating
variable boxes to be variable boxes v ∈ V which satisfy cut(v) = scope(ρ(v)).
For such a v, each w ∈ V with ρ(w) = ρ(v) is said to be dominated by v. If we
otherwise have ρ(w) �= ρ(v) for each w ∈ V with w �= v, the dominating box v
will be called singular variable box.

Now we can define the two classes of CGwCs with variables which will be
discussed in this paper. A graph G := (V,E, ν,�, Cut, area, κ, ρ) with ρ[V] ⊆
G ∪ Var is called concept graph with cuts (CGwC) and variables over A, if for
each α ∈ VarG there exists a dominating variable box v with ρ(v) = α. If we
have moreover v1 = v2 for all v1, v2 ∈ V with ρ(v1) = ρ(v2) ∈ Var, then G is
called purified concept graph with cuts (CGwC) and variables over A.

To provide a semantics, as in [3] we use power context families as model
structures for concept graphs. The models are defined as follows:

Definition 2 (Models). A power context family �K := (Ki)k=0,...,n is a family
of contexts Kk := (Gk,Mk, Ik) that satisfies Gk ⊆ (G0)k for each k = 1, . . . , n.

For an alphabet A := (G, C,R) and a power context family �K, we call the
union λ := λG ∪̇ λC ∪̇λR of the mappings λG :G → G0, λC : C → B(K0) and
λR:R → R�K a �K-interpretation of A if λC and λR are order-preserving, λC(�) =
�, λR(Rk) ⊆ B(Kk) for all k = 1, . . . , n, and (g1, g2) ∈ Ext(λR(id)) ⇔ g1 = g2

hold for all g1, g2 ∈ G. The pair (�K, λ) is called A-structure or A-model.
2 In [3], it is shown that Cut ∪ {�} is a tree, so

∨
(. . .) denotes the join in this tree.

156 Frithjof Dau

Similar to [3], we have to define valuations for CGwCs with variables, and
based on valuation, we can define how CGwCs with variables are evaluated
in models. The next two definitions have in [3] counterparts for CGwCs with
generic markers, which are slightly modified to encompass the fact that we allow
different variable vertices which are labeled with the same variable.
Definition 3 (Partial and Total Valuations for CGwCs with Variables).
Let G := (V,E, ν,�, Cut, area, κ, ρ) be a CGwC with variables and let M be a
A-structure. A mapping ref : V ′ → G0 with V G ⊆ V ′ ⊆ V , ref(v) = λG(ρ(v))
for all v ∈ V G , and ref(v1) = ref(v1) for all v ∈ V Var is called a partial
valuation of G. If we moreover have V ′ ⊇ {v ∈ V Var | scope(ρ(v)) > c} and
V ′ ∩ {v ∈ V Var | scope(ρ(v)) ≤ c} = ∅, we say that ref is a partial valuation for
the context c. If V ′ = V holds, then ref is called (total) valuation of G.

Definition 4 (Endoporeutic Evaluation of Graphs).
Let G := (V,E, ν,�, Cut, area, κ, ρ) be a CGwC and variables and let M be

a A-structure. Inductively over the tree Cut∪ {�}, we define (
→
K, λ) |= G[c, ref]

for each context c ∈ Cut ∪ {�} and every partial valuation ref : V ′ ⊆ V → G0

for c. We set (
→
K, λ) |= G[c, ref] :⇐⇒

ref can be extended to a partial valuation r̃ef : Ṽ ′ → G0 with Ṽ ′ :=
V ′ ∪ {v ∈ V Var | scope(ρ(v)) = c} which satisfies:

– r̃ef(v) ∈ Ext(λC(κ(v))) for each v ∈ V ∩ area(c) (vertex condition)
– r̃ef(e) ∈ Ext(λR(κ(e))) for each e ∈ E ∩ area(c) (edge condition)
– (

→
K, λ) �|= G[d, r̃ef] for each d ∈ Cut ∩ area(c) (cut condition)

For (
→
K, λ) |= G[�, ∅] we write (

→
K, λ) |= G. If we have two concept graphs G1,

G2 such that (
→
K, λ) |= G2 for each contextual structure (

→
K, λ) with (

→
K, λ) |= G1,

we write G1 |= G2.

We will consider CGwCs with variables only up to isomorphism and renaming
of the variables. This idea is the well known alpha-conversion of formulas in linear
and symbolic formalizations of FOL. Graphs which are identical up to different
variable names will be called equivalent (this term is adopted from RDF).
Definition 5 (Equivalence of Graphs). Let G := (V,E, ν,�, Cut, area, κ, ρ),
G′ := (V ′, E′, ν′,�′, Cut′, area′, κ′, ρ′) be two CGwCs with variables. We will say
that G and G′ are equivalent, if G′ is isomorphic to a CGwC with variables G′′ :=
(V,E, ν,�, Cut, area, κ, ρ′′) such that there is a bijective mapping f : Var → Var
which satisfies ρ′′(v) = ρ(v) for each v ∈ V with ρ(v) ∈ G and ρ(v′′) = f(ρ(v))
for each v ∈ V with ρ(v) ∈ Var .

Obviously, equivalent graphs have same meaning, i.e. if M is a model and G,G′

are two equivalent CGwCs with variables over A, we have M |= G ⇐⇒ M |= G′.
In the forthcoming calculus, we could employ a rule which allows to transform

a CGwC with variables into an equivalent graph. In this work, we use a more
convenient approach: To ease the handling of CGwCs with variables, we agree
that CGwCs with variables are considered only up to equivalence.

Variables in Concept Graphs 157

3 Purified CGwCs with Variables

In the following sections, we will deal with different kinds of CGwCs. Before we
proceed, a simple notational convention shall be introduced: We will sometimes
use indices to denote which kind of CGwCs we use. An index g denotes CGwCs
with generic markers, and the indices v and pv denotes CGwCs with variables
and purified CGwCs with variables, respectively. Moreover, we will use upper
indices in brackets to denote mappings between these different classes of CGwCs.

We start with the canonical translation from purified CGwCs with variables
to CGwCs with generic markers, which is given by replacing each variable by a
generic marker. Vice versa, if a CGwCs with generic markers is given, we can
replace each generic marker by a fresh (i.e. a variable which is not used so far)
variable. Of course, the assignment of variables to generic vertices is not uniquely
given, but this poses no problem, as we consider CGwCs with variables only up
to equivalence.

Definition 6 (Translations (g) and (pv)). Let G :=(V,E, ν,�, Cut, area, κ, ρ)
be a purified CGwC with variables. Then let G(g) := (V,E, ν,�, Cut, area, κ, ρ(g))
the CGwC with generic markers with ρ(g)(v) = ρ(v), if v ∈ G, and ρ(g)(v) = ∗,
if v ∈ V Var. Vice versa, let G := (V,E, ν,�, Cut, area, κ, ρ) be a CGwC with
generic markers, and let f : V ∗ → Var be an injective mapping from the set of
generic nodes into the set of variables. Then let G(pv) be (the equivalence class
of) the purified CGwC with variables Gpv := (V,E, ν,�, Cut, area, κ, ρ(pv)) with
ρ(pv)(v) = ρ(v), if v ∈ G, and ρ(pv)(v) = f(v), if v ∈ V ∗.

Obviously, the mappings (pv) and (g) are mutually inverse bijections between
purified CGwCs with variables and CGwCs with generic markers. Moreover,
entailment is respected by (pv) and (g) , i.e. if M be is model and if Gpv is a
variable-purified CGwCs and Gg is a CGwC with generic markers, we have

M |= Gpv ⇐⇒ M |= G (g)
pv and M |= Gg ⇐⇒ M |= G (pv)

g (1)

These results justify the use of the term ‘translation’ for (pv) and (g). Now we
have to carry over the adequate calculus for CGwCs with generic markers to
purified CGwCs with variables. The idea is straightforward: We will translate
each rule for CGwCs with generic markers to a corresponding rule for purified
CGwCs with variables. Let r be a rule of the calculus for generic CGwCs. We
will write Ga � g

r Gb, if Ga,Gb are two CGwCs with generic markers such that Gb

can be derived from Ga by an application of the rule r. Now we will ‘translate’
each rule � g

r to a rule � pv
r for purified CGwCs with variables, i.e., the calculus

� pv will satisfy that

Ga � g
r Gb ⇐⇒ G(pv)

a � pv
r G

(pv)
b (2)

holds for all CGwCs with generic markers Ga and Gb. Note that vice versa, as
(pv) and (g) are mutually inverse bijections, from (2) we obtain Ga � pv

r Gb ⇐⇒
G

(g)
a � g

r G
(g)
b for all CGwCs with variables Ga and Gb as well.

158 Frithjof Dau

If the calculus � pv is designed this way, it is complete. In order to see this,
let Ga, Gb be two purified CGwCs with variables. Then we have:

Ga |= Gb
(1)⇔ G(g)

a |= G
(g)
b ⇔ G(g)

a � g G
(g)
b

(2)⇔ G(g)(pv)
a � pv G

(g)(pv)
b ⇔ Ga � pv Gb

Now we can provide the translations of the calculus for CGwCs with generic
markers to purified CGwCs with variables such which satisfies Eqn. (2). The
differences to the calculus for CGwCs with generic markers are indicated by
writing the changed phrases in a different text style.

Definition 7 (Calculus for Purified CGwCs with Variables).
The calculus for purified CGwCs with variables over the alphabet A :=

(G, C,R) consists of the following rules:

– erasure: In positive contexts, any directly enclosed edge, isolated vertex, and
closed subgraph may be erased.

– insertion: In negative contexts, any directly enclosed edge, isolated vertex,
and closed subgraph whose variable vertices are labeled with fresh variables
may be inserted.

– iteration: Let G0 := (V0, E0, ν0,�0, Cut0, area0, κ0, ρ0) be a (not necessar-
ily closed) subgraph of G and let c ≤ cut(G0) be a context such that c /∈ Cut0.
Then a copy of G0, where each vertex v = P : α is replaced by v = P : α′

for a fresh variable α′, may be inserted into c. For every vertex v ∈ V ∗
0 with

cut(v) = cut(G0), an identity-link from v to its copy may be inserted.
– deiteration: If G0 is a subgraph of G which could have been inserted by rule

of iteration, then it may be erased.
– double cuts: Double cuts (two cuts c1, c2 with area(c1) = {c2}) may be

inserted or erased.
– generalization: For evenly enclosed vertices and edges, their concept names

resp. their relation names may be generalized. Moreover, for evenly enclosed
vertices which carry an object name as reference, the object name may be
replaced by a fresh variable α.

– specialization: For oddly enclosed vertices and edges, their concept names
resp. their relation names may be specialized. Moreover, for oddly enclosed
vertices which carry a variable as reference, the variable may be replaced by
an object name.

– exchanging references: Let e ∈ Eid be an identity link with ρ(e
∣∣
1
) = g1,

ρ(e
∣∣
2
) = g2, g1, g2 ∈ G ∪ Var and cut(e) = cut(e

∣∣
1
) = cut(e

∣∣
2
). Then the

references of v1 and v2 may be exchanged, i.e., the following may be done:
We can set ρ(e

∣∣
1
) = g2 and ρ(e

∣∣
2
) = g1.3

3 Note that we allow to exchange two variable references as well, but applying the rule
this way to a purified CGwCs with variables yields simply an equivalent graph, and
equivalent graphs are already considered to be identical. Nonetheless, in the next
section we will use this rule for not necessarily purified CGwCs with variables as
well, and for these graphs, the rule has indeed an effect.

Variables in Concept Graphs 159

– merging two vertices: Let e ∈ Eid be an identity link with ν(e) = (v1, v2)
such that
• cut(v1) ≥ cut(e) = cut(v2),
• ρ(v1) = ρ(v2) ∈ G or ρ(v1), ρ(v2) ∈ Var, and
• κ(v2) = �

hold. Then v1 may be merged into v2, i.e., v1 and e are erased and, for every
edge e ∈ E, e

∣∣
i
= v1 is replaced by e

∣∣
i
= v2.

– splitting a vertex: Let g ∈ G ∪ Var. Let v = P : g be a vertex in the
context c0 and incident with relation edges R1, . . . , Rn, placed in contexts
c1, . . . , cn, respectively. Let c be a context such that c1, . . . , cn ≤ c ≤ c0. Then
the following may be done: In c, a new vertex v′ = � : g′ , where g′ = g, if
g ∈ G, or g′ is a fresh variable, if g ∈ Var, and a new identity-link between v
and v′ is inserted. On R1, . . . , Rn, arbitrary occurrences of v are substituted
by v′.

– �-erasure: For g ∈ G ∪ Var, an isolated vertex � : g may be erased from
arbitrary contexts.

– �-insertion: For g ∈ G ∪ Var, an isolated vertex � : g may be inserted in
arbitrary contexts. Particularly, if g ∈ Var, g has to be a fresh variable in
order to obtain a well-formed purified CGwC with variables.

– identity-erasure: Let g ∈ G, let v1 = P1 : g and v2 = P2 : g be two
vertices. Then any identity-link between v1 and v2 may be erased.

– identity-insertion: Let g ∈ G, let v1 = P1 : g , v2 = P2 : g be two vertices
in contexts c1, c2, resp. and let c ≤ c1, c2 be a context. Then an identity-link
between v1 and v2 may be inserted into c.

4 CGwCs with Variables

In this section, we will extend the calculus � pv of Sec. 3 to the system of (not
necessarily purified) CGwCs with variables.

The calculus of Sec. 3 so far is defined only for purified CGwCs with variables.
Particularly, it can only be applied to these graphs. Moreover, we had to design
the rules of � pv to make sure that an application of any rule to a purified CGwCs
with variables yields a purified CGwCs with variables again. For example, the
rule ‘insertion’ of � pv can only be applied to a purified CGwC with variables,
and we only allowed to insert subgraphs where all variable boxes are labeled
with a fresh variable. As we now consider non-purified CGwCs with variables as
well, this is now an unnecessary restriction.

It is reasonable not to add more rules to � pv in order to obtain a sound and
complete calculus �v for CGwCs with variables. Instead, we will extend each rule
of � pv to a rule for CGwCs with variables, and if the rule had some restrictions
which were needed to ensure that an application of the rule yields a purified
CGwC with variables, these restrictions are now dismissed. On the other hand,
when we extend a rule � pv

r to a rule � v
r for not necessarily purified CGwCs with

variables, we have to take care that when � v
r is applied, no scopes of variables

are allowed to change. We exemplify this necessity with two examples.

160 Frithjof Dau

We start with an example of extending the rule ‘�-insertion’. Consider the
following valid graph with the meaning ‘every person is the child of a person’.

child_of Person: yPerson: x

For CGwCs with variables, it is self-suggesting that we now allow to insert �-
boxes into arbitrary contexts. Let us first consider an insertion of �-boxes such
that no scopes of variables are changed, for example like this:

child_of Person: yPerson: x Person: x Person: y

This is indeed a valid derivation. But if we insert a new box � : x which changes
the scope of the variable x, like in the next graph,

child_of Person: yPerson: y Person: x

we obtain an invalid graph with the meaning ‘every person is the child of every
person’. Thus, for CGwCs with variables, we can insert a new box � : α with
α ∈ Var only if this insertion does not change the scope of α.

In the rule ‘generalization’, we will not only allow to generalize an object
name to a fresh variable, but we will allow to generalize a variable to a fresh
variable as well. Again, we have to take care that no scope of a variable changes
when this rule is applied. To see this, consider the following valid graph with
the meaning ‘there exists a married person, and if this person is a father, it is a
male adult’ (we assume that only adults are allowed to marry).

is_married malePerson: x xFather: Adult: x

We can generalize the variable x of the innermost concept box to the fresh
variable z. Then we obtain the following graph:

is_married malePerson: x xFather: Adult: z

The meaning of this graph is ‘there exists a married person, and if this person
is a father, there exists a male adult’. Obviously, this derivation is valid. But if
we generalize the variable x of the outermost concept box to the fresh variable
z, we obtain the following graph where the scope of x has changed:

is_married malePerson: z xFather: Adult: x

Variables in Concept Graphs 161

The meaning of this graph is ‘there exists a married person, and every father is
a male adult’, which is, as there are fathers who are still a minor, not true.

The calculus � pv had been designed to make sure that an application of any
rule to a purified CGwCs with variables yields a purified CGwCs with variables
again. This restriction can be dismissed now, but recall that we only consider
CGwCs with variables which have dominating variable boxes. This has to be
taken into account when the rules of � v are introduced. To summarize: If we
reformulate a rule �pvr to a rule �v

r , we have to make sure that no scope of any
variable is changed, and applying a rule yields always a CGwC with variables
having dominating variable boxes.

Now we are prepared to provide the calculus for CGwCs with variables. Most
of the rules are direct extensions of the rules for purified CGwCs with variables,
but there are two significant changes. First of all, in the generalization rule, we
allow to replace the variable of a variable vertex by a fresh variable. Secondly,
in the rule ’splitting a vertex’, if the reference of the vertex is a variable, we
now allow that the new copy is labeled with the same variable as well. The
specialization rule and the rule ‘merging two vertices’ are extended in a way
that they allows the reverse transformation in oddly enclosed contexts.

Definition 8 (Calculus for CGwCs with Variables).
The calculus for variable-purified CGwCs over the alphabet A := (G, C,R)

consists of the following rules:

– erasure: In positive contexts, any directly enclosed edge, isolated vertex, and
closed subgraph G′, where each variable box of G′ is dominated by a variable
box which does not belong to G′, may be erased.

– insertion: In negative contexts, any directly enclosed edge, isolated vertex,
and closed subgraph G′, where each variable box of G′ is dominated by a
variable box which does not belong to G′, may be inserted.

– iteration: Let G0 := (V0, E0, ν0,�0, Cut0, area0, κ0, ρ0) be a (not necessar-
ily closed) subgraph of G and let c ≤ cut(G0) be a context such that c /∈ Cut0.
Then a copy of G0, where each vertex v = P : α is replaced by v = P : α′

for a fresh variable α′, may be inserted into c. For every vertex v ∈ V ∗
0 with

cut(v) = cut(G0), an identity-link from v to its copy may be inserted.
– deiteration: If G0 is a subgraph of G which could have been inserted by rule

of iteration, then it may be erased.
– double cuts: Double cuts (two cuts c1, c2 with area(c1) = {c2}) may be

inserted or erased.
– generalization: For evenly enclosed vertices and edges, their concept names

resp. their relation names may be generalized. Moreover, for each evenly
enclosed vertex, its reference may be replaced by a fresh variable α.

– specialization: For vertices v and edges e in the area of an odd cut c, their
concept names resp. their relation names may be specialized. Moreover, if
v is a singular variable vertex, this variable may be replaced by an object
name or another variable α, provided we have scope(α) ≥ c in G.

162 Frithjof Dau

– exchanging references: Let e ∈ Eid be an identity link with ρ(e
∣∣
1
) = g1,

ρ(e
∣∣
2
) = g2, g1, g2 ∈ G ∪ Var and cut(e) = cut(e

∣∣
1
) = cut(e

∣∣
2
). Then the

references of v1 and v2 may be exchanged, i.e., the following may be done:
We can set ρ(e

∣∣
1
) = g2 and ρ(e

∣∣
2
) = g1.4

– merging two vertices: Let e ∈ Eid be an identity link with ν(e) = (v1, v2)
such that
• cut(v1) ≥ cut(e) = cut(v2),
• ρ(v1) = ρ(v2) ∈ G, or ρ(v1), ρ(v2) ∈ Var such that ρ(v1) = ρ(v2) or v2 is

a singular variable vertex, and
• κ(v2) = �

hold. Then v1 may be merged into v2, i.e., v1 and e are erased and, for every
edge e ∈ E, e

∣∣
i
= v1 is replaced by e

∣∣
i
= v2.

– splitting a vertex: Let g ∈ G ∪ Var. Let v = P : g be a vertex in the
context c0 and incident with relation edges R1, . . . , Rn, placed in contexts
c1, . . . , cn, respectively. Let c be a context such that c1, . . . , cn ≤ c ≤ c0. Then
the following may be done: In c, a new vertex v′ = � : g′ , where g′ = g, if
g ∈ G, and g′ = g or g′ is a fresh variable, if g ∈ Var, and a new identity-link
between v and v′ is inserted. On R1, . . . , Rn, arbitrary occurrences of v are
substituted by v′.

– �-erasure: For g ∈ G, an isolated vertex � : g may be erased from ar-

bitrary contexts. For α ∈ Var, an dominated isolated vertex � : α may be
erased from arbitrary contexts.

– �-insertion: Let c be context. For g ∈ G ∪ Var, an isolated vertex � : g

may be inserted into area(c). For α ∈ Var with scope(α) ≥ c, an isolated
vertex � : α may be inserted into area(c).

– identity-erasure: Let g ∈ G ∪ Var, let v1 = P1 : g and v2 = P2 : g be
two vertices. Then any identity-link between v1 and v2 may be erased.

– identity-insertion: Let g ∈ G ∪ Var, let v1 = P1 : g , v2 = P2 : g be two
vertices in contexts c1, c2, resp. and let c ≤ c1, c2 be a context. Then an
identity-link between v1 and v2 may be inserted into c.

in contrast to purified CGwCs with variables, as we extended the class of well-
formed graphs, the soundness of these rules is not immediately clear. Nonethe-
less, to each rule of the calculus for CGwCs with variables corresponds a rule
for CGwCs with generic markers. For each rule of the calculus for CGwCs with
generic markers, a soundness-proof is provided in [3]. The underlying ideas for
the rules are in both systems identical, and a closer observation of the proofs of
[3] shows that they can be rewritten for the system of CGwCs with variables.
Thus, the following lemma is given without a proof.

Lemma 1 (Soundness of � v). The rules of � v are sound, i.e., for two CGwCs
with variables G v

a ,G v
b , we have G v

a � v G v
b =⇒ G v

a |= G v
b .

4 Note that we allow to exchange two variable references as well, which has now, in
contrast to purified CGwCs with variables has an effect.

Variables in Concept Graphs 163

Now we have to show that the rules of �v are complete. We start with a
lemma where we show that each CGwCs with variables can be transformed to
a purified CGwCs with variables, and vice versa, with the rules of �v.

Lemma 2. For each CGwC with variables G v exists an syntactically equivalent
purified CGwC with variables G pv, i.e., we have G v �v G pv and G pv �v G v.

Proof: We will transform G v into a purified CGwC
with variables G pv. The procedure of the proof shall
be exemplified with the graph on the right.

P:x1 Q:x1

For each variable vertex v, we do the following: First,
v is split such that the copy v′ of v is labeled with
a fresh variable, and all occurrences of v on an edge
are replaced by v′. Then, the references of v and v′

are exchanged.
After this, each variable box which is not a singular
variable box is labeled with the concept name �.

x: 1 :x1

P:x2 Q:x3

Then, for each variable α, we choose an dominating
variable box vα, and insert an identity-link between
vα and all remaining vertices labeled with α. x: 1 :x1

P:x2 Q:x3

Finally, for each variable α, each variable box w �= vα

labeled with α is merged into vα.
x: 1

P:x2

Q:x3

The resulting graph G pv is purified. As each step in the proof can be carried
out in both directions, G pv is provably equivalent to G v, thus we are done. �

Each rule �v
r of �v is an extension of the rule � pv

r . Thus, �v is a complete
calculus for purified CGwCs. Together with the last lemma, we immediately
obtain the completeness of �v, i.e., we get:

Corollary 1 (Completeness of � v). The rules of � v are complete, i.e., for
two CGwCs with variables Ga,Gb, we have Ga |= Gb =⇒ Ga � v Gb.

5 Conclusion

In this paper, we investigated how the results of [3] for CGwCs with generic
markers can be transferred to CGwCs with variables. At a first glance, the dif-
ference between these two systems is of minor syntactical nature. But a closer
observation shows that one has to take care of several technical details, mostly
in the formalization of the transformation rules for CGwCs with variables. Par-
ticularly, we had to take care that an application of a transformation rule to a

164 Frithjof Dau

CGwCs yields a well-formed graph again, and we had to ensure that no applica-
tion of an transformation rule changes the scope of a variable. These restrictions
result in transformation rules CGwCs with variables which are technically more
complex than their counterparts for CGwCs with generic markers.

The discussion of the preceeding sections can be applied to other formaliza-
tions of conceptual graphs as well. So we see that on the one hand, it is necessary
to investigate conceptual graphs. with variables on its own. On the other hand,
this work shows that one main goal of conceptual graphs, namely that humans
can better handle them than any symbolic notation for logic, is better achieved
if generic markers instead of variables are used for existential quantification. For
this reason, this conclusion advocates the use of generic markers.

References

[1] J. F. Baget: Homomorphismes d’hypergraphes pour la subsumption en
RDF/RDFS. RSTI L’objet, LMO 04, 2004, p. 203–216.

[2] M.-L. Mugnier: Concept Types and Coreference in Simple Conceptual Graphs.
In: Pfeiffer, H. D.; Wolff, K. E. (Eds): Conceptual Structures at Work, LNAI,
Vol. 3127, Springer-Verlag, Berlin – Heidelberg – New York, 2004, p 303–318.

[3] F. Dau: The Logic System of Concept Graphs with Negation (And Its Relationship
to Predicate Logic). LNAI, Vol. 2892, Springer, Berlin–Heidelberg–New York,
2003.

[4] F. Dau: RDF as Graph-Based Diagrammatic Reasoning System: Syntax, Seman-
tics, Calculus Submitted to the 2nd European Semantic Web Conference.

[5] F. Dau: Rhetorical Structures in Diagrammatic Reasoning Systems. Submitted
to the symposium on Visual Languages and Human Centric Computing 05.

[6] P. Hayes: RDF Semantics: W3C Recommendation. 10 February 2004.
http://www.w3.org/TR/rdf-mt/

[7] J. Klinger: Semiconcept Graphs with Variables. In: U. Priss, D. Corbett, and
G. Angelova (Eds.): Conceptual Structures: Integration and Interfaces. LNAI
2393. Springer-Verlag, Heidelberg-Berlin, 2002.

[8] J. Klinger: The Logic System of Protoconcept Graphs. PhD-thesis. To appear.
[9] F. Manola, E. Miller: RDF Primer. http://www.w3.org/TR/rdf-primer/

[10] C. S. Peirce: Collected Papers. Harvard University Press, Cambridge, Mas-
sachusetts, 1931–1935.

[11] J. F. Sowa: Conceptual Structures: Information Processing in Mind and Machine.
The System Programming Series. Adison-Wesley, Reading 1984.

[12] J. F. Sowa: Conceptual Graphs Summary. in: T. E. Nagle, J. A. Nagle, L. L. Ger-
holz, P. W. Eklund (Eds.): Conceptual Structures: current research and practice,
Ellis Horwood, 1992, 3–51.

[13] J. F. Sowa: Logic: Graphical and Algebraic, Manuscript, Croton-on-Hudson 1997.
[14] R. Wille: Existential Concept Graphs of Power Context Families. In: U. Priss,

D. Corbett and G. Angelova (Eds.): Conceptual Structures: Integration and In-
terfaces. LNAI 2393, Springer Verlag, Berlin–New York, 2002.

[15] R. Wille: Implicational Concept Graphs. In: H. D.. Pfeiffer, K. E. Wolff (Eds.):
Conceptual Struchtures at Work. LNAI 3127, Springer Verlag, Berlin–New York,
2004.

Variables in Concept Graphs 165

6 Appendix: The Calculi for Both Systems

In this appendix, a short overview on the handling of variables in for the calculi
� pv for purified CGwCs with variables and �v for CGwCs with variables is
provided.

p
u
ri
fi
ed

C
G

w
C

s
w

it
h

va
ri
a
b
le

s
C

G
w

C
s

w
it
h

va
ri
a
b
le

s

er
a
su

re
in

se
rt

io
n

E
a
ch

cl
o
se

d
su

b
g
ra

p
h

(w
h
ic

h
ca

n
b
e

a
n

is
o
la

te
d

v
er

-
te

x
)

m
ay

b
e

er
a
se

d
.

A
rb

it
ra

ry
cl

o
se

d
su

b
g
ra

p
h
s

(w
h
ic

h
ca

n
b
e

is
o
la

te
d

v
er

ti
ce

s)
,

if
th

ey
co

n
ta

in
o
n
ly

fr
es

h
va

ri
a
b
le

s,
m

ay
b
e

in
se

rt
ed

.

O
n
ly

su
b
g
ra

p
h
s

G
′

(w
h
ic

h
ca

n
b
e

a
si
n
g
le

is
o
la

te
d

v
er

te
x
,
w

h
er

e
a
ll

va
ri
a
b
le

b
ox

es
o
f

G
′
a
re

d
o
m

in
a
te

d
b
y

o
th

er
va

ri
a
b
le

b
ox

es
w

h
ic

h
d
o

n
o
t

b
el

o
n
g

to
G

′ ,
su

b
g
ra

p
h

m
ay

b
e

er
a
se

d
o
r

in
se

rt
ed

.

it
er

a
ti
o
n

d
ei

te
ra

ti
o
n

If
a

su
b
g
ra

p
h

G
′
is

it
er

a
te

d
,
th

en
in

th
e

co
p
y

o
f

G
′ ,

ea
ch

va
ri
a
b
le

h
a
s

to
b
e

re
p
la

ce
d

b
y

a
fr

es
h

va
ri
a
b
le

.
If

a
su

b
g
ra

p
h

G
′

is
it
er

a
te

d
,
th

en
in

th
e

co
p
y

o
f

G
′ ,

ea
ch

va
ri
a
b
le

h
a
s

to
b
e

re
p
la

ce
d

b
y

a
fr

es
h

va
ri
a
b
le

.
O

n
ly

su
b
g
ra

p
h
s

w
it
h

si
n
g
u
la

r
va

ri
a
b
le

b
ox

es
ca

n
b
e

d
ei

te
ra

te
d
.

d
o
u
b
le

cu
ts

n
o

p
ro

b
le

m
s

n
o

p
ro

b
le

m
s

g
en

er
a
l.

sp
ec

ia
l.

F
o
r

th
e

ru
le

’g
en

er
a
li
za

ti
o
n
’,

o
b
je

ct
n
a
m

es
ca

n
b
e

re
p
la

ce
d

b
y

fr
es

h
va

ri
a
b
le

s.
(N

o
te

th
a
t

g
en

er
a
li
zi

n
g

va
ri
a
b
le

b
ox

es
to

va
ri
a
b
le

b
ox

es
w

it
h

a
fr

es
h

va
ri
a
b
le

h
a
s

n
o

eff
ec

t)
.

V
ic

e
v
er

sa
,
fo

r
th

e
ru

le
’s
p
ec

ia
li
za

ti
o
n
’,

va
ri
a
b
le

s
ca

n
b
e

sp
ec

ia
li
ze

d
to

o
b
je

ct
n
a
m

es
.

F
o
r
th

e
ru

le
’g

en
er

a
li
za

ti
o
n
’,

o
b
je

ct
n
a
m

es
ca

n
b
e

g
en

-
er

a
li
ze

d
to

fr
es

h
va

ri
a
b
le

s.
If

a
va

ri
a
b
le

b
ox

is
d
o
m

i-
n
a
te

d
,
it
s

va
ri
a
b
le

ca
n

b
e

g
en

er
a
li
ze

d
to

a
fr

es
h

va
ri
-

a
b
le

.
V

ic
e

v
er

sa
,

fo
r

th
e

ru
le

’s
p
ec

ia
li
za

ti
o
n
’,

va
ri
a
b
le

s
in

si
n
g
u
la

r
va

ri
a
b
le

b
ox

es
ca

n
b
e

sp
ec

ia
li
ze

d
to

o
b
je

ct
n
a
m

es
.
M

o
re

ov
er

,
va

ri
a
b
le

s
in

si
n
g
u
la

r
va

ri
a
b
le

b
ox

es
ca

n
b
e

re
p
la

ce
d

b
y

a
va

ri
a
b
le

α
,
if

th
e

b
ox

is
-a

ft
er

th
e

tr
a
n
sf

o
rm

a
ti
o
n
-

d
o
m

in
a
te

d
b
y

a
n
o
th

er
va

ri
a
b
le

b
ox

.

ex
ch

a
n
g
in

g
re

fe
re

n
ce

s
N

o
re

st
ri

ct
io

n
s,

b
u
t
d
u
e

to
th

e
eq

u
iv

a
le

n
ce

o
f
g
ra

p
h
s,

ex
ch

a
n
g
in

g
th

e
re

fe
re

n
ce

s
o
f

tw
o

va
ri
a
b
le

b
ox

es
h
a
s

n
o

eff
ec

t.

N
o

re
st

ri
ct

io
n
s.

N
o
te

th
a
t

ex
ch

a
n
g
in

g
th

e
re

fe
re

n
ce

s
o
f
tw

o
va

ri
a
b
le

b
ox

es
n
ow

h
a
s

a
n

eff
ec

t.

sp
li
t/

m
er

g
e

v
er

ti
ce

s
If

a
va

ri
a
b
le

b
ox

is
sp

li
t,

th
e

n
ew

b
ox

h
a
s

to
b
e

la
-

b
el

le
d

w
it
h

fr
es

h
va

ri
a
b
le

.
If

a
va

ri
a
b
le

b
ox

is
sp

li
t,

th
e

n
ew

b
ox

h
a
s

to
b
e

la
-

b
el

le
d

w
it
h

sa
m

e
o
r

fr
es

h
va

ri
a
b
le

.

�-
er

a
su

re
�-

in
se

rt
io

n
A

n
is
o
la

te
d
�-

b
ox

ca
n

b
e

er
a
se

d
.

A
n

is
o
la

te
d

�-
b
ox

w
h
ic

h
is

la
b
el

le
d

w
it
h

a
n

o
b
je

ct
n
a
m

e
o
r

a
fr

es
h

va
ri
a
b
le

ca
n

b
e

in
se

rt
ed

.

A
n

is
o
la

te
d

�-
b
ox

,
if

it
is

la
b
el

le
d

w
it
h

a
n

o
b
je

ct
n
a
m

e,
o
r

if
is

a
va

ri
a
b
le

b
ox

w
h
ic

h
is

d
o
m

in
a
te

d
b
y

a
n
o
th

er
va

ri
a
b
le

b
ox

,
o
f

if
it

is
a

a
si
n
g
u
la

r
va

ri
a
b
le

b
ox

,
ca

n
b
e

er
a
se

d
o
r

in
se

rt
ed

.

id
-e

ra
.

id
-i
n
s.

id
-e

ra
su

re
/
id

-i
n
se

rt
io

n
is

p
o
ss

ib
le

o
n
ly

b
et

w
ee

n
tw

o
o
b
je

ct
b
ox

es
w

it
h

th
e

sa
m

e
re

fe
re

n
ce

s.
id

-e
ra

su
re

/
id

-i
n
se

rt
io

n
is

p
o
ss

ib
le

b
et

w
ee

n
tw

o
o
b
je

ct
b
ox

es
o
r

tw
o

va
ri
a
b
le

b
ox

es
w

it
h

th
e

sa
m

e
re

fe
re

n
ce

s.

Arbitrary Relations in Formal Concept Analysis

and Logical Information Systems

Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

IRISA/Université de Rennes 1
Campus de Beaulieu, 35042 Rennes cedex, France

Firstname.Lastname@irisa.fr

Abstract A logical view of formal concept analysis considers attributes
of a formal context as unary predicates. In a first part, we propose an
augmented definition that handles binary relations between objects. A
Galois connection is defined on augmented contexts. It represents con-
cept inheritance as usual, but also relations between concepts. As usual,
labeling operators are also defined. In particular, concepts and relations
are visible and labeled in a single structure. In a second part, we show
how relations can be used for navigating in an augmented concept lat-
tice. This part augments the theory of Logical Information Systems. An
implementation is sketched, and first experimental results are presented.

1 Motivation

Previous works have shown how FCA can serve as a basis for navigating in a set of
objects [1,2,3], automated learning [4], and other operations like querying, data-
mining, and context updating [5]. All these works show the versatility of FCA
and of its basic schema of a Galois connection between sets of objects and their
descriptions. The Galois connection yields a concept lattice structure that is the
formal foundation for navigating, infering, approximating, etc. However in most
applications of FCA, and Logical Information Systems (LIS) [5] in particular,
objects are described in isolation; no explicit relation between objects can be
described. Still, many applications are better modelled by arbitrary relations
between objects rather than by atomic objects only: e.g., in software engineering
and geographical information systems.

Power context families [6] introduce arbitrary relations in formal contexts
but not in the concept lattice of objects, which is used as a basis for navigating,
querying, and datamining. We want to extend the definitions of Galois connec-
tion, intent, concept lattice, and labeling to a power context family as a whole,
instead to each context of the family in isolation, while focusing on concepts
whose extent is a set of objects. Another way to say it is that we want to incor-
porate relations in the description of objects as well as in the concept lattice.
A direct application will be to augment navigation in LIS by allowing to fol-
low relations of the formal context between concepts in addition to hierarchical
relations.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 166–180, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Arbitrary Relations in Formal Concept Analysis 167

Though this work applies equally well to standard FCA, we express it in
terms of logical concept analysis [3] because intentions of relations will take
the form of quantified formulas, which fits better a framework in which logical
formulas are native.

The structure of the sequel is as follows. Section 2 presents other attempts to
introduce relations in FCA, and logical formalisms that have inspired this work.
Section 3 describes our proposal. Section 4 presents its application to navigation
in a logical information system, and Section 5 sketches its implementation as a
file system, and an example.

2 Related Work

The main attempt to incorporate relations in FCA is the power context fam-
ily [6]. It consists of a vector of formal contexts (K1, . . . ,Kn) (n ≥ 2) with
Ki = (Oi,Ai, Ii) (i = 1, . . . , n) such that Oi ⊆ (O1)i. It encompasses well arbi-
trary relations at the context level, including n-ary relations. However, a different
concept lattice is generated for each context. On the contrary, we seek to define
a single concept lattice, where the concepts combine information about objects,
the relations they have, the objects accessible from these relations, and so on.
This is because we use concept lattices as a navigation structure in order to
retrieve sets of objects depending on their properties (including relations).

The handling of arbitrary relations in conceptual graphs [7] and description
logics [8] is just natural, since this is precisely what they are built for. However
in both formalisms, concepts are given a priori, and not generated from a formal
context. A conceptual graph and an ABox (set of objects and relations labeled
by logical properties) can be used to build a power context family, but both
formalisms lack the ability to exhibit collections of objects as FCA do.

Conceptual graphs have been combined with FCA by defining the concept
and relation types as the concepts of a power context family [9]. However, this
does not put relations in the concept lattice.

Description logics are languages of unary predicates whose most relevant
feature for this article is that they handle relations (called roles in the realm of
description logics) via quantifications. The theory of description logic tells how to
express classes and test whether a class entails another or whether an individual
belongs to a class. Prediger and Stumme [10] have used description logic to
defined logical scales, and build a formal context over a relational database,
but this context contains no relation. Baader et al. have also combined FCA
and description logics [11]. Besides the fact they have different objectives, a
key difference is that they use relations inside the representation of each object
(description logic concepts), whereas we here consider explicit relations between
objects of a context. In the terms of description logics, their context is a TBox
(set of terminological definitions), whereas our context is an ABox.

In this paper we adopt the choice of description logics to consider only binary
relations, knowing this is not really a restriction as n-ary relations can always
be converted to binary relations through reification.

168 Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

3 Relations in Logical Concept Analysis

3.1 Adding Relations to the Formal Context

Firstly, we define an object context that is identical to logical contexts previously
defined in LCA [3].

Definition 1 (object context).
An object context is a triple K1 = (O,L1, d1), where:
– O is a finite set of objects,
– L1 =def (L1,�1,⊥1) is a 0-sup-semilattice. L1 can be tought as a logic:

elements of L1 are called formulas, �1 is called disjunction, ⊥1 is the
neutral element for disjunction (i.e., false) and the order �1, defined by
x �1 y =def x �1 y = y, is called subsumption.

– d1 ∈ O → L1 is a mapping from objects to their logical description.

Lemma 1. Let K1 be an object context. The pair (ext1, int1), defined by

ext1(f1) =def {o ∈ O | d1(o) �1 f1} for f1 ∈ L1

int1(O) =def

⊔
1{d1(o) | o ∈ O} for O ⊆ O

is a Galois connection between P(O) and L1: O ⊆ ext1(f1) ⇔ int1(O) �1 f1.

Note 1.
⊔

1 is well-defined because O is finite, and
⊔

1 ∅ = ⊥1.

Secondly, we define a relation context that logically describes binary relations
between objects of an object context.

Definition 2 (relation context). Let O be a set of objects, as in Definition 1.
A relation context is a triple (R,L2, d2), where:
– R is a binary relation, i.e. a set of pairs in O × O, equiped with two map-

pings start and end, s.t. start((o, o′)) =def o and end((o, o′)) =def o′. More-
over, R is closed w.r.t. an inverse operation −1 such that for every rela-
tion r ∈ R, start(r−1) = end(r) and end(r−1) = start(r).

Note 2. In concrete contexts, r and r−1 may have proper names, like parent
and child. Moreover, start and end are generalized to sets of pairs, i.e. re-
lations, as follows: start(R) =

⋃
r∈R start(r) and end(R) =

⋃
r∈R end(r).

– L2 =def (L2,�2,⊥2, .
−1), s.t. (L2,�2,⊥2) is a 0-sup-semilattice. Again, L2

can be thougth as a logic. It must support an inverse operation (−1) over
formulas reflecting the inverse of relations (see below), and such that for
every f2, g2 ∈ L2, the following axioms are satisfied:
• (f−1

2)−1 ≡2 f2 (where f ≡2 g =def f �2 g ∧ g �2 f)
• f2 �2 g2 ⇔ f−1

2 �2 g−1
2 (�2 is invariant to reading direction).

– d2 ∈ R → L2 is a mapping from binary relations to logical formulas that is
compatible with the inverse operation on relations, i.e., d2(r−1) ≡2 d2(r)−1,
for all r ∈ R.

Arbitrary Relations in Formal Concept Analysis 169

m
a
le

fe
m

a
le

d
ea

d
o
ld

g
ro

w
n
-u

p
y
o
u
n
g

3
0
s

4
0
s

9
0
s

n
o
n
e

C
a
rl

B
a
rk

s
D

o
n

R
o
sa

T
a
li
a
fe

rr
o

O
sb

o
rn

e
W

a
lt

D
is
n
ey

downy x x x x
fergus x x x x x
matilda x x x x x
scrooge x x x x
hortense x x x x x
quackmore x x x x x
unknown x x
della x x x x x x
donald x x x
huey x x x x x
dewey x x x x x
louie x x x x x

h
u
sb

a
n
d

m
o
th

er

(downy, fergus) x
(hortense, quackmore) x
(della, unknown) x
(hortense, downy) x
(scrooge, downy) x
(mathilda, downy) x
(donald, hortense) x
(della, hortense) x
(huey, della) x
(dewey, della) x
(louie, della) x

Fig. 1. Object and relation context for the Duck’s family example.

Example 1. Figure 1 represents the object and relation context for the mem-
bers of Donald Duck’s family. This example takes place in classical FCA, which
is a special case of LCA where L1 = P(A1),⊥1 = A1 and �1 = ∩;
e.g., d1(downy) = {female, dead, 90s,Don Rosa}. L2 is defined in a similar fash-
ion. Note that according to Definition 2 the second table should actually be
closed by −1 to hold a relation context.

Lemma 2. Let K2 be a relation context. The pair (ext2, int2), defined by
ext2(f2) =def {r ∈ R | d2(r) �2 f2} for f2 ∈ L2

int2(R) =def

⊔
2{d2(r) | r ∈ R} for R ⊆ R

is a Galois connection between P(R) and L2: R ⊆ ext2(f2) ⇔ int2(R) �2 f2.

Note 3.
⊔

2 is well-defined because O is finite, and
⊔

2 ∅ = ⊥2.

The idea is now to combine contexts k1 and K2 in a context K, and logics
L1 and L2 in a logic L similar to description logics in that relations can be used
to retrieve objects depending on their relationships to other objects.

Definition 3 (combined context and logic). Let K1 be an object context,
and K2 be a relation context. The combined context is the pair (K1,K2) gath-
ering objects, relations, and their logical descriptions. The combined logic L is
the couple (L,�), where:
– L −→ � | L1 | ∃L2.L

– f � g=def

⎧⎪⎪⎨
⎪⎪⎩

true if g = �
f �1 g if f, g ∈ L1

(f2 �2 g2)∧(f ′ � g′) if f = ∃f2.f
′, g = ∃g2.g

′(where f ′, g′ ∈ L)
false otherwise

170 Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

Note 4. Formulas of L can be expressed in first-order predicate logic in the
following manner. L1 and L are sets of unary predicates, and L2 is a set of binary
predicates such that ∃f2.f is defined by (∃f2.f)(x) =def ∃x′.(f2(x, x′) ∧ f(x)).

Note 5. For convenience, we extend the subsumption � to sets of formu-
las G,F ⊆ L by defining G � f =def ∃g ∈ G : g � f , and
G � F =def ∀f ∈ F : G � f .

We now prove there exists a Galois connection between sets of objects and
sets of formulas from L, and we give a definition of it as a couple (ext , int). Then
it is well known from FCA [12] that a complete concept lattice can be defined.

Definition 4 (extent). Let K and L be the context and logic combined from K1

and K2. The extent in K of a set of formulas F ⊆ L is a set of objects defined
by ext(F) =def

⋂
f∈F ext ′(f), where

ext ′(f) =def

⎧⎨
⎩

O if f = �
ext1(f) if f ∈ L1

{start(r) | r ∈ ext2(f2), end(r) ∈ ext ′(f ′)} if f = ∃f2.f
′.

Definition 5 (intent). Let K and L be the context and logic combined from K1

and K2. The intent in K of a set of objects O ⊆ O is defined by

int(O) = {f ∈ L | O ⊆ ext ′(f)}.

Theorem 1 (relational Galois connection). Given a combined context K,
the pair (ext , int) defined above is a Galois connection between (P(O),⊆)
and (P(L),⊇), i.e. for every O ⊆ O and F ⊆ L: O ⊆ ext(F) ⇔ int(O) ⊇ F .

Theorem 2 (concept lattice). Let K be a combined context. Let the
set of concepts C be defined as the set of all pairs (O,F) ∈ P(O) × P(L)
such that O = ext(F) and F = int(O): O is called the extent of the
concept, and F is called its intent. The partial ordering (C,≤), where
(O,F) ≤ (O′, F ′) =def O ⊆ O′, is a complete lattice, the concept lattice, as a
direct consequence of Theorem 1.

It is important here to note that concept intents gather properties about ob-
jects as formulas in L1, properties about existing relations as formulas like ∃f2.�,
and recursively properties about related objects as formulas like ∃f2.f

′.
Definition 5 suggests that intents can be computed only by testing every

formula in L. In the following we show that approximations of these intents can
be effectively computed to an arbitrary accuracy.

Firstly, we define L(n) as the subset of L containing exactly all formulas
that have no more than n times the existential quantifier ∃. This corresponds to
restricting the depth of relation paths to n.

Arbitrary Relations in Formal Concept Analysis 171

Definition 6 (depth-n intent). Let K and L be the context and logic combined
from K1 and K2. The depth-n intent int(n)(O) in K for O ⊆ O is defined by

int(0)(O) = int1(O)
int(n + 1)(O) = int(n)(O)

∪ {∃int2(R).f ′ | ∃R ⊆ R, O = start(R), int(n)(end(R)) � f ′}.

This definition is well-founded, and because of the finiteness of objects and
relations every approximate intent is also finite. However they can represent an
infinite set of formulas thanks to subsumption � in L: if f /∈ int(n)(O) but
int(n)(O) � f , then f implicitly belongs to the intent of O at depth n.

Theorem 3 (depth-n relational Galois connection). Given a combined
context K and a depth n, the pair of mappings (ext , int(n)) is a Galois connec-
tion between (P(O),⊆) and (P(L(n)),�), i.e. for every O ⊆ O and F ⊆ L(n),
O ⊆ ext(F) ⇔ int(n)(O) � F .

Proof. We split proof in three parts.

1. Firstly, we prove that for all n ∈ N, O ⊆ O and f ∈ L(n),
O ⊆ ext ′(f) ⇒ int(n)(O) � f . The proof works by recurrence on the
depth n, and by induction on the syntax of formulas. The case where
n = 0 follows from Lemma 1, so we only show the general case n + 1,
when f = ∃f2.f

′, i.e., f ∈ L(n + 1), and so f ′ ∈ L(n).
O ⊆ ext ′(∃f2.f

′) =⇒ O ⊆ {start(r) | r ∈ ext2(f2), end(r) ∈ ext ′(f ′)}
=⇒ ∀o ∈ O : ∃r ∈ ext2(f2) : o = start(r), end (r) ∈ ext ′(f ′)
=⇒ ∃R ⊆ ext2(f2) : O = start(R), end(R) ⊆ ext ′(f ′)
=⇒ ∃R ⊆ R : O = start(R), R ⊆ ext2(f2), end(R) ⊆ ext ′(f ′)
=⇒ ∃R ⊆ R : O = start(R), int2(R) �2 f2, int(n)(end(R)) � f ′

(Lemma 2, recurrence hypothesis because f ′ ∈ L(n))
=⇒ ∃R ⊆ R : O = start(R), int(n)(end(R)) � f ′, ∃int2(R).f ′ � ∃f2.f

′

=⇒ ∃g ∈ int(n + 1)(O) : g � f (g = ∃int2(R).f ′)
=⇒ int(n + 1)(O) � f .

2. Secondly, we prove in the same way the reciprocal lemma,
i.e. int(n)(O) � f ⇒ O ⊆ ext ′(f).
Suppose int(n + 1)(O) � ∃f2.f

′

Either int(n)(O) � ∃f2.f
′ =⇒ O ⊆ ext ′(∃f2.f

′) (recurrence hypothesis)
or {∃int2(R).f ′ | R ⊆ R, O = start(R), int(n)(end(R)) � f ′} � ∃f2.f

′

=⇒ ∃R ⊆ R : O = start(R), int(n)(end(R)) � f ′, ∃int2(R).f ′ � ∃f2.f
′

=⇒ ∃R ⊆ R : O = start(R), int2(R) �2 f2, int(end(R)) � f ′

=⇒ ∃R ⊆ R : O = start(R), R ⊆ ext2(f2), end(R) ⊆ ext ′(f ′)
(Lemma 2, recurrence hypothesis because f ′ ∈ L(n))

=⇒ ∀o ∈ O : ∃r ∈ ext2(f2) : o = start(r), end (r) ∈ ext ′(f ′)
=⇒ O ⊆ ext ′(∃f2.f

′) =⇒ O ⊆ ext ′(f).
3. Finally, we prove the theorem for all n ∈ N, O ⊆ O and f ∈ L(n).

O ⊆ ext(F) ⇐⇒ ∀f ∈ F : O ⊆ ext ′(f) ⇐⇒ ∀f ∈ F : int(n)(O) � f (first
and second part of this proof) ⇐⇒ int(n)(O) � F . ��

172 Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

This last result entails that for every depth n a Galois connection is defined,
and so, a depth-n concept lattice can be derived from it. We complete this by
showing that when the depth tends to infinity the depth-n intent is equivalent
to the full intent of Definition 5.

Theorem 4 (limit relational Galois connection). Let K be a combined
context. For every set of objects O, when the depth n tends to infinity, the set of
formulas in L that are subsumed by the depth-n intent tends to be equal to the
full intent int(O), i.e.

∀O ⊆ O : ∀f ∈ L : f ∈ int(O) ⇐⇒ ∃n ∈ N : int(n)(O) � f.

Proof. f ∈ int(O) ⇐⇒ O ⊆ ext ′(f) ⇐⇒ O ⊆ ext({f})
⇐⇒ ∃n ∈ N : int(n)(O) � {f} (Theorem 3 because f ∈ L(n))
⇐⇒ ∃n ∈ N : int(n)(O) � f . ��

The exact full intents and concept lattice cannot be computed, especially if
there is a cycle between objects related by ∃f2.f

′ formulas. But this is not really
a problem since Theorems 3 and 4 show that we have a series of finite depth-n
intents and related concept lattices, which can be made as close as possible to
full intents and concept lattice.

3.2 Adding Relations to the Concept Lattice Labeling

We show in this section that all the information contained in the binary relation
context is present in the concept lattice C, and can be made explicit by adding
a relational labeling to the concept lattice, in addition to the usual labeling by
objects and formulas.

Definition 7 (labeling). Let C be a concept lattice. The labeling of C by for-
mulas, noted μ, and by objects, noted γ, are defined as follows:

μ ∈ L → C, μ(f) =def (ext({f}), int(ext({f}))),
γ ∈ O → C, γ(o) =def (ext(int({o})), int({o})).

It is well-known that a concept lattice contains the same information as the
object context from which it derives. We show now that the concept lattice
derived from a combined context also contains its relational information.

A way of showing that C contains in some way the relation concept lattice C2

is to build an order-preserving mapping from the latter to pairs of concepts of
the former. So we go on defining a relational version of μ and γ, applying to
pairs of concepts.

Definition 8 (relational labeling). Let c, c′ ∈ C. We define:
μ2 ∈ L2 → C2, μ2(f2) =def (μ(∃f2.�), μ(∃f−1

2 .�)),
γ2 ∈ R → C2, γ2(r) =def (γ(start(r)), γ(end (r))).

Arbitrary Relations in Formal Concept Analysis 173

This implies that in addition to subsumption links between concepts (≤),
there are relation links between concepts (either individual relations between
object-labeled concepts, or relational formulas between formula-labeled con-
cepts). Moreover, most properties on labeling functions are kept [12,5]. In the fol-
lowing, the ordering on pairs of concepts is defined by (c1, c

′
1) ≤ (c2, c

′
2) iff c1 ≤ c2

and c′1 ≤ c′2; and the inverse of a pair of concept is defined by (c, c′)−1 = (c′, c).
There exists an order-preserving mapping from the concept lattice of the rela-

tion context K2 into the concept lattice of the combined context K = (K1,K2).

Theorem 5 (order-preserving mapping). The mapping ϕ ∈ C2 → C2,
ϕ(c2) = μ2(int2(c2)) is order-preserving, i.e.,

∀c2, c
′
2 ∈ C2 : c2 ≤ c′2 ⇒ ϕ(c2) ≤ ϕ(c′2).

Corollary 1. A corollary of Theorem 5 is that the ordering between formula-
labels is preserved: ∀f2, f

′
2 ∈ L2, μ2(f2) ≤ μ2(f ′

2) ⇒ μ2(f2) ≤ μ2(f ′
2).

So, each time two relation labels are ordered in the relation con-
cept lattice C2, they are also ordered in the combined concept lattice C.
However the reverse does not hold. For example, consider the two rela-
tions parent and grand-parent, whose inverse are respectively child and
grand-child. It is true that anyone who has a grand-parent also has a parent
(μ(∃grand-parent.�) ≤ μ(∃parent .�)); reciprocally, anyone who has a grand-
child also has a child (μ(∃grand-child.�) ≤ μ(∃child .�)). This implies the la-
bel grand-parent/grand-child is lower than the label parent/child in the
combined concept lattice. But this is certainly not the case in the relation con-
cept lattice as a relation can never have both properties parent/child and
grand-parent/grand-child. In conclusion the combined concept lattice can
add useful implications compared to the relation concept lattice.

Example 2. Figure 2 shows the depth-1 concept lattice built from the combined
context of Example 1, and its labeling by attributes, objects, and relational
properties ∃r.�. Grey circles represent the concepts introduced by relations,
dashed arrows and italic labels stand for labeling by relations.

It shows that every mother has a husband, and reciprocally that every mar-
ried female is a mother. Hence, every duck who has a mother also has a father.

4 Querying and Navigating with Relations in LIS

In previous work about Logical Information Systems (LIS) [5], querying and
navigation are defined on an object context K1 = (O,L1, d1). Queries are for-
mulas in L1, and for every query q ∈ L1, ext1(q) is the set of answers to the
query. In order to help users building queries, even without knowledge about
both the context and the logic, a set of navigation links can be computed for
any query q in order to refine it. Navigation links are not searched in the whole
space of logical formulas. They are searched in a subset of L1 which we call nav-
igation features. It is computed by application of a user-defined function feat1

174 Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

Fig. 2. Concept lattice labeled by formulas, objects and some relations

to context K1. The smaller and simpler those features are, the simpler and more
efficient the navigation is.

The set of navigation links dirs(q) that can refine a query q is defined by:

dirs(q) =def Max�1{x ∈ feat1(K1) | ∅ � ext1(q �1 x) � ext1(q)}.

In order to have an efficient and progressive navigation, links computed by
dirs(q) must carry information, i.e. ext1(q �1 x) � ext1(q), not lead to a dead-
end, i.e. ∅ � ext1(q �1 x), and be as general as possible w.r.t. subsumption,
i.e. Max�1 .

Each link x enables the user to move from the query q to the query q �1 x.
Finally individual objects have to be found in some place. Hence the definition
of local objects for any query q:

locals(q) =def ext1(q) \
⋃

x∈dirs(q)

ext1(x).

Note that the definition of dirs relies on a conjunction operation �1 on
queries. However, such a connective was not required on the development of
logical concept analysis. Similarly, navigation is supposed to start from the top
element of the logic, true or �1, whereas it is the bottom element, false or ⊥1

Arbitrary Relations in Formal Concept Analysis 175

that is required in logical concept analysis. This is not a contradiction, but this
must be examined in the actual definition of a querying and navigation system.

In the following we present the relational extension of querying and naviga-
tion in formal contexts.

4.1 Querying: Query Language and Extent

In order to have boolean operators in the query language Lq, we extend the
combined logic L in the following way:

Lq → � | ⊥ | Lq ∧ Lq | Lq ∨ Lq | ¬Lq | L1 | ∃L2.Lq.

It is not necessary to extend the subsumption � to the query language as
will be made clear later. However we do need to define the extent of queries,
given some context K = (K1,K2) in order to answer queries.

Definition 9 (query extent). Let K be a combined context from K1 and K2.
extq(�) = O extq(q1 ∧ q2) = extq(q1) ∩ extq(q2)
extq(⊥) = ∅ extq(q1 ∨ q2) = extq(q1) ∪ extq(q2)
extq(f1 ∈ L1) = ext1(f1) extq(¬q) = O \ extq(q)
extq(∃f2.q) = {start(r) | r ∈ ext2(f2), end(r) ∈ extq(q)}

The last 2 lines are taken from Definition 4, given that in these cases, queries
are in the logic L.

4.2 Features: Useful Features for Navigation

In this section we show that not all formulas in Lq need to be considered as
candidates for navigation links. This leads to a definition of featsq(K) that is
only a small subset of the full query language itself.

Firstly we define X(q) as the set of possible navigation links for some query q,
i.e., formulas satisfying the “strictly refining and relevant” property:

X(q) =def {x ∈ Lq | ∅ � extq(q ∧ x) � extq(q)}.

This definition differs from the definition of dirs by the fact that the selection
of subsumption-maximal elements is not applied, and that the full language Lq

is considered instead of a subset of features featq(K). Our purpose is precisely
to characterize the latter.

Lemma 3 (elimination of connectives). For every query q ∈ Lq,
q1 ∧ q2 ∈ X(q) ⇒ q1 ∈ X(q) ∨ q2 ∈ X(q), � /∈ X(q)
q1 ∨ q2 ∈ X(q) ⇒ q1 ∈ X(q) ∨ q2 ∈ X(q), ⊥ /∈ X(q)
¬q1 ∈ X(q) ⇒ q1 ∈ X(q)

This indicates that boolean connectors can all be ignored in features. For ex-
ample, consider the proposition about conjunction, and let q1∧q2 ∈ X(q). Either
both q1 and q2 are in X(q), and so q1∧q2 can be obtained by successively select-
ing q1 and q2; or only one subquery, say q1, is in X(q), which means that q1 ∧ q2

is in fact equivalent to q1 for navigation (they reach the same concept).

176 Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

Lemma 4. For all queries q, q′ ∈ Lq, and all relation formula x2 ∈ L2,
1. ∃x2.q

′ ∈ X(q) ⇔ q′ ∈ X(∃x−1
2 .q),

2. ∃x2.q
′ ∈ X(q) ⇒ extq(q ∧ ∃x2.�) �= ∅.

Lemma 4 allows to recursively decompose the search for relational links. It
shows this can be achieved by first looking for ∃x2.� formulas that make the
new query non-empty (second proposition), and then by replacing the � by
navigation links among the images of objects in q through relation x2 (first
proposition).

Hence, the set of useful navigation features for the language Lq is defined as
follows, given user-defined feature extraction functions feat1 and feat2.

Definition 10 (features).
feat q(K) = feat1(K1) ∪ {∃x2.x | x2 ∈ feat2(K2), x ∈ featq(K)}

This shows that the useful part of the query language for navigation is in-
cluded in L, even if general queries do not belong to L. Note that if the query
language in contexts K1 and K2 is based on propositional calculus, a variant of
Lemma 3 will hold; feat1(K1) and feat2(K2) are just the atomic formulas of the
logic of their context.

4.3 Navigation: Links and Local Objects, Selection and Traversal

We can now define a version of dirs that is extended with relations.

Definition 11 (Navigation links).

dirs(q) =def Max�{x ∈ featq(K) | ∅ � extq(q ∧ x) � extq(q)}.

There is no problem with using the subsumption � because feat q(K) ⊆ L.

Local objects are defined as usual: an object is local if it not accessible from
any navigation link. Navigation links in a combined context are of two kinds: ob-
ject formulas, and relation formulas. Object formulas are used in logical queries,
but relation formulas can be used either in logical queries, or as paths to go
through relations. In each case following a link transforms the current query q
as follows (assignement is denoted by :=).
1. A link x1 ∈ L1 is used as usual to refine a query: q := q ∧ x1. For instance,

property old can be such a refinement.
2. A link ∃x2.x ∈ L2 can also be used for refining a query, except that the

refinement applies to objects in relation to current objects instead of the
current objects themselves: q := q∧∃x2.x. For instance, property ∃parent .old
can be used to select individuals that have an old parent.

3. A link ∃x2.x ∈ L2 also means that relations of type x2 can be traversed to
reach objects of type x: q := x ∧ ∃x−1

2 .q. Only those objects of type x that
can be reached from q through x2 are considered. For instance, property
∃parent .old can be used to select the old parents of the curently selected
individuals.

Arbitrary Relations in Formal Concept Analysis 177

Cases 1 and 2 are kinds of conceptual navigation (from some concept to a
subconcept), whereas case 3 is a kind of relational navigation (from some concept
to a related concept).

One may want to consider a query like ∃x2.(x ∧ x′) (consider, say,
∃parent .(old ∧ loving) for old and loving parents). Lemma 3 shows that it is not
necessary to produce navigation links of this form. However, if we successively
select links ∃x2.x and ∃x2.x

′, then the resulting query is ∃x2.x ∧ ∃x2.x
′, which

is not equivalent to ∃x2.(x∧x′). This is where relational navigation comes in for
help: first, traverse x2 (q := ∃x−1

2 .�), then select x (q := ∃x−1
2 .� ∧ x), and se-

lect x′ (q := ∃x−1
2 .�∧x∧x′), and finally, traverse x−1

2 (q := ∃x2.(∃x−1
2 .�∧x∧x′),

i.e., q := ∃x2.(x ∧ x′)).

5 Implementation as a File System

Though a LIS can be implemented as a stand-alone application, a parallel be-
tween LIS notions and file system notions makes it natural to implement it as a
file system. This is the purpose of LISFS (LIS File System [13]) which is a file
system that offers the operations of a LIS at the operating system level. This
is achieved by considering files as objects, directories as formulas and paths as
conjunctions of directories. The root directory (/ under UNIX) plays the role of
the � formula. Thus, the absolute name of a file stands as its logical description.

Commands have essentially the same effects as UNIX shell commands,
w.r.t. this change. For instance, the shell command cd a changes the current
query q to q ∧ a, and the command ls is used to list the navigation links (com-
puted by dirs) and the local objects (computed by objects) of the current query.

5.1 Adding Arbitrary Relations to LISFS

From a file-system point of view, arbitrary relations can somewhat be understood
as symbolic links. As a matter of fact, having a relation r between two objects
o and o′ declares that o and o′ are linked and gives a description r to the link.
Regular UNIX links are just a special case where r can only take up one value:
the “synonym” relation.

Relations also extend the notion of symbolic link in that they can play two
roles in navigation. Indeed, they can be used for conceptual navigation, in which
case they behave as normal properties, and for relational navigation. In the case
of relational navigation, traversing a navigation link in LISFS is the counterpart
of following a symbolic link in UNIX, with the additional benefit that links in
LISFS have an inverse and apply to sets of objects.

Regarding navigation and querying, the following concrete syntax is adopted
(q denotes the current query):
– cd r>x selects objects whose image by r satisfies x: q := q ∧ ∃r.x,
– cd r<x selects objects whose antecedent by r satisfies x: q := q ∧ ∃r−1.x,
– cd r>> traverses relation r: q := ∃r−1.q,
– cd r<< traverses relation r−1: q := ∃r.q.

178 Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

[1]# ls
total 12
1 first_appearance:40s/
1 first_appearance:none/
1 old/
2 grown-up/
3 husband<true/
3 husband>true/
3 mother<true/
3 young/
4 female/
5 dead/
5 first_appearance:30s/
5 first_appearance:90s/
8 male/
8 mother>true/
11 creator:/
[2]# cd male; ls
total 8
1 first_appearance:40s/
1 first_appearance:none/
1 grown-up/
1 old/
2 dead/
2 first_appearance:90s/
3 husband<true/

3 young/
4 first_appearance:30s/
5 mother>true/
7 creator:/
[3]# cd husband<true; ls
total 3
1 first_appearance:none/
1 husband<creator:osborne/
1 husband<creator:taliaferro/
1 husband<first_appearance:30s/
1 husband<grown-up/
2 creator:/
2 dead/
2 first_appearance:90s/
2 husband<creator:carl_barks/
2 husband<dead/
2 husband<first_appearance:90s/
[4]# cd !creator: ; ls
total 1

unknown
[5]# cat unknown
The husband of Della Duck
[6]# cd husband<< ; ls
total 1

della

Fig. 3. A Running Example with the Duck Family Context

We use a slightly modified version of the shell command ln to create a relation
between two files that takes care of the name of the relation. E.g., we write
ln r o o’ to add a relation r between o and o′.

5.2 Example

Figure 3 shows LISFS augmented with arbitrary relations in action. Navigation
and querying take place in the Duck family context presented in Figure 1.

Starting from the � formula, command 1 asks for available navigation links.
The number of objects in the current query and in its possible refinements are
given. Quantified formulas appear under their concrete syntax: mother>true for
∃mother .�, mother<true for ∃mother−1.�, etc.

From there, command 2 lets the user select the males from the members
of the Duck family by setting the current query to � ∧ male ≡ male. New
increments are listed. Then, command 3 restricts the query to married males.
Thus, increments concerning relation husband−1 become more precise: two ducks
have a wife that is dead (∃husband−1.dead , shown as husband<dead) and so on.

Moreover, three ducks in the family satisfy the current query (see total 3),
among whom only two of them have a creator (see 2 creator:). This seems
odd, so the user asks to see ducks that does not have a creator with command
4 (! denotes negation). This duck is unknown. As objects are files in LISFS,
they have a content which command 5 lists. Here, the user sees that unknown
is supposed to be the husband of Della. To verify that this really holds in the
context, the user then traverses relation husband−1 with command 6.

Arbitrary Relations in Formal Concept Analysis 179

6 Conclusion

In this paper we have shown that relations can be smoothly introduced not only
in formal contexts as is done by power context families, but also in the definition
of intents, and hence in concept lattices and their labeling. The advantage over
previous approaches is that information from both object and relation contexts
is combined in a single concept lattice. This enables a natural but powerful ex-
tension of LIS navigation and querying [5]. Relational features express properties
over objects w.r.t. their related objects, and can be used both for refining a set
of objects, as usual, and for traversing some relation from a set of objects to
another. This relational navigation has been implemented as an extension to an
existing LIS file system (LISFS).

Although relations in contexts are arbitrary, including non tree-like struc-
tures, our query language allows only tree-like queries, as in description logics,
but unlike conceptual graphs. We plan to extend the query language so as to
remove this tree-like constraint. This could be done by inserting variables in
queries, like in ∃r1.∃r2.X : f ′ ∧ ∃r3.∃r4.X where X must refer to a same object
in both occurrences. We also plan to extend the logic so as to handle more com-
plex path patterns (e.g., regular expressions), such as ∃parent+.famous meaning
“has a famous ancestor”.

References

1. Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in
a galois lattice with conventional information retrieval methods. International
Journal of Man-Machine Studies 38 (1993) 747–767

2. Lindig, C.: Concept. In Köhler, J., Giunchiglia, F., Green, C., Walther, C., eds.:
IJCAI95 Workshop on Formal Approaches to the Reuse of Plans, Proofs, and
Programs, Montreal, Canada (1995)

3. Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. In
Mineau, G., Ganter, B., eds.: Int. Conf. Conceptual Structures. Number 1867 in
Lecture Notes in Computer Science, Darmstadt, Germany, Springer (2000) 371–384

4. Ganter, B., Kuznetsov, S.: Formalizing hypotheses with concepts. In Mineau, G.,
Ganter, B., eds.: Int. Conf. Conceptual Structures. Number 1867 in Lecture Notes
in Computer Science, Darmstadt, Germany, Springer (2000) 342–356

5. Ferré, S., Ridoux, O.: An introduction to logical information systems. Information
Processing & Management 40 (2004) 383–419

6. Wille, R.: Conceptual graphs and formal concept analysis. In: Int. Conf. Con-
ceptual Structures. Volume 1257 of LNCS., Seattle, Washington, USA, Springer
(1997) 290–303

7. Sowa, J.F.: Conceptual structures. Information processing in man and machine.
Addison-Wesley, Reading, MA, USA (1984)

8. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept
languages. Information and Computation 134 (1997) 1–58

9. Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by concep-
tual graphs and formal concept analysis. In Tepfenhart, W.M., Cyre, W.R., eds.:
Int. Conf. Conceptual Structures. Volume 1640 of LNCS., Blacksburg, Virginia,
USA, Springer (1999) 423–441

180 Sébastien Ferré, Olivier Ridoux, and Benjamin Sigonneau

10. Prediger, S., Stumme, G.: Theory-driven logical scaling. In: International Work-
shop on Description Logics. Volume 22., Sweden (1999)

11. Baader, F., Sertkaya, B.: Applying formal concept analysis to description logics.
In Eklund, P.W., ed.: Int. Conf. Formal Concept Analysis. Volume 2961 of LNCS.,
Sydney, Australia, Springer (2004) 261–286

12. Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations.
Springer (1999)

13. Padioleau, Y., Ridoux, O.: A logic file system. In: USENIX Annual Technical
Conference, General Track, San Antonio, Texas, USA, USENIX (2003) 99–112

Merge-Based Computation of Minimal Generators

Céline Frambourg1, Petko Valtchev2, and Robert Godin1

1 Département d’informatique, UQAM, Montréal (Qc), Canada
2 DIRO, Université de Montréal, Montréal (Qc), Canada

Abstract. Minimal generators (mingens) of concept intents are valuable ele-
ments of the Formal Concept Analysis (FCA) landscape, which are widely used
in the database field, for data mining but also for database design purposes. The
volatility of many real-world datasets has motivated the study of the evolution in
the concept set under various modifications of the initial context. We believe this
should be extended to the evolution of mingens. In the present paper, we build up
on previous work about the incremental maintenance of the mingen family of a
context to investigate the case of lattice merge upon context subposition. We first
recall the theory underlying the singleton increment and show how it generalizes
to lattice merge. Then we present the design of an effective merge procedure for
concepts and mingens together with some preliminary experimental results about
its performance.

1 Introduction

Formal Concept Analysis (FCA) has been proved to be a suitable tool for representing
the knowledge contained in a database. It is also used as a basis for association rule
mining (ARM).

ARM from a transaction database is a classical data mining topic, whereby the most
challenging problem is the detection of informative patterns in the transaction sets. A
major difficulty with association rules is the prohibitive number of itemsets (and hence
association rules) that can be generated even from a reasonably large data set. Moreover,
this approach generates a large number of redundant rules. Formal concept analysis
(FCA) has helped to solve this problem as it introduces closed itemsets (CIs) , which
are a promising solution to the problem of reducing the number of reported association
rules. A further step in this direction is the construction of association rule bases from
CIs: an operation which largely relies on the notion of closed itemset mingens. Yet
another difficulty arises with dynamic databases where the transaction set is frequently
updated. Although the necessity of processing volatile data in an incremental manner
has been repeatedly emphasized in the general data mining literature, few incremental
algorithms for association rule generation (and hence frequent itemset detection) have
been reported so far.

CIs mingens are a lossless and concise representation of knowledge in databases.
In [8], Kryszkiewicz and Gajek explain the construction of the mingens representation
of itemsets and they also show that it is sufficient to determine all the itemsets and
their supports. The growth of databases may induce another problem in the data mining
task, which is the lack of space. To solve this problem, we propose to distribute the

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 181–194, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

182 Céline Frambourg, Petko Valtchev, and Robert Godin

computation of the lattices prior to a final merging of the results at the end. Some
assembly algorithms have been published recently [18, 16], but most of the methods do
not take care of the mingens. That is why we study the evolution of the mingen family
during the lattice assembly. To answer that question, we made an exhaustive study of
the structures used during CIs family assembly. This study is based on the results of the
incremental case that can be found in [19].

We first recall the theoretical framework underlying the lattice assembly and the
mingens (Section 2). We will then present the algorithmic aspects of the dynamic com-
putation (Section 3) and finally we will present recent algorithmic results of the prob-
lems (Section 4).

2 Closures and Mingens

2.1 FCA Basics

a b c d e f g h

1 X X X X X X X X
2 X X X X X
3 X X X X X
4 X X X X
5 X
6 X X X
7 X X X X
8 X X X
9 X

1

13 12

134

1345

17

146178

13789 12346

1346

1246

14

1378 123127

1278

12378

123456789

d c g f

cd

bc fh

abc cf fgh ef

bcd efh

abcd cdfgh abcef efgh

abcdefgh

Ø

Fig. 1. Left: Context K (adapted from [4]) with O = {1, 2, ..., 9} and A = {a, b, ..., h}. Right:
The Hasse diagram of the concept (Galois) lattice derived from K.

FCA studies the way lattices emerge out of data. It considers an incidence relation I
over a pair of sets O and A, of objects and attributes, respectively. The relation is given
by the matrix which is called a (formal) context K = (O,A, I). Moreover, I gives rise
to two ′ mappings and the composite operators ′′ define closures on P(O) and P(A),
hence each of them induces a family of closed subsets, denoted Co

K and Ca
K, respectively.

Those two families, provided with ⊆ become two complete lattices which are dually
isomorphic via ′. These lattices overlap perfectly, thus giving rise to the concept lattice3.
A pair (X,Y) of mutually corresponding subsets, i.e. X = Y ′ and Y = X ′, is called
a (formal) concept whereby X is the extent and Y is the intent. An itemset Z is called
a generator of a closed set X if Z ′′ = X . It is called a minimal generator (mingen) if

3 Also known as the Galois lattice

Merge-Based Computation of Minimal Generators 183

T ⊂ Z implies T ′′ ⊂ Z ′′ = X . The closure operator on Ca
K defines an equivalence

relation4 where intents represent the maximum of each equivalence class, and mingens
their minimum.

2.2 Mingens in the Literature

In the literature, mingens have been given different names and various properties thereof
have been exploited with or without an explicit mention of the concept. For instance,
in the database field, keysets (see [9]) or minimal keys of the sub-relations obtained by
decomposing a given relation into 3NF, represent mingens of the attribute sets corre-
sponding to the sub-relations. In early literature on closures and implications, mingens
are referred to as irreducible gaps thus alluding at their status of minima among all
non-closed elements (”gaps”) [6] within the same closure class. In a different branch of
the same closure field (see [12]), mingens are termed minimal blockers, a notion that
closely follows that of a minimal transversal of a hypergraph [1].

Remarkable properties of the mingen family include its ideal-shaped structure. In
fact, in the Boolean lattice of all the parts of the ground set of a closure family, the
mingens represent an order ideal since the family is downwards closed by the subset-of
relation. On the cardinality side, it is known that the size of the mingen family can grow
up to exponential in the dimensions of the context [10].

Finally, the mingens have been used as target but also as auxiliary structures for
lattice algorithms. For instance, the calculation of concepts in Close [11], AClose [11]
or Titanic [13] relies on the construction of all mingens. In contrast, in NextClosure [3],
the notion of mingen is not explicitly mentioned, but is nevertheless present: a concept
intent is canonically generated by its smallest prefix containing a mingen.

3 Summary of the Dynamics of the Closed and the Mingens
Computation

So far, three different paradigms of lattice construction have been proposed: batch, in-
cremental and divide-and-conquer. Here we only present the incremental and the merge
one.

3.1 Incremental Lattice Construction

The incremental lattice construction paradigm emerged as a response to evolving data-
sets. Indeed, when a new object is inserted into a dataset, the intent families of the two
underlying contexts, i.e., the one ”before” (K) and the one ”after” (K+), are tightly
related: the later is the closure by intersection of the former augmented by the new ob-
ject description, o′. The later operation is a computationally less expensive basis for
the construction of the lattice of K+ than the straightforward construction from scratch.
Moreover, as shown in [5], instead of computing all possible intersections of subsets
from Ca ∪ {o′}, only pair-wise intersections of o′ with an intent from Ca need to be

4 X, Y ⊆ A are equivalent iff X ′′ = Y ′′.

184 Céline Frambourg, Petko Valtchev, and Robert Godin

considered. Among those, some are already existing intents while others are specific to
K+. Concepts from the L are divided into three categories with respect to the intersec-
tions produced by their intents. First, some concepts serve as canonical representatives
for their intersections: These are the concepts c = (X,Y) whose intents are the clo-
sures of the respective intersections, i.e., Y = (Y ∩ o′)′′. They are further divided into
modified (denoted M(o)) and genitors (denoted G(o)), meaning that the intersection
is itself an intent in L (i.e., (Y ∩ o′)′′ = Y ∩ o′) or that this is not the case (i.e.,
(Y ∩ o′)′′ ⊃ Y ∩ o′), respectively. The remaining concepts in L are called old or un-
changed (denoted by U(o)) and have little importance in the approach. As genitor and
modified intents are the closures of the corresponding intersections with o′, each con-
cept c = (X,Y) from G(o) ∪ M(o) is the unique maximum in L among all those
generating the intersection E = Y ∩ o′.

Given L (concept set and precedence relation) and o, the incremental lattice con-
struction problem amounts to restructuring and completing the data structure represent-
ing L up to reaching a structure that represents L+. For convenience reasons, the ho-
mologous concepts5 in L+ of modified and genitors from L will be denoted by M+(o)
and G+(o), respectively. New concepts in L+ with respect to L will be denoted by
N+(o). The restructuring of L into L+ is summarized by the following facts (see [15]
for a detailed description):

– L is isomorphic to a join-sub-semi-lattice of L+, made of the homologous concepts
of those in L,

– the suborder of L+ induced by the set of new concepts N+(o) is isomorphic to the
suborder induced by G+(o), the homologous concepts of the genitors in L.

3.2 Computation of the Mingens

In a way similar to lattice construction, the incremental mingen computation amounts to
transforming the mingen family of an initial context to the one of the augmented context
(see [17]). The reasoning underlying the transformation is based on the Boolean lattice
2A and the equivalence relation induced by the intent family Ca.

First, the equivalence relation of the augmented intent family Ca+ is a refinement of
the one corresponding to Ca. The classes of the initial relation either remain stable in the
new one or are split into two new classes. Second, split classes correspond to genitors,
while modified and old have their classes stable. Thus, given a genitor c of intent Y,
the resulting two classes for Ca+ correspond to the intent of the homologous concept in
L+, i.e., Y, and to the respective new intent Y ∩ o′, respectively. Recall that Y ∩ o′ is a
former non-closed subset that becomes closed and hence its respective class for Ca+ is
made of non-closed elements that lay in the class of Y whenever Ca is considered. For
instance, Fig. 5 shows the evolution of the equivalence class of the intent cdfgh in 2A

(diagram on the top) after the insertion of a new closed set d (diagram on the bottom
left).

The above fact explains why only generators of genitor concepts need to be exam-
ined in the transformation. Indeed, on the one hand, part of those become generators of

5 A concept from a context is homologous to another one from a different context if both have
the same intent.

Merge-Based Computation of Minimal Generators 185

the respective new intent, while on the other hand, new generators are emerging for the
genitor intent. The new generators are minimal sets in the newly formed equivalence
class for Ca+ that were not minimal in the larger class from Ca. In the above example,
the initial set of generators of cdfgh is cg, d, ch. After d becomes closed, its equiva-
lence class, here consisting of d itself, is split from the former class of cdfgh. The new
set of generators of cdfgh, i.e., minima in the new equivalence class is much larger: cg,
cd, df , dg, dh, ch.

Formally, let us denote by genK() the set of mingens of a concept (intent) within
the context K (the subscript will be skipped whenever confusion is excluded). The fol-
lowing property summarizes the evolution in the mingen family between K and K+:

Proposition 1 For any c = (X,Y) in G(o), let c+ and c̄ be its homologous concept
in L+ and the generated new concept, respectively (c̄ = (X ∪ {o}, Y ∩ o′) and c+ =
(X,Y)). The sets of generators of c̄ and c+ are as follows:

– genK+(c̄) = genK(c) ∩ 2Y ∩o′
,

– genK+(c+) = min((genK(c) − 2Y ∩o′
) ∪ (genK(c) ∩ 2Y ∩o′ × {Y − o′})).

The only non-trivial aspect of the above proposition is that newly occurring mingens
in the class of the homologous concept c+ are composed of a former mingen that ”went”
to the new concept c̄ to which a single attribute is added which stems from the difference
between the genitor intent and the new one (Y ∩ o′).

1: procedure COMPUTE-MINGENS(In/Out: c, c̄ concepts)
2:
3: for all g in c.gens do
4: if g ⊆ c̄.Intent then
5: c̄.gens ← c̄.gens ∪ {g}
6: c.gens ← c.gens - c̄.gens
7: SORT(c̄.gens)
8: for all ḡ in c̄.gens do
9: new-gens ← ∅

10: for all a in (c.Intent - c̄.Intent) do
11: gen-cond ← true
12: for all g in c.gens do
13: if g ⊆ ḡ ∪ {a} then
14: gen-cond ← false
15: if gen-cond then
16: new-gens ← new-gens ∪ {ḡ ∪ {a}}
17: c.gens ← c.gens ∪ new-gens

Algorithm 1: Computation of the mingens of a new concept and of its genitor.

Algorithm 1 embodies the computation of the mingens for a pair of corresponding
concepts, genitor and new. Thus, given a genitor concept c and its corresponding new
concept c̄, it updates the set of mingens associated with the intent of c and identifies the
set of mingens for the intent of c̄.

186 Céline Frambourg, Petko Valtchev, and Robert Godin

3.3 Generalization of the Incremental Case

The restructuring of the lattice upon insertion of a single new object has been gener-
alized to the case of n such objects. The problem has been reformulated as the one
of merging two lattices corresponding to contexts that share their attribute sets. This
section describes the basic facts about lattice merge.

Product of Lattices Along Context Subposition Subposition is the horizontal as-
sembly of contexts sharing a same set of attributes [4]. Let K1 = (O1, A, I1) and
K2 = (O2, A, I2) be two contexts sharing the attribute set A. Their subposition is the
context K3 = (O1∪̇O2, A, I1∪̇I2) denoted K3 = K1

K2
. For example, for the context

K = (O,A, I) given in Fig. 1, let O1 = {1, 2, 3, 4} and O2 = {5, 6, 7, 8, 9}. The par-
tial lattices corresponding to K1 and K2, say L1 and L2, are given in Fig. 2, on the left.
In the remainder, to avoid confusion, the derivation operators ′ for the various contexts
will be replaced by the respective indexes i, e.g., 2 will stand for ′ for the context K2.

Fig. 2. Left: Factor lattices L1 and L2 of the context in Fig. 1. Right: The NLD of L3.

The lattices L1 and L2, further called the factor lattices, are related to the lattice
of the subposed context by two order morphisms. For convenience reasons, the direct
product of L1 and L2, denoted L1,2 is used in the definition of those morphisms:

Definition 1 The order morphism ϕ : L3 → L1,2 maps a concept from the global
lattice to a pair of concepts from the partial lattices by splitting its extent over the
partial context attribute sets O1 and O2:

ϕ((X,Y)) = ((X ∩ O1, (X ∩ O1)′), ((X ∩ O2, (X ∩ O2)′))

The morphism ψ : L1,2 → L3 maps a pair of concepts over partial contexts into a
global concept by the intersection over their respective intents:

ψ(((X1, Y1), (X2, Y2))) = ((Y1 ∩ Y2)′, Y1 ∩ Y2).

Merge-Based Computation of Minimal Generators 187

In other terms, the composition of factor concepts into a global one is made along
the intent dimension shared by Kj (j = 1, 2, 3): The corresponding operation may be
seen as the merge of two closure spaces on A. Each node ((X1, Y1), (X2, Y2)) from
L1,2 is sent to a concept (X,Y) from L3 such that Y = Y1 ∩ Y2 (e.g., in Fig. 2,
(c#7, c#3) is sent to (146, efh)). The underlying mapping ψ is a surjective order mor-
phism that preserves lattice joins (see [18] for details). Conversely, L3 is mapped onto
Lj (j = 1, 2) by simply projecting concept intents on Aj (e.g., (127, abc) is projected to
the node (c#5, c#6)). It is noteworthy that L3 is in general only a meet-sub-semi-lattice
of L1,2.

Merge of Factor Lattices Following [18, 16], the factor merge process filters L1,2,
and keeps the nodes from the meet-sub-semi-lattice isomorphic to L3. These are the
maximal nodes in the equivalence classes induced by the homomorphism ψ on L1,2

(i.e., equivalence means nodes are sent to the same concept from L3). More specif-
ically, the maximum node in such a class, say ((X1, Y1), (X2, Y2)), is such that if
ψ((X1, Y1), (X2, Y2)) = (X,Y), then X = X1 ∪X2 and Y = Y1 ∩ Y2. The canonical
pairs of concepts can be compared to genitors in the incremental case, hence the con-
cepts from such a pair will be called the i-genitors (i = 1, 2) of the respective concept
from L3.

The straightforward procedure for lattice merge illustrated by Algorithm 2, pre-
sented in the next section, follows the i-genitor definition together with a characteriza-
tion of the precedence relation in L3. The procedure, when applied to the lattices on the
left of Fig. 2 yields the result presented in Fig. 3.

Fig. 3. Result lattice from the merge of L1 and L2 in Fig. 2.

188 Céline Frambourg, Petko Valtchev, and Robert Godin

4 Generalization of the Incremental Case for the Assembly

4.1 Theoretical Results

Mingen computation can easily be extended to the construction of the subposition-based
product of lattices L1 and L2. We chose a straightforward approach which consists in
applying the incremental paradigm to lattice merging. First, recall that any concept in
the product L3 is created by a pair of factor concepts that play a symmetric role (the
genitors) in the generalization of the incremental paradigm. We nevertheless adopt an
asymmetric view of the factors and set L1 to the initial lattice where mingens already
exist whereas L2 is seen as a surrogate for ”new” concepts that constitute L3. Conse-
quently, when such a new concept is detected by the assembly algorithm, its mingens
will be computed with respect to its genitor in L1, i.e., the respective component of
the canonical representative in L1,2. Obviously, unlike the specific case of the incre-
mental update, there can be several new concepts per genitor. The challenge will be to
determine their mingens without interference between those.

The new concepts created during the merge respect the proposition below.

Proposition 2 The new concepts corresponding to a 1-genitor c1, {c3 ∈
C3|Π1(ϕ(c3)) = c1} where Π1 is the projection over C1 operator, have intents that
lay in the equivalence class [Intent(c1)]11 in 2A. Those new concepts will be denoted
prod1(c1) :

∀c3 ∈ prod1(c1), Intent(c3)11 = Intent(c1)

Proof. (sketch)

1. Intent(c3) ⊆ Intent(c1)
2. Let (c1, c2) be the genitor pair. Intent(c1)∩Intent(c2) = Intent(c3) and (c1, c2)

is maximal. This means that (Intent(c1), Intent(c2)) is minimal in
(2A×2A,⊆ × ⊆). The canonicity property proves that Intent(c1) and Intent(c2)
are also minimal. As Intent(c1) is closed, we have Intent(c3)11 = Intent(c1).

This equivalence class is partitioned into finer classes according to the 33 closure
and a unique new concept has the same intent as c1.

Our aim is to simulate the incremental computation of the mingen family in the
merge process. We assume that it is possible but we have to choose a strategy for the
concepts insertion. We follow some criteria for this choice, as our main goal was the
effectiveness. First, we tried to define a program that will compute the mingens with a
minimal number of computation operations, but we also wanted to have no redundan-
cies during the computation.

Three strategies may be suitable. The first one amounts to computing the concepts
during a ”top-down” lattice L3 exploration (that also means a ”bottom-up” exploration
of [Intent(c1)]11 in the 2A lattice), the second one is a ”bottom-up” lattice L3 explo-
ration (”top-down” exploration of [Intent(c1)]11) and the last one is a direct strategy,
which means that we make no use of incrementality, but that all the mingens will have
to be computed once.

Merge-Based Computation of Minimal Generators 189

Fig. 4. Example of the partitioning.

The last strategy is the ideal one as it computes the mingens with no redundancies,
but we do not have enough information to use the last strategy yet but it could be the
object of further study.

The second strategy is that whenever a new concept c3 is inserted, all its successors
of [Intent(c1)]11 in L3 have to be computed. This means that the [Intent(c3)]33 is only
really accessible at the end of all the prod1(c1) concept insertions. So, gen3(c3) may
only be established once all insertions have been made. Therefore, the second strategy
is not a suitable one except if the mingens are computed via a batch process.

The first strategy is then the only one which is suitable. We can compute the gen(c3)
set from a temporal mingens list associated to c1, that reflects the current state of the
insertion process in the [Intent(c1)]11 class. We can also say that it is as if each c3 was
inserted separately in an incremental way and in order. The geninc(c1) list, representing
the mingens of c1 which evolve during the computation, represents after each insertion
of a c3,i, the minima of [Intent(c1)]11 −

⋃
j�i

[Intent (c3,j)]33. At the end, the mingens

lists are up to date. Once the gen3(c3,i) list is computed, it will never be recomputed
again.

The mingens list of a new concept of L3 may be described as follows:

Proposition 3 Given an order (c3,1, ..., c3,n) such that ∀i, j|1 � i � j � n, c3,j �3

c3,i:

gen3 (c3,i) =

⎧⎪⎪⎨
⎪⎪⎩

Y |Y ⊆ Intent (c3,i)

Y ∈ min

⎛
⎝[Intent (c1)]11 −

⋃
j�i

[Intent (c3,j)]33

⎞
⎠
⎫⎪⎪⎬
⎪⎪⎭

This strategy was chosen for consecutive insertions of the new concepts. It may be
explained by the fact that there exist an equivalence between the merge, restricted to
the concept c1, and the insertion of n new concepts in L1 where c1 is a genitor. This

190 Céline Frambourg, Petko Valtchev, and Robert Godin

approximatively amounts to inserting n new objects having the respective intents of
each c3,i. By this strategy, we insure that whenever a new c3[c1] is inserted, all the con-
cepts with a smaller intent are computed and that the mingens can be computed with
the mingens of c1. With this strategy, we are sure that the mingens of every new con-
cept from the class [Intent(c1)]11 can be computed by looking only at the mingens
of one concept, c1. These mingens will have to be updated after each insertion. Given
the set of the intents of the new concepts generated by c1, say Ca

3 ∩ [Intent(c1)]11, the
previous condition imposes that at any moment the set of already inserted concepts cor-
responds to an order ideal of that set, provided with inclusion order. A noteworthy fact
about the concrete computation method is that it perfectly fits the merge algorithm and
Algorithm 1 (with parameters c1 and c3). The resulting algorithm is described below
(Algorithm 2). Moreover, along all the insertions, the temporary set of mingens that are
to be considered for the next insertion is stored at the genitor node within L1. Indeed,
the concept corresponding to c1 in L3 (i.e., with the same intent) will be the last one to
be created since its intent is the greatest element of the equivalence class.

4.2 Implementation

The COMPUTE-MINGENS method has been associated to the merge process ([17]). The
resulting algorithm is given in Algorithm 2.

1: procedure MERGE(In: L1, L2 lattices; Out: L3 a lattice)
2:
3: L ← ∅
4: SORT(C1); SORT(C2) {Decreasing order}
5: for all (ci, cj) in L1 ×L2 do
6: I ← Intent(ci) ∩ Intent(cj)
7: if CANONICAL((ci, cj), I) then
8: c ← NEW-CONCEPT(Extent(ci) ∪ Extent(cj),I)
9: L3 ← L3 ∪ {c}

10: UPDATE-ORDER(c, L3)
11: COMPUTE-MINGENS(ci, c)

Algorithm 2: Assembling the global Concept lattice from a pair of partial ones.

The concept ci from the lattice L1 is used as a buffer for the intermediate computa-
tion. The COMPUTE-MINGENS method modifies ci’s mingens in a destructive way, i.e.
when all the concepts created from ci have been inserted in L3, the family of mingens
of ci in L1 is empty.

For example, the evolution of the equivalence class associated to cdfgh (from L1)
is depicted in Fig. 5. Indeed, the inner loop of Algorithm 2 discovers three new con-
cepts with intents d, cd, and cdfgh, respectively, and in this order. These are gradually
”inserted” in the class of cdfgh: the mingens of the new intent are computed and those
of c1 = (13, cdfgh) are updated in L1. Thus, the new intent d which corresponds to an

Merge-Based Computation of Minimal Generators 191

initial mingen of the class forces the creation of four new mingens (cd, df, dg, dh). In
contrast, the closed cd merely converts a former mingen into a closure.

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf
fghfgh

cgcg cdcfcf chchdgdf dh

dd
fgh

bg

closed

generator
inter-class

link

class border

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf
fghfgh

cgcg cdcdcfcf chchdgdgdfdf dhdh

dd

cdfghcdfgh

cdghcdfhcdfg dfghcfgh

cdg cfg cdh cfh dgh dfg dfh cghcdf
fghfgh

cgcg cdcdcfcf chchdgdgdfdf dhdh

dd

Fig. 5. The evolution of the equivalence class of the closed set cdfgh in P(A) (initial state up)
during the assembly process: after the creation of the new closed d (left) and after the creation of
cd (right).

Intent(c1) geninc
i−1(c1) Intent(ci) gen(ci) geninc

i (c1)

cdfgh {d, cg, ch} d {d} {cd, cg, ch, df, dg, dh}
cdfgh {cd, cg, ch, df, dg, dh} cd {cd} {cg, ch, df, dg, dh}
cdfgh {cg, ch, df, dg, dh} cdfgh {cg, ch, df, dg, dh} {}

Table 1. The evolution of the equivalence class of the closed set cdfgh in P(A).

4.3 Performance Tests

The MERGE algorithm was implemented in Java, within the 2.0 version of the Galicia
platform6. The method has been tested as a stand-alone application and its performance
was compared with two incremental methods, one with the incremental computation of
the mingens, and the other with a batch computation of the mingens (computed after

6 See the website at: http://www.iro.umontreal.ca/∼galicia.

192 Céline Frambourg, Petko Valtchev, and Robert Godin

each object insertion). The experiments were done on a Windows PC station (Pentium
Xeon 3.06 GHz with 1.2 GB of RAM) using various subsets of the IBM transaction
database T25I10D10K. This dataset is made out of 10 000 transactions over a set of 10
000 items. It is known to be a sparse one, with an average of 28 items per transaction.
We did not use a dense dataset, as the lattices to merge contains too many concepts and
require too much resources.

In order to improve the results, we combined the COMPUTE-MINGENS algorithm
to a batch method called JEN (in [2]). In fact, when a concept is created by the bottom
node, its mingens will be computed by JEN. In all the other cases, the COMPUTE-
MINGENS algorithm is used. This combination has been motivated by the fact that JEN

computes the mingens using the information provided by the successors rather then
by the predecessors. This is particularly beneficial for large attribute sets, where the
concepts created by the bottom, may imply a lot of computation operation. For example,
for the context described previously, that contains 10 000 attributes, suppose the first
object contains 28 attributes, the mingens computation of that concept will produce 279
216 operations. The way JEN works has helped solve this problem. This method has
also been generalized in the merge case, as the partial order insure that a node is only
computed after all its successors have been computed.

Fig. 6. Cumulative CPU-time for all three algorithms on transaction batches up to 1600 drawn
from the T25I10D10K dataset.(Left) Lattice construction and computation of the mingens (Right)
computation of the mingens only.

The graphs drawn in Fig. 6 summarize our findings so far. They clearly show that
the incremental method gives currently better results than the merge process. This fact
is not surprising given the large number of concepts that the merge algorithm must
examine on each merge operation (l1 · l2, where l1 = |L1| and l2 = |L2|) and the even
larger number of mingens. However, when we extracted the mingen computation time
from the global execution time, we can see that the merge method is about as good as
the incremental method and that they are 10 times faster than the batch method used in
an incremental way.

Merge-Based Computation of Minimal Generators 193

The results show that the incremental mingen computation method and its gener-
alization seem promising. It means that provided a good merge algorithm for lattice
construction, where the mingens computation can be applied, we would be able to have
a better execution time than batch algorithms.

5 Conclusion

The work presented here builds on a previous study of the incremental maintenance of
the mingens family of a context. We investigated the case of lattice merge upon context
subposition and showed a way to extend the incremental update of the mingen family to
this more general case. To that end, first, a precise characterisation of the lattice struc-
tures involved in mingen computation/update was provided. The characterization was
then embedded into a concrete update method for both concepts and mingens. The per-
formances of the new method were compared to those of two other methods performing
concept and mingen construction: an incremental lattice builder (ADD-OBJECT) cou-
pled to a batch procedure for mingen computation (JEN), and a purely incremental
lattice and mingen extraction. Although the overall performances of the later method
has proven superior to the other two, when only mingen construction cost is considered,
merging is as good as one-by-one incremental reconstruction. This fact rises the hopes
that with an efficient lattice merge technique, e.g., one that takes advantage of effec-
tive decentralization of both data and computation resources, there can be a significant
improvement in the speed of the global method computing both concepts and mingens.
Such efficient methods have already been designed for lattice merge upon context ap-
position, i.e., in the dual case of the one considered here, in both sequential [14] and
parallel [7] algorithmic settings.

Acknowledgments

This research was supported by the authors’ individual NSERC grants as well as by the
FQRNT team grant.

References

[1] C. Berge. Hypergraphs: Combinatorics of Finite Sets. North Holland, Amsterdam, 1989.
[2] A. Le Floc’h, C.Fisette, R. Missaoui, P. Valtchev, and R. Godin. Jen : un algorithme efficace

de construction de générateurs pour l’identification des règles d’association. numéro spécial
de la revue des Nouvelles Technologies de l’Information, 1(1):135–146, 2003.

[3] B. Ganter. Two basic algorithms in concept analysis. preprint 831, Technische Hochschule,
Darmstadt, 1984.

[4] B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations. Springer--
Verlag, 1999.

[5] R. Godin, R. Missaoui, and H. Alaoui. Incremental Concept Formation Algorithms Based
on Galois (Concept) Lattices. Computational Intelligence, 11(2):246–267, 1995.

[6] J.L. Guigues and V. Duquenne. Familles minimales d’implications informatives résultant
d’un tableau de données binaires. Mathématiques et Sciences Humaines, 95:5–18, 1986.

194 Céline Frambourg, Petko Valtchev, and Robert Godin

[7] Jean François Djoufak Kengue, Petko Valtchev, and Clémentin Tayou Djamegni. A parallel
algorithm for lattice construction. In B. Ganter and R. Godin, editors, roceedings of the 3rd
Intl. Conference on Formal Concept Analysis (ICFCA’05), Lens (FR), (14-18 February)
2005, pages 248–263, 2005.

[8] Marzena Kryszkiewicz and Marcin Gajek. Concise representation of frequent patterns
based on generalized disjunction-free generators. In PAKDD, pages 159–171, 2002.

[9] D. Maier. The theory of Relational Databases. Computer Science Press, 1983.
[10] H. Mannila and K.-J. Räihä. On the complexity of inferring functional dependencies. Dis-

crete Applied Mathematics, 40(2):237–243, 1992.
[11] N. Pasquier. Data Mining : Algorithmes d’extraction et de réduction des règles

d’association dans les bases de données. Ph. d. thesis, Université Blaise Pascal,Clermont-
Ferrand II, 2000.

[12] J. Pfaltz and C. Taylor. Scientific discovery through iterative transformations of concept
lattices. In Proceedings of the 1st International Workshop on Discrete Mathematics and
Data Mining, pages 65–74, Washington (DC), USA, April 2002.

[13] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing Iceberg Concept
Lattices with Titanic. Data and Knowledge Engineering, 42(2):189–222, 2002.

[14] P. Valtchev and V. Duquenne. Towards scalable divide-and-conquer methods for comput-
ing concepts and implications. In E. SanJuan, A. Berry, A. Sigayret, and A. Napoli, edi-
tors, Proceedings of the 4th Intl. Conference Journées de l’Informatique Messine (JIM’03):
Knowledge Discovery and Discrete Mathematics, Metz (FR), 3-6 September, pages 3–14.
INRIA, 2003.

[15] P. Valtchev, M. Rouane Hacene, and R. Missaoui. A generic scheme for the design of effi-
cient on-line algorithms for lattices. In B. Ganter A. de Moor, W. Lex, editor, Proceedings
of the 11th Intl. Conference on Conceptual Structures (ICCS’03), volume 2746 of Lecture
Notes in Computer Science, pages 282–295, Berlin (DE), 2003. Springer-Verlag.

[16] P. Valtchev and R. Missaoui. Building concept (Galois) lattices from parts: generalizing the
incremental methods. In H. Delugach and G. Stumme, editors, Proceedings of the ICCS’01,
volume 2120 of Lecture Notes in Computer Science, pages 290–303, 2001.

[17] P. Valtchev, R. Missaoui, and R. Godin. Formal Concept Analysis for Knowledge Discovery
and Data Mining: The New Challenges. In P. Eklund, editor, Concept Lattices: Proceedings
of the 2nd Int. Conf. on Formal Concept Analysis (FCA’04), volume 2961 of Lecture Notes
in Computer Science, pages 352–371. Springer-Verlag, 2004.

[18] P. Valtchev, R. Missaoui, and P. Lebrun. A partition-based approach towards building Galois
(concept) lattices. Discrete Mathematics, 256(3):801–829, 2002.

[19] P. Valtchev, R. Missaoui, M. Rouane-Hacene, and R. Godin. Incremental maintenance of
association rule bases. In Proceedings of the 2nd Workshop on Discrete Mathematics and
Data Mining, San Francisco (CA), USA, May 2003.

Representation of Data Contexts and Their

Concept Lattices in General Geometric Spaces

Tim B. Kaiser

Darmstadt University of Technology, 64287 Darmstadt, Germany
tkaiser@mathematik.tu-darmstadt.de

Abstract. We present a possibility for coordinatizing many-valued con-
texts and their concept lattices, i.e. we investigate when an algebra (in
the sense of universal algebra) can be assigned to the object set of a many-
valued context such that the extents can be described by the congruence
classes of the algebra. Since congruence class spaces have a natural ge-
ometric nature the outlined approach can be interpreted as a geometric
representation of concept lattices.

1 Introduction

Data contexts can be seen as an essential bridge between reality and mathemat-
ics, because they can be represented mathematically but are still very close to
raw observations. To activate the potential of mathematics in supporting humans
in their aim to understand reality (realities) it is from this viewpoint important
to develop mathematical methods which help exhibiting structure hidden in data
contexts. This can be done via representing the data context in a meaningful
way in a geometrical space since

[...] the geometric nature of those representations make relationships
graphic, intelligible, and workable in multiple ways and therefore may
successfully support human thought and action.[...] ([WW02], p. 6)

A framework for investigations of this type is given by measurement theory,
which is concerned with the problem of representing given empirical relational
structures in numerical relational structures. In this paper we use an extended
version of this paradigm, the four-level model (cf. [Wi96], see Fig. 1), where
an additional level, the synthetic level, is added between the level of relational
structures and the level of numerical (algebraic) structures. In [Wi96], [Wi97],
and [WW02] it is argued that the extended paradigm is more adequate for
representations in geometrical spaces, since firstly the step from the synthetic
level to the analytic (numerical) level reflects classical coordinatization theorems
in geometry, f.e. the theorem that a three-dimensional affine geometry can always
be coordinatized by some vector space over a skew field. And secondly the step
from the formal level to the synthetic level allows for developing structure theory
for qualitative representations.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 195–208, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

196 Tim B. Kaiser

In [Wi96] this approach is applied to the problem of representing ordinal
data contexts in vector spaces over ordered skew fields, where strong conditions
are required which limit the area of possible applications. Already in [WW92]
conditions for ordinal structures to be representable by ordered n-loops are given.
This result is generalized slightly in [Wi96]. So the most general, well-known
structure for representing ordinal data is an ordered n-loop. This representation
still enforces strong conditions on the data, called ordinal dependency conditions.

In this paper, we try to establish a new way of representing data contexts
geometrically by considering congruence class spaces of algebras in the sense
of universal algebra as representing structures. This implements the four level
model as shown in Fig. 1. On the formal level we will work with many-valued
contexts, on the synthetic level we use closure structures fulfilling certain condi-
tions, and on the analytic level congruence class spaces derived from an algebra
in the sense of universal algebra serve as coordinatizing structures.

Fig. 1. The four level model

2 Closure Structures with Weak Parallelism

Closure structures allow a very general approach to geometry where the basic
entities are points and an operator assigning to any set of points the smallest
subspace they belong to [Jo59].

Definition 1 (closure structure, restriction). We call Γ := (G, [·]) a clo-
sure structure if G is a set and [·] : P(G) → P(G) an operator satisfying the
following properties (let X,Y ⊆ G):

Representation of Data Contexts and Their Concept Lattices 197

(C1) X ⊆ [X] (extensitivity)
(C2) [X] = [[X]] (idempotency)
(C3) X ⊆ Y ⇒ [X] ⊆ [Y] (isotony)

If H ⊆ G we call Γ|H := (H, [·]|H) a restriction of Γ if for J ⊆ H the closure is
defined as [J]|H := [J] ∩ H.

Obviously, a restriction of a closure structure is again a closure structure.
The closed sets C(Γ) := { X ∈ P(G) |X = [X]} of any closure structure form
a complete lattice via set inclusion. Often we call the elements of G points and
the closed sets subspaces. If [X] = Y we call the set X a generating subset for
Y . The rank of a subspace V is defined as |X | if [X] = V and there does not
exist a X ′ with [X ′] = V and |X ′| < |X |.

For closure structures the notion of an embedding is given by:

Definition 2 (embedding). Let Γ := (G, [·]) and Γ ′ := (G′, [·]′) be closure
structures. An injection φ : G → G′ is called an embedding if for H ⊆ G

φ([H]) = [φ(H)]′ ∩ φ(G).

Note that – if Γ := (G, [·]) is a closure structure and H ⊆ G – a restriction
Γ|H is embeddable into Γ via φ : H → G with φ(h) := h. The next definition
makes explicit what (weak) parallelity means in a closure structure:

Definition 3 (weak parallelism). Let Γ := (G, [·]) be a closure structure.
We call a relation ‖ on C+(Γ) := C(Γ) \ {∅} weak parallelism if the following
conditions hold:

(P1) For R ∈ C+(Γ) we have R ‖ R.
(P2) For R,S, T, U ∈ C+(Γ) the conditions R ‖ S, T ⊆ S, and T ‖ U imply

the existence of V ∈ C+(Γ) with U ⊆ V and R ‖ V .
(P3) For R,S ∈ C+(Γ) and p ∈ S with R ‖ S we have S ⊆ [{p} ∪ R].
(P4) For R ∈ C+(Γ) and p ∈ G there exists one and only one S ∈ C+(Γ) with

R ‖ S and p ∈ S.

If ‖ is an equivalence relation it is called parallelism.

Let Γ := (G, [·], ‖) be a closure structure with weak parallelism, p ∈ G, and
V ∈ C+(Γ). We denote by π(p|V) the unique subspace W containing p and
satisfying V ‖ W (this definition is justified by (P4)). If ‖ is a parallelism we get
the following result:

Proposition 1. Let Γ := (G, [·], ‖) be a closure structure with parallelism and
A,B ∈ C(Γ). Then A ‖ B and rank(A) = 1 implies rank(B) = 1.

Proof. Let A be of rank 1. Then A = [a] for some a ∈ G. We assume A ‖ B with
rank(B) > rank(A). Then B = [b1, b2, ..., bn] with n > 1. But C := π(a|[b1])
has to be a proper superset of A, because otherwise (P3) would be violated. This
leads to the following situation: A ‖ B, [b1] ⊆ B, and C ‖ [b1]. Using (P2) we
can deduce the existence of a closed set D with C ⊆ D and A ‖ D. Since a ∈ C,
we have D = A, but D � A, a contradiction. ��

198 Tim B. Kaiser

We think of a dilation as a mapping δ : G → G with δ(p) ∈ π(δ(q)|p, q) for any
points p, q ∈ G. The set of all dilations is denoted by Δ(Γ). Now, we can assign
an algebra A(Γ) := (G,Δ(Γ)) to a closure structure with weak parallelism.

Following [Ma52], we define a geometric space as a special closure structure.
By A ⊆fin B we mean that A is finite and a subset of B.

Definition 4 (geometric space). We call a closure structure (G, [·]) geometric
space if [·] satisfies the additional properties:

(G1) [p] = {p} for p ∈ G,
(G2) [∅] = ∅
(G3) [X] =

⋃
Y ⊆finX [Y] for X ⊆ G.

So a closure structure is a geometric space if the empty set and the one-
element sets are closed and the closure operator is algebraic (G3). In a geometric
space, subspaces of rank 2 are called lines and subspaces of rank 3 are called
planes. A geometric space which satisfies for X ⊆ G

X = [X] ⇐⇒ [p, q, r] ⊆ X for p, q, r ∈ X

is called planar.
Now, we turn to a special class of examples for closure structures with weak

parallelism which are even geometric spaces satisfying certain additional proper-
ties. Let A := (A, (f)I) be an algebra. The congruence classes of A together with
the empty set form a closure system. Therefore every set M ⊆ A,M �= ∅ is con-
tained in a smallest congruence class [M]θ :=

⋂
{[a]θ | a ∈ A, θ ∈ Con(A),M ⊆

[a]θ} and [·]θ is a closure operator on A if we define [∅]θ := ∅. We denote the
closure structure (A, [·]θ) by ΓA and the closed sets of this closure structure by
ΓcA. The closure structure ΓA is called the congruence class space of the algebra
A. We call an algebra regular if every congruence relation can be recovered by
any of its congruence classes, i.e. [a]θ = [a]θ′ =⇒ θ = θ′. Also we call a set
R ⊆ P(M × M) of relations on a set M regular if for θ, θ′ ∈ R and m ∈ M we
have [m]θ = [m]θ′ =⇒ θ = θ′.

Theorem 1. Let A := (A, (f)I) be an algebra. Then the structure Γ (A) :=
(A, [·]θ) is a geometric space and the relation ‖A defined by

R ‖A S : ⇐⇒ S is congruence class of θ(R)

is a weak parallelism on Γ (A).

Example 1. We will use the smallest non-modular lattice N5 to give an example
of an congruence class space. The Hasse diagram of N5 is shown in figure 2.
To build the congruence class space of an algebra one has to determine all its
congruence classes. Figure 3 displays the congruence lattice of N5. Note that N5

is not regular. Figure 4 shows the lattice of the congruence classes of N5, the
closed sets of its congruence class space.

Representation of Data Contexts and Their Concept Lattices 199

�������	
1

�������	
c

�������	
a

������������� �������	
b

�������	

0

��������

Fig. 2. N5

�������	
∇

�������	

θ({a,1})

�������� �������	

θ({a,0})

�������	

θ({b,c})

��������

�������	

Δ

Fig. 3. The congruence lattice of N5

�������	
A

�������	
{0,a}

 �������	
{0,b,c}

�������� �������	
{1,b,c}

�������	

{1,a}

������������������

�������	
{0}

��������

 �������	

{b,c}

�������� �������	
{1}

������������������

�������	
{b}

�������� �������	

{a}

���������������������

���������������������
�������	
{c}

�������	

∅

��������

��������������������������

��������������������������

Fig. 4. Lattice of the congruence classes of N5

The regularity of the algebra from which one derives the congruence class
space and the weak parallelism ‖A are tightly coupled:

Proposition 2. Let A be an algebra. Then the weak parallelism ‖A in Γc(A) is
a parallelism if and only if A is regular.

Proof. “⇒”: Let ‖A be a parallelism. We consider parallel pencils ΠC := {B ∈
Γc(A) |B ‖A C, C ∈ Γc(A)}. Such a parallel pencil is simultaenously a partition
on the carrier set A of the algebra as well as a block of a partition on the congru-
ence classes. The set of all parallel pencils is the set of all blocks of the partition
induced by ‖A. For A,B ∈ ΠC by symmetry of ‖A we have θ(A) = θ(B). That
means all blocks in ΠC exhaust exactly one congruence relation. Since every
closed set is in exactly one parallel pencil we can deduce the regularity of A.
“⇐”: Let A be regular. Assume B ‖A C which is equivalent to C is a class of
θ(B). First, we show symmetry. Since A is regular we have θ(B) = θ(C), hence
C ‖A B. Transitivity holds using an analogous argument. ��

If for a given geometric space Γ there exists an algebra A with Γ ∼= Γ (A) we
say A coordinatizes Γ . The following theorem from [Wi70] generalizes the result
that an affine geometry can be coordinatized by a vector space over a skew field

200 Tim B. Kaiser

if and only if the Condition of Desargue holds. In that sense it is natural to ask
under which conditions such a coordinatization is possible for a geometric space
in our more general setting. Before presenting the characterization we need one
more definition:

Definition 5. Let A be a set, let B ⊆ A, and let Δ be a set of maps from A to A.
Then we define a relation ≡⊆ A×A where for a, b ∈ A we have a ≡ b mod (B,Δ)
if and only if there exist δi ∈ Δ for i = 0, 1, ..., n with a ∈ δ0(B) & b ∈ δn(B) &
δi(B) ∩ δi+1(B) �= ∅ for i ∈ {1, 2, .., n− 1}.

Theorem 2. Let Γ := (G, [·]) be a geometric space. Then the following condi-
tions are equivalent:

(C1) There exists an algebra A with Γ ∼= Γ (A).
(C2) Γ is planar and there exists a weak parallelism ‖ on C(Γ) where

a, b, c, d ∈ G and d ∈ [a, b, c] ⇒ d ≡ a mod ({a, b, c}, Δ(‖)). (1)

We will employ Theorem 2 for answering the question under which conditions
a closure structure is representable in a congruence class space. In the following
we collect properties a closure structure representable in a congruence class space
automatically possesses.

Proposition 3. Let φ be an embedding of the closure structure Γ := (G, [·])
into the congruence class space Γ ′ := (A, [·]θ) of some algebra A. Then Γ is
a geometric space inheriting a weak parallelism from Γ ′. We will refer to this
parallelism as trace parallelism.

Proof. Let p ∈ G and X ⊆ G. Note that since φ is an embedding and therefore
injective we have

[X] = φ−1([φ(X)]θ ∩ φ(G)) = φ−1([φ(X)]θ) (2)

So we get [p] = φ−1([φ(p)]θ) = φ−1(φ(p)) = p which shows (G1). Similarly, we
get [∅] = φ−1([φ(∅)]θ) = φ−1(∅) = ∅ which shows (G2). For verifying (G3) we
use again equation 2 and that [·]θ is algebraic. We get

[X]
(2)
= φ−1([φ(X)]θ)

[·]θ algebraic
= φ−1(

⋃
Y ⊆finX

[φ(Y)]θ)

=
⋃

Y ⊆finX

φ−1([φ(Y)]θ)

(2)
=

⋃
Y ⊆finX

[Y].

This makes explicit that Γ is a geometric space.

Representation of Data Contexts and Their Concept Lattices 201

Now, we show that Γ naturally inherits a weak parallelism ‖, the trace par-
allelism, from Γ ′ if we define ‖ for R,S ∈ Γc as

R ‖ S : ⇐⇒ ∃W ∈ Γ ′
c : [φ(R)]θ ‖A W with φ−1W = S.

We have to show that ‖ is indeed a weak parallelism. In the following proof let
R,S, T, U and V denote closed sets of Γ . For showing (P1) we have to assure
that H ‖ H for all H ∈ CΓ . But H ‖ H is equivalent to [φ(H)]θ ‖A K where
φ−1K = H. With K := [φ(H)]θ (P1) obviously holds.

For verifying (P2) let R ‖ S and T ⊆ S. Now assume T ‖ U . We have to
show that there exists a closed set V with U ⊆ V and R ‖ V . But R ‖ S is
equivalent to [φ(R)]θ ‖A W with φ−1W = S and T ⊆ S yields [φ(T)]θ ⊆ [φ(S)]θ.
Again T ‖ U gives [φ(T)]θ ‖A W ′ with φ−1W ′ = U . Therefore we can use (P2)
for ‖′ to deduce the existence of some Γ ′-closed set V ′ with [φ(U)]θ ⊆ V ′ and
[φ(R)]θ ‖A V ′. Let V := φ−1(V ′). Obviously, we have U ⊆ V and R ‖ V .

For verifying property (P3) let R ‖ S and p ∈ S. We get [φ(R)]θ ‖A W where
φ−1W = S. That implies φ(p) ∈ W . Now we can use (P3) for ‖A to deduce that
[{φ(p)} ∪ [φ(R)]θ]θW . Now it remains to show that φ−1[{φ(p)} ∪ [φ(R)]θ]θ =
[{p} ∪ R]. But using equation 2 we get the desired result since for any closure
system we have [{a} ∪ [A]] = [{a} ∪ A].

As the last one, we have to show (P4) which is an analogy of Euclids Parallel
Postulate. Let p ∈ G and R ∈ CΓ . For [φ(R)]θ] we get the existence of one and
only one subspace W ∈ C(Γ ′) with φ(p) ∈ W and R ‖A W . Let S := φ−1(W). By
definition, we have R ‖ S and p ∈ S. If there is another subspace T with R ‖ T
and p ∈ T the closure of its image would generate a supspace of Γ ′ fulfilling the
conditions. That leads to a violation of (P4) regarding ‖A. This completes our
proof that the trace parallelism is indeed a weak parallelism. ��

In the following we provide examples of geometric spaces representable in a
congruence class space where the first example is a non-planar geometric space
and the second example is a geometric space violating condition (1) to show
that indeed more general geometric spaces can be represented in a congruence
class spaces, i.e. that embeddability into a congruence class space is definitely a
weaker condition than isomorphy to a congruence class space.

Example 2. The language of universal algebra allows to consider a vector space
over a (skew) field VK as an algebra G := (V,+,−, 0, (∗)K) of type (2, 1, 0, 1, ..., 1︸ ︷︷ ︸

|K|

).

In that sense our example is a restriction of the congruence class space of VK

where V = (Z3)3 and K = Z3 on the set of points

R := {(1, 0, 0), (2, 0, 0), (2, 1, 0), (2, 1, 1), (0, 0, 2)}.
The closure operator of the induced closure structure G := Γ (G) = ((Z3)3,
< · >) assigns to any set of points the smallest affine space they are contained
in.

202 Tim B. Kaiser

�������	 �������	 �������	

�������	

���� �������	

���� �������	

����

�������	

(0,0,2)

���� �������	

���� �������	

����

�������	 �������	 �������	

�������	

���� �������	

���� �������	

(2,1,1)

����

�������	

���� �������	

���� �������	

����

�������	 �������	 �������	

�������	

���� �������	

���� �������	

(2,1,0)

����

�������	

���� �������	

(1,0,0)

���� �������	

(2,0,0)

����

Fig. 5. (Z3)3, labelled points define non-planar restriction

Figure 5 visualizes the restriction as labelled circles. We investigate the re-
striction G|R. Clearly, G|R is embeddable into G via identification. First we argue
that G|R is not planar. Regard the set L := {(1, 0, 0), (2, 0, 0), (2, 1, 0), (2, 1, 1)}.
As restricted closure we get < L >|R= R. So L is not closed. But for any closure
of three points p1, p2, p3 ∈ L we get < {p1, p2, p3} >|R⊆ L. That means L is
three-closed but not a closed set, hence G|R is not planar.

Example 3. For violating condition (1) in a planar geometric space embeddable
into a congruence class space we pick a flat F in G and regard the restriction on
the set of points S := {(0, 0), (1, 0), (2, 1), (1, 2)} as shown in Figure 6.

�������	 �������	
(1,2)

�������	

�������	 �������	 �������	

(2,1)

�������	

(0,0)

�������	

(1,0)

�������	

Fig. 6. (Z3)2 where labelled points define a critical configuration

Representation of Data Contexts and Their Concept Lattices 203

Clearly, F|S is planar. We will show that the restriction F|S does not fulfill
condition (1). Let D := {(0, 0), (1, 0), (2, 1)}. Then we have (1, 2) ∈< D >|S .
So condition (1) requires the existence of dilations δi, i = 0, ..., n which satisfy
(1, 2) ∈ δ0({a, b, c}), δi ∩ δi+1 �= ∅ for i ∈ {0, ..., n− 1}, and (0, 0) ∈ δn({a, b, c}).
There are two possibilities for a dilation to act on D: δ(D) ⊆ D and δ(D) � D.
In the first case we do not win anything for reaching (1, 2). So let us assume
δ(D) � D. Then (1, 2) ∈ δ(D) which implies that δ((0, 0)) = (1, 2), δ((1, 0)) =
(1, 2), or δ((2, 1)) = (1, 2). Assume δ((0, 0)) = (1, 2). Since δ is a dilation we get
δ((1, 0)) = (1, 2) and also δ((2, 1)) = (1, 2). Therefore we have δ(D) ∩ D = ∅.
The two other cases work analogously. This shows that the point (1, 2) which is
in the closure of D can not be reached via a dilation construction.

We can use the result of the above proposition together with the examples to
reformulate our initial question: Which closure structures can be represented in
congruence class spaces? into Which geometric spaces carry a weak parallelism
such that they are extendible to planar geometric spaces satisfying condition (1).
Since we want to apply our results to data contexts later on and data contexts
naturally carry a weak parallelism, in the following we will focus on geometric
spaces with a given weak parallelism. So again our question changes to: Which
geometric spaces with weak parallelism are extendible to planar geometric spaces
satisfying condition (1)?

To answer this question we need a notion of embeddability for closure struc-
tures with weak parallelism:

Definition 6. Let Γ := (G, [·], Π) and Γ ′ := (H, [·]′, Π ′) be closure structures
with weak parallelism. Then we call a mapping ε : G → H embedding if

1. ε is an embedding of (G, [·]) into (H, [·]′).
2. For A,B ∈ Γ c : AΠB =⇒ [ε(A)]′Π ′[ε(B)]′.

For this notion of embeddability it is easy to find a closure structure with
weak parallelism which cannot be represented in a congruence class space. In the
following we give an infinite sequence of congruence class spaces not representable
in congruence class spaces.

Example 4. Let Rn := {1, 2, 3, 4, ..., n} and let exactly all one-element sets, all
two-element sets the empty set and Rn be closed. Let Ψn := (Rn, [·]) denote
the induced closure structure. Furthermore, define a weak parallelism on Ψ c

n as
AΠB if and only if B is a one-element set with A∩B = ∅ or A = B. So (Rn)n∈N

forms an infinite sequence of geometric spaces with weak parallelism which are
not satisfying condition (1), since every dilation δ with δ({a, b, c})∩{a, b, c} �= ∅
is constant. Moreover, we have exactly

(
n
3

)
point configurations violating the

condition. This remains true for every extension of Ψn, therefore Ψn cannot be
represented in a congruence class space.

204 Tim B. Kaiser

3 Data Contexts and Closure Systems with Weak
Parallelism

In section 1 we have pointed out that the main goal of measurement theory is to
find a numerical relational structure in which a given relational structure can be
represented homomorphically. Here, we modify this idea. We generalize this ap-
proach allowing not only numerical relational structures as representing entities
but every kind of algebra. As relational structure we use many-valued contexts.
To activate our previous results concerning closure structures with weak paral-
lelism we use the idea of conceptual scaling to derive a closure structure/system
from the many-valued context.

Definition 7 (many-valued context). A many-valued context is a structure
(G,M,W, I) where G, M , and W are sets and I is a subset of G × M × W
with (g,m,w1) ∈ I and (g,m,w2) ∈ I ⇒ w1 = w2. Every attribute m ∈ M can
be regarded as a partial function m : G → W , dually every object g ∈ G can
be regarded as a partial function g : M → W . A many-valued context is called
complete if every attribute m ∈ M is a function (equivalently, every g ∈ G is a
function).

For a map f : A → B the kernel of f is defined as the equivalence relation
ker(f) := {(a, b) ∈ A2 | f(a) = f(b)}. For every complete many-valued context
K := (G,M,W, I) we can define two sets of equivalence relations EqG(K) :=
{ker(m) |m ∈ M} and EqM (K) := {ker(g) | g ∈ G}. Also we define the set of
arbitrary meets of equivalence relations of a complete many-valued context as
Eq

M
(K) := {θ ∈ Eq(G) | ∃N ⊆ M : θ = ∩m∈Nker(m)}, dually for Eq

G
(K).

In the following we restrict our considerations to complete many-valued con-
texts. This is no serious restriction since every non-complete many-valued con-
text (G,M,W, I) can be completed to (G,M,W ′, I ′) with W ′ := W ∪ {�} and
I ′ := I ∪ {(g,m,�)|if m(g) is undefined}.

Formal Concept Analysis provides an instrument to assign a closure system
to a many-valued context through conceptual scaling. For our purposes we use
a special case of plain scaling:

Definition 8 (derived context via nominal scaling). Let K := (G,M,W, I)
be a complete many-valued context. Then the formal context Kn := (G,N, J) is
called derived context via nominal scaling of K if N := {(m,w) ∈ M ×W | ∃g ∈
G : m(g) = w} and J := {(g, (m,w)) ∈ G × N | (g,m,w) ∈ I}.

Definition 9 (object closure system of a many-valued context). Let
K := (G,M,W, I) be a complete many-valued context. Then its (nominal) object
closure system is defined as U(K) := {Ext(c)|c ∈ B(Kn)}.

We can assign a weak parallelism to a closure system derived from a many-
valued context using its equivalence relations. For A ∈ U(K) we denote by Eq(A)

Representation of Data Contexts and Their Concept Lattices 205

the smallest equivalence relation θ in Eq
G

(K) with A×A ⊆ θ. Now we can define
a relation π(K) ⊆ U(K) × U(K) as follows:

(A,B) ∈ π(K) ⇐⇒ B is a block of Eq
G

(A).

It turns out that π(K) is a weak parallelism.

Theorem 3. Let K := (G,M,W, I) be a complete many-valued context. Then
π(K) is a weak parallelism on U(K).

Proof. Obviously, π(K) is reflexive.
Let A,B,C,D,E ∈ U(K), let Aπ(K)B, let C ⊆ B, and let Cπ(K)D. This means
that B is a class of Eq

G
(A). Since C is contained B we have Eq

G
(C) ⊆ Eq

G
(A).

Using that D is a class of Eq
G

(C) we get that D ×D ⊆ Eq
G

(A) which implies
the existence of a class E of Eq

G
(A) with D ⊆ E.

Now, let A,B ∈ U(K) with Aπ(K)B and let b ∈ B. We want to show that
B ⊆ (A ∪ {b})U. We have that B is a block of Eq

G
(A). That means that any

relation containing A×A also contains B×B. Therefore Eq
G

(A∪{b}) contains
both A × A and B × B which implies by transitivity of the equivalence relation
that A ∪ B × A ∪B ⊆ Eq

G
(A ∪ {b}). This yields B ⊆ (A ∪ {b})U.

For the last one, let A ∈ U(K) and let g ∈ G. Clearly there is exactly one class
of Eq

G
(A) containing g, since Eq

G
(A) is an equivalence relation.

��

A first naive way of subscribing a weak parallelism to an object closure sys-
tem of a complete many-valued context could have been considering A,B ∈ U(K)
as related, denoted by Aθ(K)B, if there exist v, w ∈ W and m ∈ M such that
A = (m,w)J and B = (m, v)J . But this does not yield a weak parallelism for
arbitrary many-valued contexts. Clearly the properties of the mentioned rela-
tion are determined by the equivalence relations EqG(K). The next proposition
explains the connection between π(K) and θ(K).

Proposition 4. Let K := (G,M,W, I) be a complete many-valued context. Then
we have π(K) = θ(K) if and only if EqG(K) is regular and EqG(K) = Eq

G
(K),

i.e. EqG(K) is regular and meet-closed.

Proof. “⇒”: Assume π(K) = θ(K). First we have to show that EqG(K) is regu-
lar, i.e. that any class of a relation ψ ∈ EqG(K) determines its relation. Suppose
that there exist different relations ψ, ψ′ ∈ EqG(K) having A ⊆ G as a class. Then
there are blocks B of ψ and C of ψ′ with B �= C and B ∩ C �= ∅. Clearly, this
violates axiom (P4), a contradiction. Suppose EqG(K) is not meet-closed. Then
the relation θ(K) is not even reflexive on U(K).
“⇐”: Assume EqG(K) is regular and meet-closed. Let Aπ(K)B. Then B is a
class of Eq

G
(A). Since EqG(K) is regular and meet-closed there is exactly one

relation ψ ∈ EqG(K) with ψ = ker(m) = Eq
G

(A) for one m ∈ M . This shows

206 Tim B. Kaiser

that Aθ(K)B. Now assume Aθ(K)B. This means that there exists an m ∈ M

with A and B blocks of ker(m). Since EqG(K) is meet-closed Eq
G

(A) ∈ EqG(K)
and since EqG(K) is regular ker(m) = Eq

G
(A), which implies Aπ(K)B. ��

Now, we have a way to assign to a complete many-valued context a closure
system with weak parallelism C(K) := (U(K), π(K)) or a closure structure with
weak parallelism Γ (K) := (G,U , π(K)).
In the next section we apply our proposed technique to an example.

4 Example

Consider the many-valued context K := (G,M,W, I) represented by the follow-
ing data table:

1 2 3

a A C E
b B C F
c A D F
d B D E

Fig. 7. Sample context

If we consider the meet-closure of its equivalence relations we see that

Eq
G

(K) = EqG(K) ∪ ΔG ∪∇G.

The set of relations Eq
G

(K) is regular, therefore we can use proposition 4 to
argue that π(K) is a parallelism.

Now, we have to look at the set of dilations Δ(π(K)) induced by the paral-
lelism. It turns out that it contains the following non-constant mappings:

1. δ1 : a #→ b, c #→ d, b #→ a , and d #→ c
2. δ2 : a #→ c, b #→ d, c #→ a , and d #→ b
3. δ3 : a #→ d, b #→ c, d #→ a , and c #→ b
4. δ4 = idG

Now we have to check if all conditions for a coordinatization are satisfied.
First of all U(K) is a geometry since the empty set and its points are closed and
it is algebraically since it is finite. Furthermore U(K) is planar because there
is no closure whith a rank higher than three. Now, only condition 1 remains
to be checked. For this we only have to consider the case where d ∈ [a, b, c],
because of symmetry. But clearly, δ3 does the job. we have d ∈ δ3({a, b, c}) =
{b, c, d} ∩ {a, b, c} �= ∅ which fulfills the condition. Now we know that we can

Representation of Data Contexts and Their Concept Lattices 207

coordinatize the derived closure system with parallelism. If we look closer at
the constructed algebra (G, (δi)4i=1) we see that it is isomorphic to the vector
space Z2

2, which is the smallest finite affine geometry. Therefore by applying our
technique we found another way of representing our closure system:

�������	

d
�������	

c

�������	
a

�������������� �������	

b

��������������

Fig. 8. U(K) represented as Z2
2

5 Conclusion

In the this paper we have shown how to assign a closure structure with weak
parallelism to a many-valued context. This closure structure can be investigated
to see if it matches the conditions listed in Theorem 2. If it fulfills these conditions
we know that we can assign an algebra to it gaining another way of describing
its extents, not only be applying the derivation operator to attribute sets but
also by forming the smallest congruence class an object set is contained in.
As in this paper only the question of isomorphic representation is answered
sufficiently using the results from [Wi70] the future task in this line of research
clearly is to find ”nice” conditions for embeddability were some leverage points
are indicated by our examples. Since a coordinatizing algebra gives us a way to
introduce (partial) operations on the set of concepts of the scaled context – if we
consider the concepts as elements of suitable factor algebras of the coordinatizing
algebra – it might also be interesting to investigate if these operations can yield
supportive insights or meaningful interpretations for ”real world data”.

References

[GW99] B. Ganter, R. Wille: Formal Concept Analysis, Mathematical Foundations.
Springer-Verlag, Berlin Heidelberg New York (1999)

[Jo59] B. Jonsson: Lattice-theoretic approach to affine and projective geometry.
In L. Henkin, P. Suppes, A. Tarski (eds.): The axiomatic method with
special references to geometry and physics. Amsterdam, North-Holland
(1959), 188-203.

[KLST71] D. H. Krantz, R. D. Luce, P. Suppes, A. Tversky: Foundations of Mea-
surement, Volume I. Academic Press, Inc., New York (1971)

208 Tim B. Kaiser

[Ma52] F. Maeda: Lattice-theoretic characterization of abstract geometries. Jour.
of Sci. of Hiroshima Univ. Ser. A 15 (1951/52), p. 87-96.

[Wi70] R. Wille: Kongruenzklassengeometrien. Springer-Verlag, Berlin Heidelberg
New York (1970)

[Wi96] U. Wille: Geometric Representation of Ordinal Contexts. Shaker Verlag,
Aachen (1996)

[Wi97] U. Wille: The role of synthetic geometry in representational measurement
theory. J. Math. Psych. 42 (1997), 71-78.

[WW92] R. Wille, U. Wille: Coordinatization of ordinal structures. Discrete
Mathematics. (1992)

[WW02] R. Wille, U. Wille: Restructuring General Geometry: Measurement and
Visualization of Spatial Structures. Preprint (2002)

Local Negation in Concept Graphs

Julia Klinger

Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, D-64289 Darmstadt,
jklinger@mathematik.tu-darmstadt.de

Abstract. The aim of this paper is to present several examples illus-
trating challenges (local) negation in concept graphs yields with respect
to semantical entailment. The examples are mainly concerned with in-
equality and with the impact missing information can have on relation-
ships. The problems described here arose during the development of a
logic system of protoconcept graphs (cf. [Kl05]), hence they will serve as
exemplification.

1 Introduction

The theory of protoconcept graphs is part of a program called ‘Contextual Logic’
which can be understood as a formalization of the traditional philosophical logic
with its doctrine of concepts, judgments, and conclusions (cf. [Wi96], [Pr98a],
[Wi00b], [DK03]). As semantical structures, protoconcept graphs have been in-
troduced in [Wi02a]. Complementing the semantic theory, in [Kl05] a logic ap-
proach to protoconcept graphs based on a separation of syntax and semantics
was developed. Roughly spoken, protoconcept graphs are simply concept graphs
with a negation on the level of concepts and relations (thus a limited nega-
tion) and with equality as syntactical element. However, the investigation of the
semantical entailment relation for protoconcept graphs resulted in several inter-
esting challenges. The aim of the present paper is to report on these problems.
As shown in [Kl05], the examples provided here are indeed representative for all
non-standard problems occurring with respect to semantical entailment.

This paper consists of four more sections. In Section 2, syntax and seman-
tics for protoconcept graphs are introduced and explained by examples. Both the
third and the fourth section deal with the challenges mentioned above. In partic-
ular, Section 3 is devoted to problems which arise when dealing with inequality,
and Section 4 focuses on so-called ‘hidden relationships’. Section 5 finishes this
paper with some concluding remarks.

2 Basic Definitions

We assume that the reader is familiar with the basic notions of Formal Concept
Analysis. We will proceed as follows: First, the notion of an alphabet is intro-
duced, then protoconcept graphs are defined as ‘formulas’ over this alphabet.
For the semantics, these syntactic graphs are then interpreted in power context
families, and, based on this, models are defined.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 209–222, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

210 Julia Klinger

2.1 Syntax

We start with the definition of an alphabet.

Definition 1. An alphabet for protoconcept graphs is a triple A := (G,P ,R) of
non-empty disjoint sets. The set G is a finite set whose elements are called object
names, (P ,≤P) is a finite ordered set whose elements are called protoconcept
names, and (R,≤R) is the union of a finite family (Rk,≤Rk

)k=1,2,...,n of finite
ordered sets such that R :=

⋃̇n

k=1Rk and ≤R:=
⋃̇n

k=1 ≤Rk
whose elements

are called relation names. The set of protoconcept names is supplied with a
distinguished greatest element �0 and a distinguished smallest element ⊥0, and
each set Rk (k = 1, 2, . . . , n) of relation names contains a distinguished greatest
element �k and a distinguished smallest element ⊥k. Moreover, the set of relation
names includes a special element .= ∈ R2 which is called identity. Furthermore,
let Var := {x1, x2, . . .} be an infinite set of signs, the elements of which are
called variables. For every finite subset X ⊆ Var we set GX := G ∪̇ X and
AX := (GX ,P ,R). Finally, we set Ġ := G∪̇Var.

�

As an example, consider the alphabet in Figure 1. All sample graphs depicted
in the next sections are defined over this alphabet.

Let X := {x, y, z, u, v} ⊆ Var and A := (G,P ,R) with

G := {g, h, g1, g2, g3, g4, g5, g6}
P := {⊥0,�0, P, Q}
R := R1 ∪ R2 ∪R3

R1 := {�1,⊥1, R1}
R2 := {�2,⊥2,

.
=, R2, R

′
2}

R3 := {�3,⊥3, R3}
≤R := ≤R1 ∪̇ ≤R2 ∪̇ ≤R3

≤P : ≤R1 :

�
��

�

�
��

� QP

�0

⊥0

R1

⊥1

�1

≤R2 : ≤R3 :

⊥2

R2

�
�

�
�

	
	
	

.
=

�2

R′
2

R3

⊥3

�3

Then AX := ({g, h, g1, g2, g3, g4, g5, x, y, z, u, v},P ,R).

Fig. 1. An alphabet for protoconcept graphs

Protoconcept graphs structure information rhetorically. This structure is
coded in relational graphs.

Local Negation in Concept Graphs 211

Definition 2. A relational graph is a triple (V,E, ν) with a finite set V of ver-
tices, a finite set E of edges and a map ν : E →

⋃
k∈N

V k. If ν(e) = (v1, . . . , vk)
for some e ∈ E then v1, . . . , vk are called the adjacent vertices of the k-ary edge
e, and |e| := k is called the arity of e. Let E(k) := {e ∈ V ∪ E | |e| = k} be the
set of all elements of V ∪ E of arity k (k ∈ N), and E(0) := V . �

An example for a relational graph is shown in Figure 2 (with the relational graph
({v, w}, {e}, ν) and ν(e) = (v, w)).

� �21
v we

Fig. 2. Example for a relational graph

Definition 3. A protoconcept graph over the alphabet A is a structure G :=
(V,E, ν, κ, �) for which

- (V,E, ν) is a relational graph,
- κ : V ∪E → P ∪R is a mapping such that κ(V) ⊆ P and κ(E) ⊆ R and all

e ∈ E(k) satisfy κ(e) ∈ Rk for all k ≥ 1.
- � : V → (Ġ) × (Ġ), � : v #→ (�+(v), �−(v)) is given by two functions

�+ : V → (Ġ) and �− : V → (Ġ) such that all u ∈ E(k) (k ∈ N0) satisfy
�+(u) ∪ �−(u) �= ∅ (where for ν(e) = (v1, . . . , vn) we set �+(e) := �+(v1) ×
· · · × �+(vn) and �−(e) := �−(v1) × · · · × �−(vn)) .

�

Figure 3 shows an example, namely the graph G := (V,E, ν, κ, �), with the
relational graph (V,E, ν) as in Figure 2, and with κ(v) = P , κ(w) = Q, κ(e)+R2,
�(v) = ({x}, {g1}), and �(w) = ({g2}, {y}) (if �+(u) or �−(u) are singleton sets,
then in the graphical representation of the graph we omit the set-brackets around
them). Anticipating the next section, we describe how the protoconcept graph in
Figure 3 is read: “there is something (namely x) which is P , and g1 is not P and
g2 is Q and there is something (namely y) which is not Q and (x, g2) are in R2

and (g1, y) are not in R2”. Note that the variables are never free variables, but
always existentially quantified. This follows from the definition of the semantics
as introduced in the next section.

2� ��1
Q : g2 | yP : x | g1 R2

v e w

Fig. 3. A protoconcept graph

212 Julia Klinger

Protoconcept graphs extend the theory of concept graphs as introduced in
[Pr98b] by including a negation on the level of concepts and relations. In partic-
ular, every concept graph can be understood as a protoconcept graph. On the
other hand, every protoconcept graph corresponds to a concept graph with cuts
(see [Da03a]). This logic system contains a negation on the level of propositions.
In contrast to Dau’s system, however, the theory of protoconcept graphs is de-
cidable with respect to satisfiability and derivability. For a thorough discussion
of the inter-relationships between the three theories we refer to [KV03].

Furthermore, it is important to note that there is a correspondance between
protoconcept graphs and polarised simple conceptual graphs as described in
[Ke01]. These graphs are conceptual graphs with an atomic negation on the
relations. While there are certain differences in the alphabet and the definition of
the semantics, the main distinction beween the two theories is that protoconcept
graphs with relation .= to identify objects and variables while polarized concept
graphs employ coreference links. Since the latter are not relation edges, they may
not be negated. However, in the theory of protoconcept graphs, we can set objects
or variables unequal. As discussed in the following sections, this inequaltiy yields
several difficulties. Additionally, polarised simple graphs use projections in order
to study derivability, while protoconcept graphs have a sound and complete
calculus.

2.2 Semantics

For the semantics, we first briefly recall the definition of protoconcepts (see
[Wi00a]). They are chosen over concepts for our theory, since in contrast to
concepts they are closed under extensional negation. Thus, let K = (G,M, I) be
a formal context with a set G of objects, a set M of attributes and is a binary
relation I ⊆ G × M called the incidence raltion. For a subset A ⊆ G we set
AI := {m ∈ M | gIm for all g ∈ A}. Dually, for B ⊆ M we set BI := {g ∈
G | gIm for all m ∈ B}. A protoconcept of K is a pair (A,B) with A ⊆ G and
B ⊆ M such that AI = BII (which is equivalent to AII = BI). The set P(K)
of all protoconcepts of K is structured by the generalization order �, defined by

(A1, B1) � (A2, B2) :⇔ A1 ⊆ A2 and B1 ⊇ B2,

and by logical operations defined as follows:

(A1, B1) � (A2, B2) := (A1 ∩ A2, (A1 ∩ A2)I)
(A1, B1) � (A2, B2) := ((B1 ∩ B2)I , B1 ∩ B2)

¬(A,B) := (G\A, (G\A)I)
� := (G, ∅)
⊥ := (∅,M).

As underlying structure for the semantics, families of formal contexts are
defined.

Local Negation in Concept Graphs 213

Definition 4. A power context family
−→
K := (Kk)k=0,1,2,...,n is a family of con-

texts Kk := (Gk,Mk, Ik) such that Gk ⊆ Gk
0 for k ∈ {1, . . . , n}. �

As an example for a power context family we consider the left hand side of
Figure 4 which contains the power context family

−→
K := (K0, K1, K2, K3) with

I1 = ∅ = I3. Note that the object set of the kth context consists of the k−tuples
of objects of K0.

K0:

m n

a × ×
b ×
c

K2:

r

(a, a) ×
(a, b) ×
(a, c)

(b, a)

(b, b)

(b, c)

(c, a)

(c, b)

(c, c)

λG : G → {a, b, c}
f �→
{

b if f ∈ {g1, g2}
c if f ∈ {g3, g4, g, h}

λP : P → P(K0)

p �→

⎧⎪⎪⎨
⎪⎪⎩

� if p = �0

⊥ if p = ⊥0

({m}I0 , {m}I0I0) if p = P
({n}I0 , {n}I0I0) if p = Q

λR : R →
⋃
k∈N

P(Kk)

s �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�P(Kk) if s = �k

⊥P(Kk) if s = ⊥k

({r}I2 , {r}I2I2) if s = R2

({(a, a), (b, b)}, ∅) if s = R′
2

({(a, a), (b, b), (c, c)}, ∅) if s =
.
=

Fig. 4. A model for the graph in Figure 3

Next the syntactical elements of the alphabet are interpreted in a power con-
text family via an interpretation. The conditions 1-3 in the following Definition
guarantee that the k−ary relation names are indeed interpreted as protoconcepts
of the kth context and that all special elements are treated according to their
intended meaning.

Definition 5. For an alphabet A := (G,P ,R) of type n and a power context
family

−→
K := (Gk,Mk, Ik)k=0,1,...,n, we call the triple λ := (λG , λP , λR) consisting

of the mappings λG : G → G0, λP : P → P(K0) and λR : R →
⋃

k∈N
P(Kk) a

−→
K−interpretation of A if λP and λR are both order-preserving and if they satisfy

1. λP (�0) = � ∈ P(K0) and λP (⊥0) = ⊥ ∈ P(K0) and λR(�k) = � ∈ P(Kk)
and λR(⊥k) = ⊥ ∈ P(Kk) for all k = 1, 2, . . . , n,

2. (g1, g2) ∈ Ext(λR(.=)) ⇔ g1 = g2 for all g1, g2 ∈ G0,
3. λR(Rk) ⊆ P(Kk) for all k = 1, 2, . . . , n.

The pair (
−→
K , λ) is called a contextual structure for A. �

214 Julia Klinger

The triple λ := (λG , λP , λR) with λG , λP and λR as in the right hand side of
Figure 4 is a

−→
K−interpretation of A (with

−→
K as in Figure 4 and A as in Figure

1). Moreover, the variables need to be evaluated in the power context family:

Definition 6. Let A be an alphabet for protoconcept graphs and let (
−→
K , λ)

with Kk := (Gk,Mk, Ik) (k = {0, . . . , n}) be a contextual structure for A. Then
each function β : Var → G0 is called a valuation of Var in

−→
K . Valuations are

naturally extended to mappings

β̇ : Ġ → G0

a #→
{

β(a) if a ∈ Var
λG(a) if a ∈ G.

�

Now we are finally in a position to define if a contextual structure is a model for
a protoconcept graph:

Definition 7. Let G := (V,E, ν, κ, �) be a protoconcept graph over (A,Var)
and let (

−→
K , λ) be a contextual structure for A. Moreover, let β : Var → G0 be

a valuation. We say that G is an existential protoconcept graph of (
−→
K , λ) under

the valuation β (and write (
−→
K , λ) |= G[β]) if

– all v ∈ V satisfy
β̇�+(v) ⊆ Ext(λP κ(v)) (vertex condition)
β̇�−(v) ⊆ G0 \ Ext(λP κ(v))

– all e ∈ E satisfy
β̇�+(e) ⊆ Ext(λR κ(e)) (edge condition)
β̇�−(e) ⊆ (G0)k \ Ext(λR κ(e))

(where for ν(e) = (v1, . . . , vn) we set β̇�+(e) := β̇�+(v1) × · · · × β̇�+(vn) and
β̇�−(e) := β̇�−(v1)×· · ·×β̇�−(vn)). If there is a valuation β with (

−→
K , λ) |= G[β],

then we call (
−→
K , λ) a model for G. �

For the contextual structure in Figure 4 we set β : Var → {a, b, c}, β(x) := a,
β(y) := c and β(w) = a for all w ∈ Var \ {x, y}. Then (

−→
K , λ) is a model for the

graph in Figure 3 under the valuation β. We only check one vertex condition,
namely that of v: We have β̇(�+(v)) = β̇({x}) = {a} ⊆ {a} = Ext(λP P) and
β̇(�−(v)) = β̇({g1}) = {b} ⊆ G0\{a} = G0\Ext(λP P). With respect to the edge
condition for e we find β̇(�+(e)) = β̇({(x, g2)}) = {(a, b)} ⊆ {(a, a), (a, b)} =
Ext(λR R2) and β̇(�−(e)) = β̇({(g1, y)}) = {(b, c)} ⊆ G2 \ {(a, a), (a, b)} =
G2 \ Ext(λR R2).

Finally, we recall the definition of semantical entailment.

Local Negation in Concept Graphs 215

Definition 8. Let G1 and G2 be two protoconcept graphs over the same alpha-
bet. We say G1 entails G2 if G2 is a protoconcept graph of every model for G1.
We denote this by G1 |= G2. �

3 Inequality

In this section, we describe three types of examples which are all concerned
with the consequences of inequality. First we investigate how two object names
can be set unequal explicitly and implicitly in a graph. Next we argue that
the fact that the syntactical element .= is integrated in the order ≤R2 like any
other relation name has to be especially taken into account. Finally, we illustrate
that the combination of inequality with existential quantification needs a special
treatment.

3.1 Inequality of Object Names

Inequality of object names can be coded explicitly or implicitly in a protoconcept
graph. As examples consider the graphs in Figure 5. These graphs state explicitly
or implicitly that in any model, the object names g1 and g2 cannot be interpreted
as the same object: The first graph obviously states that g1 and g2 are unequal.
The protoconcept graph G2 says that g1 is P and g2 is not P . Hence, g1 and g2

cannot be interpreted as the same object. In the third graph (consisting of three
edges) we find that g and h are syntactically equated while g1 is in the relation
R2 to g and g2 is not in the relation R2 to h. Again, the interpretations of g1

and g2 may never be equal. In particular, we find that G2 |= G1 and G3 |= G1.

G1:

� ��.
=

1 2⊥0 : | g1 ⊥0 : | g2

G2:

P : g1 | g2

G3:

� ��
� ��

� ��
1 2

1 2.
=

2

R2

R2

�0 : h | �0 : g |

⊥0 : | g2 ⊥0 : | h

1�0 : g1 | �0 : g |

Fig. 5. How inequality can be coded

216 Julia Klinger

3.2 Integration of .= in ≤R2

Now we argue that the integration of .= in ≤R2 , together with a local negation
can have rather unexpected results.

Let G1, G2 as in Figure 6 with R′
2 <

.=. We prove that G1 |= G2. Note that this
can only be shown by activating the order ≤R2 . In particular, the information
in G2 is not stated explicitly in G1. Thus, let (

−→
K , λ) be a model for G1. Then

this model either satisfies λG(g) �= λG(h), which implies that λG((g, h)) ∈ G2 \
Ext(λR

.=) ⊆ G2\Ext(λR R′
2). Or we have λG(g) = λG(h), but then λG((g, h)) =

λG((g, g)) ∈ G2 \Ext(λR R′
2), because (

−→
K , λ) satisfies the edge condition for G1.

Hence, G1 |= G2.

G1 :

� ��1 2 ⊥0 : | g⊥0 : | g R′
2

G2 :

� ��1 2 ⊥0 : | h⊥0 : | g R′
2

Fig. 6. Example

3.3 Existential Quantification and Inequality

In Section 3.1 we have illustrated that object names can be set unequal explicitly
and implicitly. This investigation is now extended to variables. We find that there
are even more possibilities to express inequality, due to a local ‘or’:

We consider the graphs G1,G2 as in Figure 7. Although g is neither set
unequal to g1 nor to g2, we find that G1 |= G2. For if (

−→
K , λ) |= G1, we define

β : Var → G0 as follows: Depending on whether λG(g1) �= λG(g) or λG(g2) �=
λG(g) (and at least one of these conditions has to be fulfilled) we set β(x) =
λG(g1) or β(x) = λG(g2), respectively. Then (

−→
K , λ) |= G2[β].

Thus, Figure 7 shows that with variables as references and the possibility to
set two names unequal via equality and local negation, we obtain a disjunction:
we have that in every model for G1, the interpretations of g and g1 or the
interpretations of g and g2 have to be different. As an additional example of the
same type consider the two graphs in Figure 8, where g1, g2, g3 ∈ Ġ are pairwise
set unequal in the graph G1. Then for any g, h ∈ Ġ and any x ∈ Var we obtain
G1 |= G2: Every model for G1 contains at least three objects, hence if we have
g, h, then in every model for G1 there is something, which is different from them.

Note, that in both examples we used the direct approach of setting the object
names respectively variables unequal. Alternatively, any one of the possibilities

Local Negation in Concept Graphs 217

� ��1 2 ⊥0 : | g2

P : g |

⊥0 : | g1

Q : {g1, g2} |
.
=

G1 :

� ��1 2.
=

P : g |

⊥0 : | g ⊥0 : | x

Q : x |
G2 :

Fig. 7. Example

of setting them unequal implicitly (see the lower two examples in Figure 5) could
have been employed.

The main argumentation for proving that G1 |= G2 for G1,G2 in Figure 7
was that g, g1 and g2 cannot be mapped to the same element in a model. This
can be generalized to more than three elements: Consider the two graphs in
Figure 9. For g we obtain G1 |= G2. For let (

−→
K , λ) |= G1[β]. Then λG((g1, g2)) ∈

Ext(λP(R2)) and λG((g3, g4)) ∈ G2 \ Ext(λP(R2)), thus g1, g2, g3, g4 can not all
be mapped to the same element of G0 by λG . Hence |λG({g1, g2, g3, g4})| > 1
and for g there is an a ∈ λG({g1, g2, g3, g4}) with λG(g) �= a. This a certainly
satisfies a ∈ Ext(λP(P)), thus we simply set β′(x) = a, β̇′(g) = β̇(g) and find
(
−→
K , λ) |= G2[β′].

� ��.
=

� �� � ���
��

�
��

�
��

�
��

.
=

.
=

⊥0 : | g1 ⊥0 : | g3

⊥0 : | g2

G1 :

� ��
� ��

.
= ⊥0 : | h⊥0 : | x

.
= ⊥0 : | g⊥0 : | x

G2 :

Fig. 8. Example

218 Julia Klinger

� ��1 2
R2⊥0 : | g3 ⊥0 : | g4

� ��
G1 :

P : {g1, g2, g3, g4} |
1 2 �0 : g2 |�0 : g1 | R2

� ��1 2

P : x |

⊥0 : | x
.
= ⊥0 : | g

G2 :

Fig. 9. Example

4 Hidden Relationships

The aim of this section is to investigate so-called ‘hidden relationships’, which are
pieces of information about relations that can only be obtained from a graph via
case differentiation. The examples described in this sections somehow generalize
the examples in Section 3.1 (for instance to edges with relation names other
than .=). As an example, consider the graphs in Figure 10. Note that the graph
G1 does not directly code all the information given in G2, i.e., that there are
three things x, y, z (which are not necesseraly distinct) such that (x, y) is in R2

and (y, z)is not in R2. Still, we find G1 |= G2. Let (
−→
K , λ) be a model for G1.

We distinguish two cases for the definition of a valuation β : Var → G0 with
(
−→
K , λ) |= G2[β]:

(i) If (λG(g2), λG(g2)) /∈ Ext(λR R2), then we set β(x) := λG(g1), β(y) := λG(g2)
and β(z) = λG(g1) (and β(a) := a for all a ∈ Var \ {x, y, z}).

(ii) If (λG(g2), λG(g1)) ∈ Ext(λR R2), then we set β(x) := λG(g1), β(y) := λG(g2)
and β(z) = λG(g3) (and β(a) := a for all a ∈ Var \ {x, y, z}).

Next let us investigate in which different ways ‘hidden relationships’ like the
one visualized in Figure 10 can occur. The graphs in Figure 10 consist of two
edges of the same label R2. The next example shows that such implicitly coded
information can also be obtained from edges of different arity (e.g. by combining
information coded in vertices and edges):

We take the graphs G1,G2 from Figure 11. Let (
−→
K , λ) be a model for G1.

Depending on whether or not λG(g1) ∈ Ext(λP (Q)), we can define a valuation
β for G2 in (

−→
K , λ): If λG(g1) ∈ Ext(λP (Q)), then the valuation β : Var → G0

with β(x) := λG(g2), β(y) := λG(g1) is a valuation for G2 in (
−→
K , λ). If λG(g1) �∈

Ext(λP(Q)), then β : Var → G0, β(x) := λG(g1), β(y) := λG(g3) is a valuation
for G2 in (

−→
K , λ). Thus, G1 |= G2.

Local Negation in Concept Graphs 219

� ��
� ��

G1 :

1 2
R2

1 2
R2

⊥0 : | g1 ⊥0 : | g3

�0 : g2 |�0 : g1 |

�0 : x |

� ��
� ��

1 2
R2

R2

⊥0 : | y ⊥0 : | z

1 2 �0 : y |
G2 :

Fig. 10. Example

� ��1 2 ⊥0 : | g1⊥0 : | g3 R2

� ��1 2 ⊥0 : | g1⊥0 : | g2 R2

P : {g1, g2} | Q : g3 | g2

G1 :

� ��
P : x | Q : y | x

1 2 ⊥0 : | x⊥0 : | y R2

G2 :

Fig. 11. Example

Moreover, the references in the second graph need not all be variables. Via
a case differentiation with respect to whether λG((g2, g1, g3)) in Ext(λR(R3)) or
not we see that the graphs in Figure 12 satisfy G1 |= G2.

Finally, we note that it is not enough to consider inequality and implicit re-
lationships separately. For this, consider the example described in Figure 13. We
find that G1 |= G2, which follows similarly to the argumentation for the exam-
ple in Figure 10, however, the argumentation has an additional twist in it: Let
(
−→
K , λ) be a model for G1. If λG((g2, g1, g6)) ∈ Ext(λR R3), then the model needs

to satisfy λG(g2) �= λG(g5) (otherwise the edge condition for the bottommost edge
of G1 would not be satisfied). Hence, β : Var → G0 with β(x) = λG(g2), β(y) =
λG(g1), β(z) = λG(g3), β(g6) = λG(a), β(v) = λG(g4) and β|Var\{x,y,z,u,v}(d) =
λG(g1) is a valuation of G2 in (

−→
K , λ). On the other hand, if λG((g2, g1, g6)) �∈

Ext(λR R3), then β : Var → G0 with β(x) = λG(g1), β(y) = λG(g2), β(z) =
λG(g1), β(u) = λG(g4), β(v) = λG(g6) and β|Var\{x,y,z,u,v}(d) = λG(g1) is a val-

220 Julia Klinger

uation of G2 in (
−→
K , λ). Hence, G1 |= G2. Note that within the argumentation

we had to infer that g2 and g1 have to be mapped to different objects; without
drawing this conclusion we would not have been able to deduce G1 |= G2.

� ��

� ��

R3 �0 : g2 |

3

⊥0 : | g3

�0 : g1 |
3

�0 : g3 |

1 2
R3⊥0 : | g1 ⊥0 : | g3

G1 :
1 2

� ��
� ��

3

⊥0 : | g3

1 2
R3⊥0 : | y ⊥0 : | z

R3
1 2 �0 : y |�0 : x |

3

�0 : g3 |

G2 :

Fig. 12. Example

5 Conclusion

The aim of this paper was to illustrate and classify the problems arising from
the introducton of a limited negation. Although the examples described above
can be combined with each other, we find that (beside such combinations) there
is a characterization of semantical entailment in [Kl05] which shows that the
examples described above can indeed be considered representative for all non-
standard problems.

Local Negation in Concept Graphs 221

� ��

� ��

� ��
� ��

1 2
R3�0 : g1 |

3

1 2
R3

3

⊥0 : | g4

⊥0 : | g1 ⊥0 : | g3

1 2.
=⊥0 : | g1 ⊥0 : | g5

1 2
R3

3
⊥0 : | g5

�0 : g2 |

�0 : g4 |

⊥0 : | g1

⊥0 : | g6

G1 :

� ��1 2
R3�0 : x |

3
�0 : y |

�0 : u |

� ��

� ��

1 2
R3

3
⊥0 : | y

1 2.
=⊥0 : | x ⊥0 : | b

⊥0 : | z

⊥0 : | v

G2 :

Fig. 13. Example

References

[Da03a] F. Dau: The Logic System of Concept Graphs with Negations (and its Rela-
tionship to Predicate Logic). Springer Verlag, Berlin–New York 2003.

[DK03] F. Dau, J. Klinger: From Formal Concept Analysis to Contextual Logic. FB4–
Preprint, TU Darmstadt 2003.

[Ke01] G.N. Kerdiles: Saying It with Pictures: a logical landscape of conceptual graphs.
http://staff.science.uva.nl/ kerdiles/.

[Kl05] J. Klinger: The Logic System of Protoconcept Graphs. Preprint, FB Mathe-
matik, TU Darmstadt 2005.

[KV03] J. Klinger, B. Vormbrock: Contextual Boolean Logic: How did it develop? In:
B. Ganter, A. de Moor (Eds.): Using Conceptual Structures. Contributions to
ICCS 2003. Shaker Verlag, Aachen 2003, 143–156.

222 Julia Klinger

[Pr98a] S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen, Shaker Verlag,
Aachen 1998.

[Pr98b] S. Prediger: Simple Concept Graphs: A Logic Approach. In: M.-L. Mugnier,
M. Chein (Eds): Conceptual Structures: Theory, Tools and Application, Springer
Verlag, Berlin–New York 1998, 225–239.

[Wi96] R. Wille: Restructuring Mathematical Logic: An Approach Based on Peirce’s
Pragmatism. In: A. Ursini, P. Agliano (Eds.): Logic and Algebra. Marcel Dekker,
New York 1996, 267–281.

[Wi00a] R. Wille: Boolean Concept Logic. In: B. Ganter, G.W. Mineau (Eds.): Concep-
tual Structures: Logical, Linguistic, and Computational Issues, Springer Verlag,
Berlin–New York 2000, 317–331.

[Wi00b] R. Wille: Contextual Logic Summary. In: G. Stumme (Ed.): Working with
Conceptual Structures. Contributions to ICCS 2000. Shaker Verlag, Aachen 2000,
256–276.

[Wi02a] R. Wille: Existential Graphs of Power Context Families. In: U. Priss, D.
Corbett, G. Angelova (Eds.): Conceptual Structures: Integration and Interfaces,
Springer Verlag, Berlin–New York 2002, 382–396.

Morphisms in Context

Markus Krötzsch1�, Pascal Hitzler1��, and Guo-Qiang Zhang2

1 AIFB, Universität Karlsruhe, Germany
2 Department of Electrical Engineering and Computer Science, Case Western Reserve

University, Cleveland, Ohio, U.S.A.

Abstract. Morphisms constitute a general tool for modelling complex relation-
ships between mathematical objects in a disciplined fashion. In Formal Concept
Analysis (FCA), morphisms can be used for the study of structural properties of
knowledge represented in formal contexts, with applications to data transforma-
tion and merging. In this paper we present a comprehensive treatment of some
of the most important morphisms in FCA and their relationships, including dual
bonds, scale measures, infomorphisms, and their respective relations to Galois
connections. We summarize our results in a concept lattice that cumulates the re-
lationships among the considered morphisms. The purpose of this work is to lay a
foundation for applications of FCA in ontology research and similar areas, where
morphisms help formalize the interplay among distributed knowledge bases.

1 Introduction

Formal Concept Analysis (FCA) [1] provides a fundamental mathematical methodol-
ogy for the creation, analysis, and manipulation of data and knowledge. Its field of ap-
plication ranges from social and natural sciences to most prominently computer science.
The automated processing of knowledge necessitates an understanding of its structural
properties in order to develop sound transformation algorithms, ontology merging pro-
cedures, and other operations needed for practical applications. FCA is ideally suited
for such an understanding due to its sound mathematical and philosophical base, rooted
in algebra and logic.

Fundamental structural properties can be captured by category-theoretical treat-
ments [2], the heart of which are morphisms as structure-preserving mappings. In turn,
morphisms provide abstract means for the modelling of data translation, communica-
tion, and distributed reasoning, to give a few examples. Thus the theory and application
of morphisms between formal contexts have recently become a focal point in FCA.

Institution theory [3], developed in the 80’s, uses formal contexts and appropriate
morphisms to represent a broad class of logics. The resulting mathematical theory has
been applied as a basis for various programming languages. More recently, similar ideas

� This author acknowledges support by Case Western Reserve University, Cleveland, Ohio,
where part of his work was carried out, sponsorship by the German Academic Exchange Ser-
vice (DAAD) and by the Gesellschaft von Freunden und Förderern der TU Dresden e.V., and
support by the EU KnowledgeWeb network of excellence.

�� This author acknowledges support by the German Federal Ministry of Education and Research
under the SmartWeb project, and by the EU under the KnowledgeWeb network of excellence.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 223–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

224 Markus Krötzsch, Pascal Hitzler, and Guo-Qiang Zhang

have been used as a foundation of a theory of information flow [4], recently considered
in the context of ontology research [5, 6]. While the focus of the above is more on
communication and transport of information, research on Chu spaces [7] (a special case
of which are formal contexts) considers similar morphisms from a categorical viewpoint
in order to obtain categories with certain specific properties.

Although morphisms between contexts have been investigated in all of the above
research areas, they mostly study the same kind of morphisms, which today are typi-
cally called infomorphisms. These, however, are only a special choice for morphisms in
FCA, and it is unclear whether they are in general preferable to other possible notions.
At least two other kinds of morphisms known in FCA deserve particular attention. One
is the so-called (dual) bond, a specific kind of relation between contexts which is of im-
portance due to its close relationship to Galois connections. The other is scale measure,
characterized by certain functional continuity properties.

In order to develop concrete applications to knowledge processing from structural
analysis based on category theory, it is of fundamental importance to understand the
properties of and relationships between different notions of morphisms. So far, only a
few order- and category-theoretic treatments of morphisms in FCA are available, either
studying one kind of morphism in isolation or focusing on further specific types of
morphisms (an overview is given at the end of the following section). The purpose of
this paper is thus to present a comprehensive study of the relations among the three types
of major morphisms in FCA mentioned above. We explicate the rich interrelationships
and dependencies as a step stone for further developments.

The paper is structured as follows. After explaining some preliminaries in Section 2,
we study dual bonds and their relationships to direct products of formal contexts and
Galois connections in Section 3. In Section 4, dual bonds featuring certain continuity
properties are identified as an important subclass. Section 5 deals with the relationship
between scale measures, functional types of dual bonds, and Galois connections, while
Section 6 is devoted to infomorphisms. Finally, in Section 7 we summarize our results
in the form of a concept lattice obtained by attribute exploration, and discuss possible
directions for future research. All proofs are omitted for space restrictions. They can be
found in [8].

2 Preliminaries

Our notation basically follows [1], with a few exceptions to enhance readability for our
purposes. Especially, we avoid the use of the symbol ′ to denote the operations that
are induced by a context. We shortly review the main terminology using our notation,
but we assume that the reader is familiar with the notation and terminology from [1].
Our treatment also requires some basic knowledge of (antitone) Galois connections and
their monotone variant (a.k.a. residuated maps), which can also be found in [1].

A (formal) context K is a triple (G,M, I) where G is a set of objects, M is a set of
attributes, and I ⊆ G×M is an incidence relation. Given O ⊆ G and A ⊆ M, we define:

OI � {m ∈ M | g I m for all g ∈ O}, I(O) � {m ∈ M | g I m for some g ∈ O},
AI � {g ∈ G | g I m for all m ∈ A}, I−1(A) � {g ∈ G | g I m for some m ∈ A}.

Morphisms in Context 225

For singleton sets we use the common abbreviations gI � {g}I , I(g) � I({g}), etc. The
notation XI can be ambiguous if it is not clear whether X is considered a set of objects
or a set of attributes, so we will be careful to avoid such situations. We refer to I(O)
as the image of O and to I−1(A) as the preimage of A with respect to I. We use these
notations for arbitrary binary relations.

A subset O ⊆ G is an extent of K whenever O = OII . O is an attribute extent (object
extent) if there is some attribute n (object g) such that O = nI (O = gII). Intents, object
intents and attribute intents are defined dually. A concept of K is an extent-intent pair
(O, A) such that O = AI (or, equivalently, A = OI).

Since the extent and intent of a concept determine each other uniquely, we will
usually prefer to consider only one of them. Our use of the terms object extent and
attribute intent constitutes a slight deviation from standard terminology.

The central result of FCA is that contexts can be used to represent complete lattices.

Theorem 1 ([1, Theorem 3]). For any context K = (G,M, I), the mapping (·)II : 2G →
2G constitutes a closure operator on the powerset 2G. The corresponding closure system
(in the sense of [1]) is the set Bo(K) � {O ⊆ G | O = OII } of all extents of K.

Similar statements are true for the mapping (·)II : 2M → 2M, which induces a clo-
sure system Ba(K). Under set inclusion, Bo(K) and Ba(K) are dually order-isomorphic,
with (·)I : 2G → 2A and (·)I : 2A → 2G as the according isomorphisms.

We refer to Bo(K) and Ba(K) ordered by set inclusion as the object- and attribute-
concept lattices.

An important aspect of FCA is that contexts can be dualized and complemented to
obtain new structures. These operations turn out to be vital for our subsequent studies.
Given a context K = (G,M, I), the context dual to K is Kd � (M,G, I−1). It is easy to
see that dualizing a context merely changes the roles of extent and intent. Thus, with re-
spect to the order of the concept lattices we have Bo(Kd) = Ba(K) and Ba(Kd) = Bo(K).
The situation for complement, defined as Kc = (G,M, I�) with I� � (G × M) \ I, is
more involved since the concept lattices of K andKc are in general not (dually) isomor-
phic to each other. We can observe immediately that dualization and complementation
commute: Kcd = Kdc. Furthermore, the following lemma will be helpful.

Lemma 1. Given a context K = (G,M, I) with objects g, h ∈ G, we find that g ∈ hII if
and only if h ∈ gI�I�.

Definitions of the relevant context-morphisms will be introduced in the subsequent
sections. An overview of the existing results on morphisms in FCA is given in [1, Chap-
ter 7], which incorporates much information from [9], though the latter contains further
details from a more category-theoretic viewpoint. Bonds and infomorphisms, as well
as several other kinds of morphisms that we shall not consider in this paper, have been
studied in greater detail in [10]. Some newer results on dual bonds and relational Galois
connections between contexts can be found in [11]. Further related investigations can be
found in [12], where infomorphisms are studied in conjunction with monotone Galois
connections, complete homomorphisms, and the so-called concept lattice morphisms.
Morphisms relating FCA, domain theory, and logic have been studied in [13].

226 Markus Krötzsch, Pascal Hitzler, and Guo-Qiang Zhang

3 Dual Bonds and Direct Product

The construction of concept lattices exploits the fact that the derivation operators (·)I

form an antitone Galois connection. Naturally, Galois connections are also of interest
when one looks for suitable morphisms for concept lattices. To represent Galois con-
nections on the level of contexts, functions between the sets of attributes or objects turn
out to be too specific. Instead, one uses certain relations called dual bonds which we
study in this section. Most of the materials before Lemma 3 can be found in [1, 10, 11].

Definition 1. A dual bond between formal contexts K = (G,M, I) and L = (H,N, J) is
a relation R ⊆ G × H for which the following hold:

– for every object g ∈ G, gR (which is equal to R(g)) is an extent of L and
– for every object h ∈ H, hR (which is equal to R−1(h)) is an extent of K.

This definition is motivated by the following result:

Theorem 2 ([1, Theorem 53]). Consider a dual bond R between contexts K and L as
above. The mappings

�φR : Bo(K)→ Bo(L) : X �→ XR and �φR : Bo(L)→ Bo(K) : Y �→ YR

form an antitone Galois connection between the (object) concept lattices of K and L.
Conversely, given such an antitone Galois connection (�φ, �φ), the relation R(�φ, �φ) ={

(g, h) | h ∈ �φ(gII)
}
=
{
(g, h) | g ∈ �φ(hJJ)

}
is a dual bond, and these constructions are

mutually inverse in the following sense:
�φ = �φR(�φ, �φ)

�φ = �φR(�φ, �φ)
R = R�φR, �φR

Hence, formal contexts with dual bonds are “equivalent” to complete lattices with
antitone Galois connections. Referring to dual bonds as morphisms might be somewhat
misleading, since they do not immediately satisfy the necessary axioms for category
theoretic morphisms. However, we will adhere to this terminology since it is indeed
possible to use dual bonds in a categorical fashion, provided that objects, homsets and
composition are chosen appropriately (see [14] for details).

Before proceeding, let us note the following consequence of Lemma 1.

Lemma 2. Consider a dual bond R between contexts K = (G,M, I) and L = (H,N, J).
Then R(gI�I�) = R(g) and R−1(hJ�J�) = R−1(h) holds for any g ∈ G, h ∈ H. Especially,
R(gI�I�) and R−1(hJ�J�) are extents.

Now we ask how the dual bonds between two contexts can be represented. Since
extents are closed under intersections, the same is true for the set of all dual bonds
between two contexts. Thus the dual bonds form a closure system and one might ask
for a way to cast this into a formal context which has dual bonds as concepts. An
immediate candidate for this purpose is the direct product of the contexts.

Definition 2. Given contexts K = (G,M, I) and L = (H,N, J), the direct product of K
and L is the context K×L = (G ×H,M × N,∇), where (g, h) ∇ (m, n) iff g I m or h J n.

Morphisms in Context 227

Proposition 1 ([11]). Extents of a direct product K × L are dual bonds from K to L.

However, it is known that the converse of this result is false, i.e. there are dual bonds
which are not extents of the direct product.

As a consequence, the direct product does only represent a distinguished subset of
all dual bonds. In order to find additional characterizations for these relations, we use
the following result.

Lemma 3. Given a binary relation R between objects, let R∇ denote the intent associ-
ated with R when viewed as a set of objects of the direct product. Consider the contexts
K = (G,M, I) and L = (H,N, J) and a relation R ⊆ G × H. For any attribute m ∈ M,
the following sets are equal:

– X1 � R∇(m) = {n ∈ N | (m, n) ∈ R∇}
– X2 � R(mI�)J = {h ∈ H | there is g ∈ G with g I� m and (g, h) ∈ R}J
– X3 �

⋂
g∈mI� R(g)J

Furthermore, for any object g ∈ G, we find that R∇∇(g) = R∇(gI�)J =
⋂

m∈gI� R(mI�)JJ.

Now we can state a characterization theorem for dual bonds in the direct product.

Theorem 3. Consider the contexts K = (G,M, I) and L = (H,N, J) and a relation
R ⊆ G × H. The following are equivalent:

(i) R is an extent of the direct product K × L.
(ii) For all g ∈ G, R(g) = R∇(gI�)J

(
=
⋂

m∈gI� R(mI�)JJ
)
.

(iii) R is a dual bond and, for all g ∈ G,
⋂

m∈gI� R(mI�)JJ = R(gI�I�)

Another feature of dual bonds in the direct product allows for the construction of
Galois connections other than those considered in Theorem 2. Given a dual bond R in
K×L, its intent R∇ is a dual bond fromKd to Ld, which induces another antitone Galois
connection between the dual concept lattices. This Galois connection appears to have
no simple further relationship to the antitone Galois connection derived from R.

Corollary 1. Consider the contexts K = (G,M, I) and L = (H,N, J) and an extent R of
the direct productK×L. There are two distinguished Galois connections φR : Bo(K)→
Bo(L) and φR∇ : Bo(K)op → Bo(L)op and each of R, R∇, φR and φR∇ uniquely determines
the others (using (·)op to denote the order duals of the respective concept lattices).

Of course any antitone Galois connection between two posets contravariantly induces
another antitone Galois connection, obtained by exchanging both adjoints. But there
appears to be no general way to construct an additional antitone Galois connection
between the order duals of the original posets. Some of our results, like Proposition 3
and Theorem 7 below, can be extended to account for this second Galois connection,
but we will usually prefer to save space and refrain from stating this explicitly.

228 Markus Krötzsch, Pascal Hitzler, and Guo-Qiang Zhang

I a b

1 ×
2 ×

J c d e

3 ×
4 ×

I a b c

1 ×
2 ×
3

Fig. 1. Formal contexts for Counterexamples 1 (left) and 2 (right).

4 Continuity for Dual Bonds

Continuity is a central concept in many branches of mathematics. It is also of impor-
tance for formal concept analysis. However, we will generally not be dealing with func-
tions but with relations such as dual bonds, so the notion of continuity will be lifted
accordingly (the following is partially taken from [1]).

Definition 3. Consider contextsK = (G,M, I) and L = (H,N, J). A relation R ⊆ G×H
is extensionally continuous if it reflects extents of L, i.e. if for every extent O of L the
preimage R−1(O) is an extent of K.

R is extensionally object-continuous (attribute-continuous) if it reflects all object
extents (attribute extents) of L, i.e. if for every object extent O = hJJ (attribute extent
O = nJ) the preimage R−1(O) is an extent of K (but not necessarily an object extent).

A relation is extensionally closed from K to L if it preserves extents of K, i.e. if
its inverse is extensionally continuous from L to K. Extensional object- and attribute-
closure are defined accordingly.

The dual definitions give rise to intensional continuity and closure properties.

Lemma 2 earlier shows that extensional object-continuity and -closure are proper-
ties of any dual bond when considered as a relation between one context and the com-
plement of the other. We thus focus on extensional attribute-continuity and -closure in
this section. The other notions will however become important later on in Section 5.

Whenever it is clear whether we are dealing with a relation on attributes or on ob-
jects, we will tend to omit the additional qualifications “extensionally” and “intension-
ally.” We also remark that neither object- nor attribute-continuity is sufficient to obtain
full continuity in the general case, as can be seen from R∇ in Counterexample 1.

Now we can investigate the interaction between continuity and the representation
of dual bonds.

Theorem 4. Consider a dual bond R from K = (G,M, I) to L = (H,N, J). If R is
extensionally attribute-continuous from K to Lc, then R is an extent of K × L and R∇ is
intensionally object-closed from Kc to L.

Of course, analogous results can be obtained for closure by exchanging the roles
of K and L. One may wonder whether similar statements can be proven for dual bonds
which are fully continuous and/or closed. However, this is not the case:

Counterexample 1. Consider the contexts K = ({1, 2}, {a, b}, I) and L = ({3, 4}, {c, d, e},
J) depicted in Fig. 1 (left). Define R = {(1, 3), (2, 4)}. All subsets of {1, 2} are extents of
both K and Kc. Likewise, all subsets of {3, 4} are extents of L and Lc. Thus R is trivially

Morphisms in Context 229

closed and continuous in every sense. However, we find that R∇ = {(a, d), (b, c)} is not
closed from Kc to L. Indeed, {a, b} is an intent of Kc but R∇({a, b}) = {c, d} is not an
intent of L, since {c, d}JJ = {c, d, e}.

Another false assumption one might have is that the conditions given in Theorem 4
for being an extent of the direct product are not just sufficient but also necessary. How-
ever, neither closure nor continuity is needed for a dual bond to be represented in the
direct product.

Counterexample 2. Consider the context K = ({1, 2, 3}, {a, b, c}, I) depicted in Fig. 1
(right). Define R = {(1, 1), (2, 2)}. We find that R∇ = {(a, b), (b, a)}. Thus R = R∇∇ and
R is a dual bond which is an extent of the direct productK ×K. However, R is not even
attribute-continuous from K to Kc, since R−1(cI�) = R−1({1, 2, 3}) = {1, 2} is not closed
in K. On the other hand, using that R = R−1, we find that R is not attribute-closed from
K

c to K either.

Although this shows that continuity is not a characteristic feature of all dual bonds
in the direct product, we still find that there are many situations where there is a wealth
of continuous dual bonds. This is the content of the following theorem.

Theorem 5. Consider the contexts K = (G,M, I) and L = (H,N, J). If

∅ is an extent of K or ∅ is not an extent of Lc

then the set of all dual bonds which are continuous fromK to Lc is
⋂

-dense in Bo(K×L)
and thus forms a basis for the closure system of all dual bonds in the direct product.

If the assumptions also hold with K and L exchanged, then the set of all dual bonds
which are both continuous from K to Lc and closed from Kc to L is

⋂
-dense as well.

Note that the previous theorem could of course also be stated using closure in place
of continuity. Furthermore it is evident that dual bonds of the form (m, n)∇ are such that
the (pre)image of almost any set is an extent. The only exception is the empty set, which
is why we needed to add the given preconditions. We remark that these conditions are
indeed very weak. By removing or adding full rows, any context can be modified in
such a way that the empty set either is an extent or not. Since the concept lattices of
the context and its complement are not affected by this procedure, one can enforce the
necessary conditions without loosing generality.

5 Functional Bonds and Scale Measures

In FCA, (extensionally) continuous functions have been studied under the name scale
measures, the importance of which stems from the fact that they can be regarded as
a model for concept scaling and data abstraction. Topology provides additional inter-
pretations for continuous functions in the context of knowledge representation and rea-
soning, but we will not give further details here.3 We merely remark that continuity
between topological spaces coincides with continuity between appropriate contexts.

3 Roughly speaking, the potential of topology for our purposes resides in its well-known con-
nections to FCA (data representation), formal logic (reasoning), and domain theory (compu-
tation/approximation), all of which are based on essentially the same mechanisms of Stone
duality (see [14] for further details).

230 Markus Krötzsch, Pascal Hitzler, and Guo-Qiang Zhang

Continuity for functions constitutes a special case of continuity in the relational case
as defined above.

Definition 4. Consider contexts K = (G,M, I) and L = (H,N, J). A function f : G →
H is extensionally continuous whenever its graph {(x, f (x)) | x ∈ G} is an extensionally
continuous relation, i.e. if f −1(O) is an extent of K for any extent O of L.

Extensional attribute- and object-continuity, as well as the according intensional
properties and closures are defined similarly based on the graph of the function.

This definition agrees with [1, Definition 89], where extensionally continuous maps
have also been called scale measures. Extensional attribute-continuity (and thus inten-
sional object-continuity) is of course redundant, as the following lemma shows.

Lemma 4. Given contexts K = (G,M, I) and L = (H,N, J), a function f : G → H is
extensionally continuous iff it is extensionally attribute-continuous.

This statement relies on the fact that attribute extents are
⋂

-dense in the object
concept lattice and that preimage commutes with intersection. On the one hand, this is
not true for images of functions, and hence extensional attribute-closure does not yield
full closure. On the other hand, though object extents are supremum-dense, the respec-
tive suprema are not the set-theoretical unions. Hence extensional object-continuity and
-closure are reasonable notions as well.

The link from functions to our earlier studies of dual bonds is established through a
specific class of dual bonds which can be represented by functions.

Definition 5. Consider a dual bond R between contexts (G,M, I) and (H,N, J). Then R
is functional whenever, for any g ∈ G, the extent R(g) is generated by a unique object
fR(g) ∈ H:

R(g) = fR(g)JJ.

In this case R is said to induce the corresponding function fR : G → H.

It is obvious that functional dual bonds are uniquely determined by the function
they induce. In fact, it is easy to see that R is the least dual bond that contains the graph
of the function fR. However, not for every function will this construction yield a dual
bond that is functional. The next result characterizes the functions that are of the form
fR for some functional dual bond R.

Proposition 2. Consider a context K = (G,M, I) and a context L = (H,N, J) for which
the map h �→ hJ is injective. There is a bijective correspondence between

– the set of all functional dual bonds from K to L and
– the set of all extensionally object-continuous functions from K to Lc.

The required bijections consist of the functions

– R �→ fR mapping each functional dual bond to the induced function and
– f �→ R f mapping each object-continuous function to the least dual bond which

contains its graph {(g, f (g)) | g ∈ G}.

Morphisms in Context 231

Object-continuity of the functions fR is not too much of a surprise in the light of
Lemma 2. The fact that this property suffices for the above result demonstrates how spe-
cific functional dual bonds really are. In contrast, the properties established in Lemma 2
are generally not sufficient for a relation to be a dual bond.

Also note that the additional requirements for L, which guarantee that no two func-
tions induce the same dual bond, are again rather weak. Indeed, they are implied by the
common assumption that the contexts under consideration are clarified.

We can now go further and characterize the antitone Galois connections obtained
from functional dual bonds.

Proposition 3. Consider a context K = (G,M, I) and a context L = (H,N, J) for which
the map h �→ hJ is injective. The bijection between dual bonds and antitone Galois
connections given in Theorem 2 restricts to a bijective correspondence between

– the set of all functional dual bonds from K to L and
– the set of all antitone Galois connections from Bo(K) to Bo(L) which map object

extents of K to object extents of L.

In the light of the previous proposition we give a definition for the corresponding
property of Galois connections.

Definition 6. Consider contexts K = (G,M, I) and L = (H,N, J) and a (monotone or
antitone) Galois connection φ = (�φ, �φ) between Bo(K) and Bo(L).

Then φ is functional (from K to L) if �φ maps object extents to object extents and, for
any g ∈ G there is a unique object f�φ(g) such that

�φ(gII) = f�φ(g)JJ.

In this case, φ is said to induce the function f�φ : G → H.

Proposition 3 shows rather natural classes of dual bonds and Galois connections,
respectively. However, functional dual bonds do not generally arise as extents of the
direct product. Moreover, the corresponding class of extensionally object-continuous
functions as described in Proposition 2 appears to be unidentified. As Theorem 6 below
shows, the more common class of extensionally continuous functions still allows for a
nice characterization in terms of dual bonds.

Theorem 6. Consider a context K = (G,M, I) and a context L = (H,N, J) for which
the map h �→ hJ is injective. The bijection given in Proposition 2 restricts to a bijective
correspondence between

– the set of all extensionally continuous functions from K to Lc and
– the set of all functional dual bonds from K to L that are continuous from K to Lc.

Especially, every dual bond R f induced by a continuous function from K to Lc is an
extent of the direct product K × L.

232 Markus Krötzsch, Pascal Hitzler, and Guo-Qiang Zhang

Thus we find that extensionally continuous functions, or scale measures, are a rather
specific kind of dual bonds. Again we must be careful: It is certainly not the case that
all functional dual bonds which are extents in the direct product are continuous. Just
consider the context K = ({g}, {m}, {(g,m)}). The relation R = {(g, g)} is an extent of
the direct product K × K and it is functional with fR being the identity. However, the
preimage of the empty set (which is closed in Kc) is not an extent of K.

As a dual bond, every continuous function naturally induces an antitone Galois
connection – Propositions 2 and 3 discussed the according constructions for object-
continuous functions. Due to their special structure, continuous functions can addi-
tionally be used to derive another monotone Galois connection. It should not come as a
surprise that these entities determine each other uniquely under some mild assumptions.

Theorem 7. Consider contexts K = (G,M, I) and L = (H,N, J), and a function f :
G → H which is continuous from K to Lc.

(i) An antitone Galois connection φ f : Bo(K)→ Bo(L) is given by the mappings

�φ f : Bo(K)→ Bo(L) : X �→ ⋂{ f (x)JJ | x ∈ X} and

�φ f : Bo(L)→ Bo(K) : Y �→ ⋂{ f −1(yJ�J�) | y ∈ Y}.
(ii) A monotone Galois connection ψ f : Bo(K)→ Bo(Lc) is given by the mappings

�ψ f : Bo(K)→ Bo(Lc) : X �→ f (X)J�J� and

�ψ f : Bo(Lc)→ Bo(K) : Y �→ f −1(Y).

Moreover, if L is such that h �→ hJ is injective, the above mappings provide bijective
correspondences between

– the set of all extensionally continuous functions from K to Lc,
– the set of all antitone Galois connections Bo(K) to Bo(L) that are functional (from
K to L) and for which the induced function is continuous from K to Lc,

– the set of all monotone Galois connections Bo(K) to Bo(Lc) that are functional
(from K to Lc).

Part (ii) of the theorem and the corresponding bijections are known (see [1, Propo-
sitions 118 and 119]). Note that the two Galois connections from the preceding result
are not obtained from each other by some simple dualizing. This is also evident when
comparing the different side conditions in both cases: functional monotone Galois con-
nections always relate to continuous functions, while continuity has to be required ex-
plicitly for functional antitone Galois connections.

6 Infomorphisms

Infomorphisms are a special kind of morphism between formal contexts that have been
considered quite independently in rather different research disciplines. The name “in-
fomorphism” we use here has been coined in the context of information flow theory
[4]. Literature on Chu spaces means the same when speaking about “Chu mappings”;

Morphisms in Context 233

institution theory [3] refers the corresponding definition as the “Satisfaction condition”
without naming the emerging morphisms at all. In FCA, the antitone version of these
morphisms has been studied under the name (context-)Galois connection [10, 11].

Probably the most decisive feature of informorphisms is self-duality, an immediate
consequence of their symmetry. Some of the relationships between infomorphisms and
Galois connections are known, but our results in earlier sections reveal a more complete
picture.

Definition 7. Given contexts K = (G,M, I) and L = (H,N, J), an infomorphism from
K to L is a pair of mappings �f : G → H and �f : N → M such that

g I �f (n) if and only if �f (g) J n

holds for arbitrary g ∈ G, n ∈ N.

We first establish the following basic facts.

Lemma 5. Consider contexts K = (G,M, I) and L = (H,N, J). The infomorphisms
from K to L are exactly the infomorphisms from Kc to Lc.

Given such an infomorphism (�f , �f) and sets O ⊆ G, A ⊆ N, we find that

�f −1(AJ) = �f (A)I , �f −1(AJ�) = �f (A)I�, �f −1(OI) = �f (O)J and �f −1(OI�) = �f (O)J�.

Especially, �f is extensionally continuous from K(c) to L(c) and �f is intensionally con-
tinuous from L(c) to K(c).

Using these continuity properties, we can already specify a number of possible Ga-
lois connections constructed from infomorphisms. We remark that continuity between
two contexts is in general not equivalent to continuity between the respective com-
plements, such that Theorem 7 can be applied to one part of an infomorphism in two
different ways, whereas this is not possible for arbitrary continuous functions.

From Theorem 6, we know that we can obtain continuous dual bonds from both �f
and �f . Since these relations are extents and intents, respectively, in the direct product,
one may ask whether they belong to the same concepts or not. The following proposition
shows the expected result.

Proposition 4. Consider contexts K = (G,M, I) and L = (H,N, J) and an infomor-
phism (�f , �f) from K to L. Define relations R ⊆ G × H and S ⊆ M × N by setting

R(g) = �f (g)JJ and S −1(n) = �f (n)I�I�.

Then R is a dual bond from Kc to L which is an extent of Kc × L with R∇ = S .
Furthermore, R is extensionally continuous from Kc to Lc and S −1 is intensionally

continuous from Lc to K.

Observe that the above construction of R (and S) relies only on the continuity of
�f from Kc to Lc (and the corresponding continuity of �f). One can also construct a

234 Markus Krötzsch, Pascal Hitzler, and Guo-Qiang Zhang

dual bond based on the continuity properties of these functions between the non-com-
plemented contexts. However, Proposition 4 does not imply any relationship between
these two dual bonds beyond the obvious fact that they induce the same infomorphism.

We already know that the dual bonds induced by (one part of) an infomorphism
have rather specific properties. The next result shows that these features are sufficient
for characterizing the respective dual bonds.

Proposition 5. Consider contexts K = (G,M, I) and L = (H,N, J) and let R be a
dual bond from Kc to L such that both R and R∇−1 are functional. If R is extensionally
continuous then the functions induced by R and R∇−1 constitute an infomorphism from
K to L.

Note that, according to Lemma 4, extensional continuity of a functional dual bond R
is equivalent to extensional attribute-continuity. This in turn implies intensional object-
closure of R∇ (Theorem 4) which, since R∇−1 is also functional, implies the closure of
R∇. Thus our assumptions are perfectly symmetrical. Furthermore, Propositions 4 and
5 induce a bijection between infomorphisms and the described class of dual bonds.

Having understood how infomorphisms are characterized in terms of dual bonds,
we can specify their relationship with Galois connections.

Theorem 8. Consider contexts K = (G,M, I) and L = (H,N, J), and let f = (�f , �f) be
an infomorphism from K to L.

– An antitone Galois connection φf : Bo(K)→ Bo(Lc) is given by the mappings

�φf : Bo(K)→ Bo(Lc) : X �→ ⋂{ �f (x)J�J� | x ∈ X} = ⋂{ �f −1(xI�)J� | x ∈ X} and

�φf : Bo(Lc)→ Bo(K) : Y �→ ⋂{ �f −1(yJJ) | y ∈ Y} = ⋂{ �f (yJ)I | y ∈ Y}.
Further, three antitone Galois connections φc

f : Bo(Kc) → Bo(L), φd
f : Bo(Kd) →

Bo(Lcd) and φcd
f : Bo(Kcd)→ Bo(Ld) are defined similarly, using the complemented

incidence relations (for (·)c) and exchanging �f and �f (for (·)d), respectively.
– A monotone Galois connection ψf : Bo(K)→ Bo(L) is given by the mappings

�ψf : Bo(K)→ Bo(L) : X �→ �f (X)JJ = �f −1(XI)J and

�ψf : Bo(L)→ Bo(K) : Y �→ �f −1(Y) = �f (Y J)I .

Another monotone Galois connection ψc
f : Bo(Kc) → Bo(Lc) is defined similarly,

but with all incidence relations complemented.

Note that Proposition 4 shows that the antitone Galois connections φd
f and φcd

f can
also be constructed as in Corollary 1 from the two dual bonds induced by the function
�f . Especially, Corollary 1 does not yield any further Galois connections.

7 Summary and Future Work

The above considerations show that scale measures and infomorphisms can be identified
with special types of dual bonds, and thus that part of this work can also be regarded

Morphisms in Context 235

dual bond K→ Lextent of K × L
attr. closed Kc → L

closed Kc → L

attr. continuous K→ Lc

continuous K→ Lc

functional L→ Kscale
measure
L→ Kc

infomorphism
L→ Kc

functional K→ L scale
measure
K→ Lc

infomorphism
K→ Lc

Fig. 2. The concept lattice of the discussed properties of dual bonds, displayed as a
nested line diagram. The included attributes are defined in Definition 1 (dual bond), 2
(K×L), 3 (continuity and closure), and 5 (functionality). The attributes “scale measure”
and “infomorphism” refer to the dual bonds described in Theorem 6 and Proposition
5, respectively, and thus imply functionality. Further nontrivial implications are those
established in Theorem 3 (attribute-continuity or -closure implies being an extent of
K × L) and Lemma 5 (infomorphisms are continuous).

as a study of various attributes of dual bonds and of the implications between them.
The resulting concept lattice of context-morphisms is represented by the nested line
diagram4 in Fig. 2. This diagram indeed gives a complete picture of the situation: not
only have all of the entailed implications between attributes been proven within this
article, but there are also no other implications. In fact, one can obtain Fig. 2 by attribute
exploration. We skip the details for lack of space.5

In spite of this rather complete picture, there are many aspects of the theory of
morphisms in FCA which could not be considered within this article; they are left as
possible directions for future research. As mentioned in the introduction, the use of
morphisms to model knowledge transfer and information sharing may employ methods
from category theory [15]. But not all of the above morphisms immediately yield cate-
gories of contexts, especially since antitone Galois connections cannot be composed in

4 The concept lattice represented by a nested line diagram consists of the boldfaced nodes, where
connections between boxes represent parallel connections between boldfaced nodes at corre-
sponding positions wrt. the background structure. See [1, pp. 75].

5 ConExp (http://sourceforge.net/projects/conexp) helped us a lot.

236 Markus Krötzsch, Pascal Hitzler, and Guo-Qiang Zhang

an obvious way. As a solution, one can dualize one context and consider bonds which
yield monotone Galois connections that can be composed easily [1]. One can also re-
strict to special classes of dual bonds: scale measures, infomorphisms, and dual bonds
that are both closed and continuous suggest obvious composition mechanisms.

The next step after identifying possible categories is to investigate the properties
of these structures. What are their natural interpretations in terms of knowledge rep-
resentation? Do they support all of the constructions that one may be interested in?
How are they related to other known categories, e.g. from formal logic, order theory,
or topology? This does also involve comparisons to the usage of context-morphisms in
institution theory and information flow, where a relaxation of the rather strict definition
of infomorphisms may yield advantages for certain applications.

In institution theory, many specific collections of formal contexts have been intro-
duced in order to handle given logics, basically by considering the consequence relation
between the models and the formulae of a logic as a formal context. In this setting, dual
bonds allow for a proof theoretic interpretation as consequence relations and may have
special properties due to the additional (logical) restrictions on contexts. For example,
compactness6 of classical propositional logic yields additional continuity and closure
properties of dual bonds between (appropriate complements of) the respective contexts.
Furthermore, extensionally continuous functions between such contexts are continuous
in the usual topological sense with respect to the associated Stone spaces (see [14]).

Besides the mentioned (onto-)logical and categorical investigations, there are also
further questions related to lattice theory. We characterized the Galois connections that
are induced by certain types of dual bonds, especially in the functional case (Propo-
sition 3, Theorems 7 and 8). For many other types of dual bonds, the corresponding
descriptions are missing. Likewise, although dual bonds are closed under intersections,
we are aware of no (non-canonical) context that has all dual bonds as extents.

In FCA, the concept lattice of the direct product K × L is known as the tensor
product of the lattices Bo(K) and Bo(L). Theorem 5 showed that the study of dual bonds
can also yield additional results on the tensor product, but further relationships between
both subjects have not been investigated yet. As shown in [10, Satz 15], infomorphisms
can be represented by a concept lattice as well, but the role of this structure in the light
of our present investigations still needs to be explored.

Many other results from [1, 10, 11, 12] could not be discussed due to space limita-
tions.

Acknowledgement We very much apprechiated some comments by the referees,
which helped us to improve our presentation.

References

[1] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer
(1999)

[2] Lawvere, F.W., Rosebrugh, R.: Sets for mathematics. Cambridge University Press (2003)
[3] Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and program-

ming. Journal of the ACM 39 (1992)

6 This basically amounts to saying that the induced concept lattice is (co-)algebraic, see [13].

Morphisms in Context 237

[4] Barwise, J., Seligman, J.: Information flow: the logic of distributed systems. Volume 44 of
Cambridge tracts in theoretical computer science. Cambridge University Press (1997)

[5] Kent, R.E.: The information flow foundation for conceptual knowledge organization. In:
Proc. of the 6th Int. Conf. of the International Society for Knowledge Organization. (2000)

[6] Kent, R.E.: Semantic integration in the Information Flow Framework. In Kalfoglou, Y.,
et al, eds.: Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings 04391
(2005)

[7] Pratt, V.: Chu spaces as a semantic bridge between linear logic and mathematics. Theoret-
ical Computer Science 294 (2003) 439–471

[8] Krötzsch, M., Hitzler, P., Zhang, G.Q.: Morphisms in context. Technical report, AIFB,
Universität Karlsruhe (2005) www.aifb.uni-karlsruhe.de/WBS/phi/pub/KHZ05tr.pdf.

[9] Erné, M.: Categories of contexts. Unpublished (2005) Rewritten version.
[10] Xia, W.: Morphismen als formale Begriffe, Darstellung und Erzeugung. PhD thesis,

TH Darmstadt (1993)
[11] Ganter, B.: Relational Galois connections. Unpublished manuscript (2004)
[12] Kent, R.E.: Distributed conceptual structures. In de Swart, H., ed.: Sixth International

Workshop on Relational Methods in Computer Science. Volume 2561 of Lecture Notes in
Computer Science., Springer (2002) 104–123

[13] Hitzler, P., Krötzsch, M., Zhang, G.Q.: A categorical view on algebraic lattices in formal
concept analysis. Technical report, AIFB, Universität Karlsruhe (2004)

[14] Krötzsch, M.: Morphisms in logic, topology, and formal concept analysis. Master’s thesis,
Dresden University of Technology (2005)

[15] Goguen, J.: Three perspectives on information integration. In Kalfoglou, Y., et al., eds.:
Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings 04391 (2005)

Contextual Logic and Aristotle’s Syllogistic

Rudolf Wille

Technische Universität Darmstadt, Fachbereich Mathematik,
Schloßgartenstr. 7, D–64289 Darmstadt
wille@mathematik.tu-darmstadt.de

Abstract. This paper is concerned with incorporating negational rela-
tionships into the semantics of Contextual Logic by mathematizing Aris-
totle’s Syllogistic in contextual-logic terms. For preparing this, a short
sketch of Aristotle’s Syllogistic is presented. Then it is shown how a
contextual semantics for Aristotle’s syllogisms can be developed on the
basis of so-called syllogistic contexts. This semantic approach is used to
determine implication bases for elementary judgments within syllogistic
contexts. Finally, directions of further research are mentioned.

Contents
1. Introduction
2. Aristotle’s Syllogistic
3. A Contextual Semantics for Syllogisms
4. Implication Bases of Syllogistic Contexts
5. Further Research

1 Introduction

Contextual Logic has been developed as a mathematization of the traditional
philosophical logic with its doctrines of concepts, judgments, and conclusions (cf.
[Wi96], [Wi00b]). For mathematizing the doctrine of concepts, Formal Concept
Analysis [GW99a] has been proven useful and, for mathematizing the doctrines
of judgments and conclusions, Sowa’s Theory of Conceptual Graphs [So84] has
given essential stimulations. In general, the development of Contextual Logic is
guided by the aim to support humans in creating, communicating, and processing
knowledge (cf. [DK03]).

This paper is concerned with incorporating negational relationships into the
semantics of Contextual Logic. Because of its conceptual nature, Contextual
Logic cannot treat negations as they are treated in Predicate Logic, since the
complement of the extension of a concept needs not to be a concept extension
again (e.g., non-piano is usually not considered as a concept). Therefore, if nega-
tions shall be understood as unary operations like in Predicate Logic, concepts
have to be generalized, for instance, to protoconcepts as discussed in [Wi00a]. In
this paper, we want to mathematize negational relationships – like implications
and incompatibilities – without using negation operations.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 238–249, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Contextual Logic and Aristotle’s Syllogistic 239

Implications as judgments have already been mathematized in [Wi04] as
implicational concept graphs. But the logical relationships of implications and
incompatibilities, as they are basic for instance for Brandom’s theory of discur-
sive practice [Br94], cannot be studied within Contextual Logic in its present
state. A first step to overcome this deficiency may be the incorporation of Aris-
totle’s Syllogistic [Ar75] into Contextual Logic. Such an incorporation will be
elaborated in this paper.

Aristotle’s syllogistic is based on four types of elementary judgments which
combine two concepts a and b, respectively. Those judgment types, denoted by a,
e, i, and o, are defined in Fig. 1 in modern mathematical terms (a and b denote
the extents of the concepts a and b, respectively). The graphical representa-

a : ∀x ∈ b : x ∈ a [all b are a] b : x a : x>

e : ∀x ∈ b : x �∈ a [no b are a] b : x a : y

i : ∃x ∈ b : x ∈ a [some b are a] b : x a : x�

o : ∃x ∈ b : x �∈ a [some b are not a] b : x a : x>�

Fig. 1. The four types of Aristotle’s elementary judgments

tions of the elementary judgments on the right side of Fig. 1 are proposed for
an extented Contextual Judgment Logic which also covers the contextual logic
of implications and incompatibilities. The diagram for the type a was already
introduced in greater generality for implicational concept graphs in [Wi04]. It
should also be mentioned that, for the elementary judgments of type i, the shown
diagram is common in the Theory of Conceptual Graphs without the graphical
connection between the two boxes. The added connection in Fig. 1 shall indi-
cate the contradictoriness of the types e and i, analogously to the indicated
contradictoriness of the types a and o.

In the following, first a short sketch of Aristotle’s Syllogistic is presented
in Section 2 to give the necessary background knowledge for understanding the
approached incorporation of Aristotle’s Syllogistic into Contextual Logic. In Sec-
tion 3, it is then shown how a contextual semantics for Aristotle’s syllogisms can
be developed on the basis of so-called syllogistic contexts. In Section 4, this
semantic approach is used to determine implication bases for elementary judg-
ments within syllogistic contexts.

240 Rudolf Wille

2 Aristotle’s Syllogistic

In his syllogistic (his doctrine of syllogisms), Aristotle understood a syllogism
as “a discourse in which, a certain thing being stated, something other what is
stated follows of necessity from being so” ([Au95], p. 780; [Ar75], p. 2). In this
paper we concentrate on the categorical syllogisms which are the most important
ones. A categorical syllogism is an argument consisting of three elementary judg-
ments, two serving as premises and one serving as conclusion. As already shown
in Fig. 1, Aristotle distinguished four types of elementary judgments (formed by
two concepts A and B):

a-judgments (universal affirmative): AaB (A covers B)
e-judgments (universal negative): AeB (A covers no part of B)
i -judgments (particular affirmative): AiB (A covers some part of B)
o-judgments (particular negative): AoB (A does not cover B)

The possible forms of logic diagrams of Aristotle’s four judgments types are de-
picted in Fig. 2 (cf. [St86], p. 74ff.). In the diagrams, all proper areas bounded
by circular arcs represent genuine parts of the corresponding concepts. The re-
gion outside the two circles might however disappear, which is the case when
the universe of discourse is represented just by the union of the areas of the two
circles.

The three elementary judgments of a syllogism are always formed by three
concepts as in the following example:

“humans are not robots”, “children are humans” ⇒ “children are not robots”

– The first judgment is of the type AeB
where A is the predicate concept “robot” and B is the subject concept “hu-
man”.

– The second judgment is of the type BaC
where B is the predicate concept “human” and C is the subject concept
“child”.

– The third judgment is of the type AeC
where A is the predicate concept “robot” and C is the subject concept
“child”.

Thus, the syllogism has the form AeB, BaC ⇒ AeC, which is named “Celarent”
for retaining the vowel sequence e − a − e. In general, the common concept of
the two premise judgments is called the middle term, the predicate concept of
the conclusion judgment is called the major term and the subject concept of the
conclusion judgment is called the minor term. Every syllogism belongs to one of
three figures depending on how the middle term functions: (1.) once as predicate
concept and once as subject concept, (2.) twice as predicate concept or (3.) twice
as subject concept. Our example is a syllogism of figure 1.

Contextual Logic and Aristotle’s Syllogistic 241

o : [A does not cover B]

i : [A covers some part of B]

e : [A covers no part of B]

a : [A covers B]

B

A A B A B

A B A B A B A,B

A B

B

A

A,B

�	��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�	�� �	��
��
��

��
��

��
��

��
��

�	��
��
��

��
��

Fig. 2. The logic diagrams of Aristotle’s elementary judgments

The basic task of Aristotle’s Syllogistic is to determine all valid and invalid
categorical syllogisms. This needs a semantics which, in particular, serves with
counterexamples. Such a semantics is given by the logic diagrams shown in Fig.
2 which functions more or less the same as the semantics of sailclothes invented
already by Platon (cf. [St86], p. 41). A survey on the many attemps to improve
and extend Aristotle’s Syllogistic can be found in [Th98].

3 A Contextual Semantics for Syllogisms

The aimed mathematical semantics for syllogisms will be based on formal con-
texts and their formal concepts as they are defined in Formal Concept Analysis
[GW99a]. They will be used to mathematize the logic diagrams of Aristotle’s
elementary judgments (see Fig. 2). From the two concepts of an elementary
judgment, such mathematizations abstract two formal concepts a and b of a
suitably chosen formal context K := (G,M, I). The extents a and b of those
formal concepts allow a mathematical representation of the partition formed by

242 Rudolf Wille

the circular areas of the two concepts in the corresponding logic diagram. The
general form of such representations is shown in Fig. 3. It should be mentioned
that the object sets a \ b, b \ a, and (G \ a) \ b need not to be concept extents
and might even be empty, but the object set a ∩ b, which might also be empty,
is always an extent of a formal concept.

a ∩ b

b \ aa \ b

(G \ a) \ b

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

Fig. 3. The general partition pattern of two formal concepts a and b

(0) (2) (4) (6) (8)

(1) (3) (5) (7) (9)

ai ai io io eo

ai ai io io eo

a a a a a

a a a a a

b b b b b

b b b b b

a i o e� � � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 4. The ten partition patterns derived from two formal concepts a and b

In a logic diagram of Aristotle’s elementary judgments (Fig. 2), the circular
areas and their parts are always non-empty. Therefore we have to assume that
the extents of the corresponding formal concepts are also non-empty. This has
as consequence that, derived from two formal concepts, there are ten partition
patterns as visualized in Fig. 4 within the general pattern of Fig. 3 by differ-
ent hatchings, which represent the underlying object set G, respectively. From

Contextual Logic and Aristotle’s Syllogistic 243

the hatchings one can easily determine Aristotle’s judgment types for the ten
partition patterns by using the following characterizations:

type a ⇐⇒ b \ a = ∅ [patterns: (0), (1), (2), (3)]
type e ⇐⇒ a ∩ b = ∅ [patterns: (8), (9)]
type i ⇐⇒ a ∩ b �= ∅ [patterns: (0), (1), (2), (3), (4), (5), (6), (7)]
type o ⇐⇒ b \ a �= ∅ [patterns: (4), (5), (6), (7), (8), (9)]

Now, we are ready to introduce a contextual semantics for syllogisms. Let
K := (G,M, I) be a formal context with G �= ∅ and M I = ∅; furthermore, let
B
(K) := B(K) \ {(∅,M)}. For determining the desired semantics, the basic
idea is to derive a new formal context KΣ which has as formal attributes the
pairs of formal concepts of K understood as mathematizations of Aristotle’s
elementary judgments. More precisely, we define the “syllogistic derivative” of
K as the formal context KΣ := (G2,B
(K)2, IΣ) with

((g, h), (a, b)) ∈ IΣ : ⇐⇒ {g, h} ⊆ a ∩ b or {g, h} ⊆ a \ b or
{g, h} ⊆ b \ a or {g, h} ⊆ (G \ a) \ b.

For (a, b) ∈ B
(K)2, we obtain

{(a, b)}IΣ = (a ∩ b)2 ∪ (a \ b)2 ∪ (b \ a)2 ∪ ((G \ a) \ b)2;

i.e., the derivation {(a, b)}IΣ is an equivalence relation on the object set G with
the equivalence classes out of a ∩ b, a \ b, b \ a, and (G \ a) \ b. In general, we
can prove the following proposition by using Proposition 11 in [GW99a]:

Proposition 1 For every non-empty subset A of B
(K)2, the derivation AIΣ

is an equivalence relation on G determined by AIΣ =
⋂

(a,b)∈A{(a, b)}IΣ .

In the following we will show that the logic of Aristotle’s categorical syllo-
gisms can be based on the Contextual Attribute Logic [GW99b] of the syllogistic
derivatives KΣ. For understanding this connection between Contextual Attribute
Logic and Aristotle’s logic, it is helpful to study in Fig. 5 the representions of
the ten different pairs of equivalence relations derived from two formal concepts
a and b of formal contexts K, respectively (cf. Fig. 4):

– The areas of the ten large squares in Fig. 5 represent the set G2, respectively.
– The areas of the horizontal hatchings in Fig. 5 represent the equivalence

relations
{(a, a)}IΣ (= a2 ∪ (G \ a)2), respectively.

– The areas of the vertical hatchings in Fig. 5 represent the equivalence rela-
tions
{(b, b)}IΣ (= b2 ∪ (G \ b)2), respectively.

– The areas of horizontal and vertical hatchings in Fig. 5 represent the equiva-
lence relations {(a, b)}IΣ (= {a, b}IΣ = {(a, a)}IΣ ∩{(b, b)}IΣ), respectively.

The categorical syllogisms can be analogously founded on triples of equiva-
lence relations derived from three formal concepts a, b, and c of formal contexts
K, respectively. Fig. 6 shows representations of the syllogisms Barbara and Celar-
ent:

244 Rudolf Wille

a,b

a

a

b a

b

b

a

a

b

b
a

b

a,b a

a

b a

b

b

a

a

b

b
a

b

(0) (2) (4) (6) (8)

(1) (3) (5) (7) (9)

ai ai io io eo

ai ai io io eo

Fig. 5. Representations of the ten pairs of equivalence relations in G2 which
correspond to the partition patterns in Fig. 4

– The areas of the two large squares in Fig. 6 represent the set G2, respectively.
– The areas of the horizontal hatchings in Fig. 6 represent the equivalence

relations {(a, b), (b, c)}IΣ (= {(a, b)}IΣ∩{(b, c)}IΣ = {(a, a)}IΣ ∩{(b, b)}IΣ ∩
{(c, c)}IΣ), respectively.

– The areas of the vertical hatchings in Fig. 6 represent the equivalence rela-
tions
{(a, c)}IΣ (= {(a, a)}IΣ ∩ {(c, c)}IΣ), respectively.

a

b

c
b a

a

b

b

c

Fig. 6. Representations of the syllogisms Barbara and Celarent

In both representations we have {(a, b), (b, c)}IΣ ⊆ {(a, c)}IΣ , i.e., {(a, b),
(b, c)} → (a, c) is an attribute implication of the syllogistic derivative KΣ.

Since (b \ a)2 = ∅ (⇐⇒ b \ a = ∅) and (c \ b)2 = ∅ (⇐⇒ c \ b = ∅)
implies (c \ a)2 = ∅ (⇐⇒ c \ a = ∅),
the implication {(a, b), (b, c)} → (a, c) represents indeed the syllogism
Barbara.

Contextual Logic and Aristotle’s Syllogistic 245

Accordingly,
since (a ∩ b)2 = ∅ (⇐⇒ a ∩ b = ∅) and (c \ b)2 = ∅ (⇐⇒ c \ b = ∅)
implies (a ∩ c)2 = ∅ (⇐⇒ a ∩ c = ∅),
the implication {(a, b), (b, c)} → (a, c) represents indeed the syllogism
Celarent.

In the same way, the representations of all other valid categorical syllogisms
can be justified. But it is easier and more substantial to use Aristotle’s syllogistic
deduction showing that the valid categorical syllogisms are exactly the syllogisms
which can be deduced by the following basic principles (cf. [St86], p. 94ff.):

1. The inversion rules: (a, b) of type a ⇒ (b, a) of type i
(a, b) of type e ⇒ (b, a) of type e
(a, b) of type i ⇒ (b, a) of type i

2. The categorical syllogisms Barbara and Celarent
3. The contradictoriness of the types a and o and of the types e and i

4 Implication Bases of Syllogistic Contexts

The introduced contextual semantics for Aristotle’s elementary judgments and
categorical syllogisms based on syllogistic contexts KΣ may open further insights
into logical coherences. In particular, it seems interesting to investigate useful
bases of elementary judgments within the contexts KΣ. To facilitate this investi-
gation, we define a syllogistic Θ-context of a formal context K := (G,M, I) with
|G| > 1 and M I = ∅ by KΘ := (G2, {{(a, a)}IΣ | a ∈ B
(K) \ {(G, ∅)}},∈). Be-
cause of {(a, b)}IΣ = {(a, a)}IΣ ∩ {(b, b)}IΣ in KΣ , B(KΘ) ∼= B(KΣ) and KΘ is
isomorphic to the attribute reduction of KΣ with the attribute set {{(a, a)}IΣ |
a ∈ B
, a �= G}. Since the stem basis of the attribute implications of a formal
context is the most useful implication basis, we concentrate our investigation on
determining the pseudo-intents of syllogistic Θ-contexts which are the premises
of the implications of the corresponding stem bases, respectively (cf. [GW99a],
p. 83).

Let us first consider a small example of a syllogistic Θ-context derived from
the formal context K4 := (G4, G4, �=) with G4 := {1, 2, 3, 4}. Its syllogistic Θ-
context KΘ

4 is represented by the cross-table in Fig. 7 (brackets and commas of
the common descriptions of sets are deleted). Fig. 8 shows the concept lattice
B(KΘ

4). The pseudo-intents of KΘ
4 are just the sets consisting of two attributes.

The pairs of attributes out of {[12, 34], [13, 24], [14, 23]} imply all other attributes
because their corresponding concept pairs have the smallest concept (the iden-
tity) as meet. The other pairs of attributes imply just one further attribute
because the corresponding concept pairs have an atom of the concept lattice as
meet (each atom is below exactly three attribute concepts).

Suprisingly, an analogous result as for K4 can be proved for all formal contexts
Kn := (Gn, Gn, �=) with Gn := {1, 2, . . . , n} for arbitrary natural numbers n > 1.
This is stated in the following proposition:

246 Rudolf Wille

Fig. 7. The syllogistic Θ-context KΘ
4

234,1134,2 124,3123,4 14,2313,24 12,34

14 41 23 3242243113 4334 12 21

332211 44

Fig. 8. Concept lattice of the formal context in Fig. 7

Contextual Logic and Aristotle’s Syllogistic 247

Proposition 2 The pseudo-intents of the syllogistic Θ-context KΘ
n are exactly

the sets consisting of two attributes.

For proving Proposition 2, we need the following lemma about equivalence
relations on a finite set:

Lemma 1 Let S be be a finite set and let C(S) be the set of all equivalence
relations on S with exactly two equivalence classes. Then a subset E of C(S)
contains the sets {F ∈ C(S) | F ⊇ D ∩ E} for all D,E ∈ E if and only if
E = {F ∈ C(S) | F ⊇

⋂
E}.

Proof Obviously, E = {F ∈ C(S) | F ⊇
⋂

E} implies E =
⋃

D,E∈E{F ∈ C(S) |
F ⊇ D∩E}. Conversely, let E =

⋃
D,E∈E{F ∈ C(S) | F ⊇ D∩E}. Now, let C be

an equivalence class of the equivalence relation
⋂

E and let CE be the equivalence
class of E ∈ E with CE ⊇ C. Then C =

⋂
E∈E CE . Let E consist of m equivalence

relations E1, E2, . . . , Em. Then E12 := (CE1 ∩ CE2)2 ∪ (Gn \ (CE1 ∩ CE2))2 is
an equivalence relation having CE1 ∩ CE2 as equivalence class and containing
E1 ∩ E2. Analogously, we can construct equivalence relations E123, . . . , E12...m

with equivalence classes CE1 ∩CE2 ∩CE3 , . . . , CE1 ∩CE2 ∩ · · · ∩CEm satisfying
E123 ⊇ E12 ∩ E3, . . . , E12...m ⊇ E12...(m−1) ∩ Em. In this way we obtain an
equivalence relation EC := E12...m in

⋃
D,E∈E{F ∈ C(S) | F ⊇ D ∩ E} having

C and S \C as its equivalence classes. This construction can be performed with
any equivalence class C of

⋂
E. Now, let EĈ be any equivalence relation in C(S)

with EĈ ⊇
⋂

E having Ĉ as one of its two equivalence classes. Then

Ĉ =
⋂

{S \C | C is an equivalence class of
⋂

E with C ∩ Ĉ = ∅}.

Analogously to the previous construction, we can iterately derive the equivalence
relation EĈ within

⋃
D,E∈E{F ∈ C(S) | F ⊇ D ∩ E}. This finally proves that

E =
⋃

D,E∈E{F ∈ C(S) | F ⊇ D ∩ E} implies E = {F ∈ C(S) | F ⊇
⋂

E} too.
�

Proof of Proposition 2 Since the concept extents of Kn are exactly the
subsets of Gn, the concept extents of KΘ

n are exactly the equivalence relations
on Gn. The attributes of KΘ

n are exactly the maximal equivalence relations on
Gn unequal G2

n, i.e., each of them has two equivalence classes. An arbitary
equivalence relation on Gn is always the intersection of suitable attributes of
KΘ

n .
Now, let {(a, a)}IΣ and {(b, b)}IΣ be two different attributes of KΘ

n . Then the
equivalence relation {(a, a)}IΣ ∩ {(b, b)}IΣ has either three or four equivalence
classes. In the case of three, the interval [{(a, a)}IΣ ∩{(b, b)}IΣ , G2

n] of the lattice
of equivalence relations on Gn contains exactly three attribute extents; hence
each two of the corresponding three attributes form a pseudo-intent. In the case
of four equivalence classes, the interval [{(a, a)}IΣ ∩ {(b, b)}IΣ , G2

n] is isomorhic
to B(KΘ

4); hence each two attributes in that interval form a pseudo-intent as

248 Rudolf Wille

we have seen by the preceding example. Together we obtain that all sets of two
attributes of KΘ

n are pseudo-intents. Finally, we obtain with Lemma 1 that there
are no other pseudo-intents of KΘ

n . �

Proposition 2 confirms Aristotle’s conception that (categorical) syllogisms
are sufficient for concluding elementary judgments from (finitely many) other
elementary judgments. However, for Proposition 2, it is essential that all subsets
of the object set Gn are concept extents of the formal context Kn. If an arbi-
trary finite formal context K is taken as a basis, then the syllogistic Θ-context
KΘ might have quite a number of pseudo-intents consisting of more than two
attributes. Those pseudo-intents are caused by pseudo-intents of the underlying
formal context K.

5 Further Research

The main direction of further research shall be concerned with generalizing the
semantics of syllogistic contexts to a semantics based on generalized power con-
text families. It is the hope that in this way a contextual-logic theory of implica-
tions and incompatibilities can be developed. A theory of implicational concept
graphs has already been successfully invented; that suggests to generalize this
theory to something like “syllogistic concept graphs” of which the diagrams in
Fig. 1 represent the elementary cases. A serious test of such extented theory
would be how well it can be used for mathematizing Brandom’s theory of dis-
cursive practice. More stimulation for extending Contextual Logic can be ex-
pected by further studies and mathematizations of Aristotle’s Syllogistic and
its continuations; in particular, the hypothetical and disjunctive syllogisms are
challenging.

References

[Ar75] Aristoteles: Lehre vom Schluß oder Erste Analytik. Felix Meiner, Hamburg
1975.

[Au95] R. Audi (ed.): The Cambridge dictionary of philosophy. Cambridge Uni-
versity Press, Cambridge 1995.

[Br94] R. B. Brandom: Making it explicit. Reasoning, representing, and discursive
commitment. Harvard University Press, Cambridge 1994.

[DK03] F. Dau, J. Klinger: From Formal Concept Analysis to Contextual Logic.
FB4-Preprint, TU Darmstadt 2003.

[GW99a] B. Ganter, R. Wille: Formal Concept Analysis: mathematical founda-
tions. Springer, Heidelberg 1999; German version: Formale Begriffsanalyse:
Mathematische Grundlagen. Springer, Heidelberg 1996.

[GW99b] B. Ganter, R. Wille: Contextual Attribute Logic. In: W. Tepfenhart,
W. Cyre (eds.): Conceptual structures: standards and practices. LNAI
1640. Springer, Heidelberg 1999, 377–388.

Contextual Logic and Aristotle’s Syllogistic 249

[So84] J. F. Sowa: Conceptual structures: Information processing in mind and
machine. Adison-Wesley, Reading 1984.

[St86] P. Stekeler-Weithofer: Grundprobleme der Logik: Elemente einer Kritik der
formalen Vernunft. de Gruyter, Berlin 1986.

[Th98] P. Thom: Syllogismus; Syllogistik. In: K. Gründer (Hrsg.): Historisches
Wörterbuch der Philosophie. Bd.10. Schwabe, Basel 1998, 687–707.

[Wi96] R. Wille: Restructuring mathematical logic: an approach based on Peirce’s
pragmatism. In: A. Ursini, P. Agliano (eds.): Logic and algebra. Marcel
Dekker, New York 1996, 267–281.

[Wi00a] R. Wille: Boolean Concept Logic. In: B. Ganter, G. W. Mineau (eds.):
Conceptual structures: logical, linguistic, and computational issues. LNAI
1867. Springer, Heidelberg 2000, 317–331.

[Wi00b] R. Wille: Contextual Logic summary. In: G. Stumme (ed.): Working with
conceptual structures: Contributions to ICCS 2000. Shaker-Verlag, Aachen
2000, 265–276.

[Wi04] R. Wille: Implicational concept graphs. In: K. E. Wolff, H. D. Pfeiffer,
H. S. Delugach (eds.): Conceptual structures at work. LNAI 3127. Springer,
Heidelberg 2004, 52–61.

States of Distributed Objects in

Conceptual Semantic Systems

Karl Erich Wolff

Mathematics and Science Faculty
Darmstadt University of Applied Sciences

Schoefferstr. 3, D-64295 Darmstadt, Germany
karl.erich.wolff@t-online.de

http://www.fbmn.fh-darmstadt.de/home/wolff

Abstract. Our classical understanding of objects in spatiotemporal sys-
tems is based on the idea that such an object is at each moment at ex-
actly one place. As long as the notions of “moment” and “place” are
not made explicit in their granularity the meaning of that idea is not
clear. It became clear by the introduction of Conceptual Time Systems
with Actual Objects and a Time Relation (CTSOT) using an explicit
granularity description for space and time and an object representation
such that each object is at each moment in exactly one state - where the
states are formal concepts of the CTSOT.

For the purpose of introducing also a granularity tool for the objects
the author has defined Conceptual Semantic Systems where relational
information is combined with the granularity tool of conceptual scales.
That led to a mathematical definition of particles and waves such that
the usual notions of particles and waves in physics are covered. Waves
and wave packets are “distributed objects” in the sense that they may
appear simultaneously at several places.

Now the question arises how to introduce a mathematical notion for the
“state of a distributed object”, as for example the state of an electron
or the state of an institution, in the general framework of Conceptual
Semantic Systems. That question is answered in this paper by the intro-
duction of the notion of the “aspect of a concept c with respect to some
view Q”, in short “the Q-aspect of c” which is defined as a suitable set of
formal concepts. For spatiotemporal Conceptual Semantic Systems the
state of an object p at a time granule t is defined as the spatial aspect
of the infimum of “realizations” of p and t. The one-element states of
“actual objects” in a CTSOT are special cases of these states which may
have many elements.

The information units (instances) of a Conceptual Semantic System con-
nect the concepts of different semantical scales, for example scales for
objects, space, and time. That allows for defining the information dis-
tribution of the Q-aspect of a distributed object c which leads to a
mathematical definition of the “BORN-frequency”; that is defined as
a relative frequency of information units which can be understood as a
very meaningful mathematical representation of the famous “probability
distribution of a quantum mechanical system”.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 250–266, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

States of Distributed Objects in Conceptual Semantic Systems 251

1 Objects and Their Representation

In this introductory section we discuss the notion of an “object” and some rep-
resentations of objects from a conceptual point of view which developed during
the last twenty years when the author was working in the field of Conceptual
Knowledge Processing.

1.1 Objects and Systems

Examples of objects in the sense of our intuitive understanding of “objects” are
single stones, tables, or persons. Obviously we are using the notion of an “object”
in a much more general way, for example, when we say that an institution is an
object. Then we focus on the institution as a whole, while calling it a system
we concentrate on the fact that it is decomposable into parts. Since parts of a
system can be treated again as new systems certain “basic” or “elementary” or
“atomic” subsystems are often called “objects”.

We give a simple example which shows our freedom in focussing on a system
and selecting its parts depending on our purpose. Let us consider a shepherd
counting his sheep with the purpose to be sure that no sheep of his herd is lost.
Here, each sheep is understood as an object in the sense that it is “atomic”,
that is, it is not necessary for the given purpose to subdivide it into parts. For
another purpose, namely for investigating an ill sheep, that sheep plays the role
of a subsystem, and its broken leg may be understood as an “object” in that
subsystem.

1.2 Objects in Spatiotemporal Systems

Clearly, not all parts of a system are usually understood as “objects”. For ex-
ample, in spatiotemporal systems the objects are usually clearly distinguished
from the spatial parts, the “places”, or from the temporal parts, say “days” or
“weeks”, of the system. That spatiotemporal distinction between “objects” and
other “entities” like “places” or “days” is basic for applications in physics.

For the discussion of classical and quantum objects in modern physics the
reader is referred to the fine collection of important papers on that subject by
Elena Castellani [Ca98]. We quote from the beginning of her introduction:

In the philosophical literature, as well as in ordinary usage, physical ob-
jects are most frequently referred to as “bodies”, “material things”, “ma-
terial beings”, “objects in space and time”. With respect to the totality
of existing objects, they are usually (but not always) distinguished from
“persons”. Whichever are the particular descriptions employed, having
mass, being located in space and time, and persisting through time seem
to constitute the fundamental features required for something to qualify
as a “physical object”. ...
Now what about the objects of physics? Are those entities, whose nature
and behavior it is the aim of physical theories to describe, “physical

252 Karl Erich Wolff

objects” in the preceding sense? Let us consider, for example, the entities
at the very center of the developments of contemporary physics: the so-
called elementary particles, the microscopic “objects” supposed to be
the ultimate constituents of the physical world. ...
Are such entities to be called objects after all?

From the other papers collected in [Ca98] the following problems around physical
objects seem to be closely related to our approach: Objects and Individuality;
Part/Whole Relation; Vagueness of Objects; Objects as Sums of Properties;
Identity through Time; Genidentity; Indistinguishability; Objects and Measure-
ment.

It is impossible to mention in this paper the broad discussion about problems
around the notion of “objects” in the literature. Before discussing some of these
problems from our point of view we shortly mention the connections to classical
mathematical tools in physics.

1.3 Connections to Classical Mathematical Tools in Physics

Most readers who are interested in the formal representation of movements of
objects in space and time might expect to find in any paper on that subject
after a few general remarks the classical notions of real numbers, vector spaces,
metrics and analytical notions like differentiation and integration. But we do not
use any of these notions in our present investigation. All these basic mathematical
notions can be included into the theory, but we like to do that step by step -
checking the conceptual role of the actually included classical notion at each
step.

That led us to a conceptual understanding of basic “physical notions” like for
example “life tracks”, “particles”, “waves”, “wave packets”. In the present paper
we develop a conceptual way of understanding the “probability distribution of a
quantum object (or system)” based on a conceptual representation of “objects”
and “aspects of objects” as discussed in the next sections.

1.4 Conceptual Representation of Objects

To make our ideas about “objects” clear we first mention that we do not try to
define what an “object in reality” is. Instead, we describe the main steps which
led us from simple conceptual notions designed for the formal description of “ob-
jects in reality” to the object representation in the definition of spatiotemporal
Conceptual Semantic Systems and discuss the advantages and disadvantages of
these formalizations. We assume that the reader is familiar with the basic notions
in Formal Concept Analysis as described in [GW99].

First Step: Objects as Formal Objects. The most simple representation of
“real objects” is to label different real objects by different real marks, such that
each object is uniquely determined by its mark; that can be done easily for “hu-
man sized objects”, but it seems to be impossible for some physical objects like

States of Distributed Objects in Conceptual Semantic Systems 253

photons. A corresponding formal description for n “real objects” is the formal
context (G,G,=) where G := {1, ..., n} is the set of formal objects. That is a
suitable conceptual description of n distinguishable objects. To describe indis-
tinguishable objects we can take a formal context of the form (G,M,G × M).
Its concept lattice has exactly one concept which is clearly the object concept
of each of the objects. An arbitrary formal context (G,M, I) can be used as
a formal description of “real objects” some of which can be distinguished by
attributes while others remain indistinguishable. Clearly, indistinguishability is
here understood as “not distinguishable by the attributes in the given context”.
Two formal objects g, h of a formal context (G,M, I) are called indistinguishable
if they have the same attributes; that is equivalent to the property that their
object concepts are equal: γ(g) = γ(h).

The disadvantage of the representation of “real objects” as formal objects
is the following. If we wish to represent “real temporal objects” which change
their attributes in time then we have to cope with three kinds of things, namely
objects, time, and attributes which are connected by a ternary relation, for
example: “an object g has at time t an attribute m”. A simple and very successful,
but not yet general representation of such ternary relations is described in the
following.

Second Step: Temporal Objects and Life Tracks. The ternary relation
“an object g has at time t an attribute m” can be represented by a binary
relation if we consider “actual objects (g, t)” as new entities and build a formal
context with the binary relation “(g, t) has the attribute m”. Clearly, we could
also use the binary relation “g has the (time-dependent) attribute (m, t)”. The
first choice with actual objects is very successful in all applications since the
object concept γ(g, t) has the meaning of a state of the object g at time granule
t. That led to a very fruitful development of so-called “Conceptual Time Systems
with Actual Objects and a Time Relation”, in short CTSOT, which allow for
representing states, transitions, and life tracks of such objects. For a detailed
discussion the reader is referred to [Wo02a, Wo02b]. In a CTSOT each object g
is represented by its life track or equivalently by the subsystem “generated by
the rows (g, t)” where t is a time granule of g. The CTSOTs are well-suited for
representing those “real objects” which are at each time granule in exactly one
state, or at exactly one place if we interpret the attributes as “local attributes”
- as for example as x- and y-coordinates or as attributes like “was on the market
place”.

Third Step: Tuples of Objects as Formal Objects. For the conceptual
representation of k-ary relations (where k is an integer) on a set G0 of “objects”
one can use a formal context Kk := (Gk,Mk, Ik) where Gk ⊆ (G0)k. Then the
formal concepts of Kk are called relation concepts since their extents are as
subsets of (G0)k k-ary relations on the set G0. That conceptual representation
of k-ary relations is used in power context families [Wi97, PW99] in connection
with the relational representation of knowledge in concept graphs [Wi00, Wi02,

254 Karl Erich Wolff

Wi03] which are contextual representations of conceptual graphs which have
been introduced by John Sowa [So84].

In the following we represent relational knowledge not by power context fam-
ilies but by Conceptual Semantic Systems as introduced by the author [Wo04c].
A comparison between these two similar formal methods will become possible
by applying them in practice.

2 Basic Notions in Conceptual Semantic Systems

In the following we continue developing the investigation of Conceptual Semantic
Systems, which combine the simplicity of relational data tables with the method
of conceptual scaling and the knowledge representation in form of semantics
(often also called “ontologies”). It contains all three forms of conceptual object
representation mentioned in the previous section. It allows for a representation
of ”real objects” like clouds, institutions, epidemics and other concepts which are
usually not understood as objects in the sense that they are at each moment at
exactly one place - for example, an institution may be located in several houses.
It is obvious that the notions of “place” and “moment” can be understood also
as such general “objects” like clouds or institutions which are in a certain sense
“distributed” over some “space” and not necessarily “located at a single point”.
To describe all that we combine the conceptual representation of granularity,
the representation of life tracks of objects in a CTSOT and the conceptual
representation of relational structures.

2.1 Definition of Conceptual Semantic Systems

The main idea behind the formal definition of a Conceptual Semantic System
(CSS) is that of a data table which represents in its rows more or less short forms
of relational expressions combining concepts. The meaning of these concepts is
represented by formal contexts, called semantic scales. With each column of the
data table we associate a semantic scale representing the meaning of the values
of that column. The values in each column are formal concepts of the semantic
scale of that column.

Since the formal concepts in each semantic scale are ordered by their concep-
tual hierarchy the data tables of a CSS form an “ordinal context” as introduced
and investigated in [SWi92]. For convenience we repeat the general definition of
an ordinal context.

Definition 1. “Ordinal Context”
Let G and M be sets, and (Wm, ≤m)m∈M be a family of ordered sets; let I be a
ternary relation with I ⊆

⋃
m∈M (G × {m}× Wm) such that for each g ∈ G and

m ∈ M there is exactly one w ∈ Wm with (g,m,w) ∈ I, denoted by m(g) := w.
Then the tuple (G,M, (Wm, ≤m)m∈M , I) is called an ordinal context. The many-
valued context (G,M,

⋃
m∈M Wm, I) is called the underlying many-valued con-

text of the given ordinal context.

States of Distributed Objects in Conceptual Semantic Systems 255

Instead of arbitrary ordered sets (Wm, ≤m)m∈M , we choose the concept
lattices of the semantic scales for defining “Conceptual Semantic Systems” in
Definition 2.

Definition 2. “Conceptual Semantic System”
Let M be a set and, for each m ∈ M , let Sm := (Gm, Nm, Im) be a formal
context. Let B(Sm) be the concept lattice of Sm. Then any ordinal context

K := (G, M, (B(Sm))m∈M , I)

is called a Conceptual Semantic System (CSS) with semantic scales Sm (m ∈ M).
The elements of G are called instances or information units. We interpret the
concepts of the semantic scales as “types” and the concept lattice of a semantic
scale as a “type hierarchy”. A triple (g,m, c) ∈ I is interpreted as “instance
g tells something about the concept c ∈ B(Sm)”. For any instance g the tuple
(m(g)|m ∈ M) is interpreted as a short description of a statement connecting
the concepts m(g) where m ∈ M .

The purpose for the introduction of Conceptual Semantic Systems is twofold:
first, by calling the formal objects in G “instances” or “information units” we
suggest to use the formal objects as “chunks of information which connect con-
cepts” and not for the representation of these concepts. The instances of a CSS
play the role of the rows (or the tuples) in a database table; an instance g ∈ G is,
roughly speaking, just a formal connection of the “meaningful” concepts m(g)
where m ∈ M . That allows for the representation of arbitrary relations among
the chosen concepts of the semantic scales. A special example is the parametric
representation of the unit circle by triples (t, cos(t), sin(t)). In that sense a CSS
is a parametric representation of relational conceptual knowledge.

Therefore we are no longer forced to decide which kinds of concepts in the
sense of persons or places or time granules have to be selected for the special
role of formal objects of a many-valued context. For example, in a CTSOT the
actual objects (p, t) play the role of the formal objects. As a consequence, any
actual object is “located” at exactly one place in the concept lattice, namely at
its object concept. That is very convenient for many purposes but not general
enough for the representation of “distributed objects” which are “located at
many places”.

The second reason for the introduction of Conceptual Semantic Systems is to
make explicit the meaning of basic concepts used in a statement by describing
these concepts as formal concepts. That has the advantage that the “original”
attributes of the intents of these concepts are also used in the following seman-
tically derived context.

Definition 3. “Semantically Derived Context”
Let (G, M, (B(Sm))m∈M , I) be a Conceptual Semantic System with semantic
scales Sm = (Gm, Nm, Im) (m ∈ M) and let int(c) denote the intent of a concept
c. Then the formal context

256 Karl Erich Wolff

K := (G, {(m,n)|m ∈ M,n ∈ Nm}, J) where
gJ(m,n) :⇐⇒ n ∈ int(m(g))

is called the semantically derived context of (G, M, (B(Sm))m∈M , I).

It is easy to see that the semantically derived context of a CSS can be ob-
tained also by plain scaling as the usual derived context. Therefore we write
in the following only “derived context” instead of “semantically derived con-
text”. The formal concepts of the semantic scales yield “realized concepts” in
the derived context in the sense of the following definition.

Definition 4. “Realization of a concept of a semantic scale”
Let (G, M, (B(Sm))m∈M , I) be a Conceptual Semantic System with derived con-
text K. Then for m ∈ M the following mapping

rm : B(Sm) → B(K)
c = (Ac, Bc) #→ rm(c) := (({m} × Bc)↓, ({m} × Bc)↓↑)

is called the m-realization of c in B(K).

If different many-valued attributes k and m have the same scales Sk = Sm,
then the k-realization of a concept c ∈ B(Sk) may be different from its m-
realization.

2.2 Spatiotemporal Conceptual Semantic Systems

For spatiotemporal applications we specify in the set M of attributes of a CSS
three special attributes P,T,L where P serves for the description of “general
objects” like “real persons” or “real particles” or other ”real objects”, T for
temporal concepts like “days”, and L for “localities” like “places”. Mathemat-
ically these special attributes are not distinguished from the other attributes.
Instead of three different attributes we could also take three different subsets of
attributes for the description of three different kinds of “categorically different
concepts”.

Definition 5. “Spatiotemporal Conceptual Semantic System”
Let K :=(G, M, (B(Sm))m∈M , I) be a Conceptual Semantic System with seman-
tic scales Sm = (Gm, Nm, Im) (m ∈ M) and let P, T, L ∈ M . Then the pair
(K, (P, T, L)) is called a spatiotemporal Conceptual Semantic System.
The formal concepts of SP , ST , SL are called types of “general objects”, types
of “time granules”, and types of “space granules” respectively.
Let K denote the derived context of K, B(K) its concept lattice and γ its object
concept mapping. For each m ∈ M the context

Km := (G, {(m,n)|n ∈ Nm}, J ∩ (G × {(m,n)|n ∈ Nm}))
is called the m-part of K. Its concept lattice is denoted by Bm, its object concept
mapping by γm.
The formal concepts of BP , BT , BL are called “general objects” or “packets”,
“time granules”, and “space granules” of (K, (P, T, L)) respectively.

States of Distributed Objects in Conceptual Semantic Systems 257

For m ∈ M , the concept lattice Bm can be supremum-embedded into B(Sm)
which follows from Proposition 31 in [GW99], p. 98.

For the definition of “particles” and “waves” as special packets the author
has used in [Wo04c] the following definition of the location of a packet at a time
granule.

Definition 6. “Location of a Packet at a Time Granule”
Let C := (K, (P, T, L)) be a spatiotemporal CSS. Let p := (Ap, Bp) be a packet
of C, and t := (At, Bt) be a time granule of C. Then the pair (p, t) is called an
actual packet of C and the set

L(p, t) := {γL(g)|g ∈ Ap ∩ At}
is called the location of (p, t) in C or the location of the packet p at time granule t.

In biology, the habitat of a species can be understood as the location of an
actual packet representing the species as a general object at some time granule. In
the next section we generalize that successful notion to the notion of an “aspect
of a concept with respect to a given view”. That will lead us to the definition of
the information distribution of an aspect of a concept. Its application to physics
yields a conceptual interpretation of the “probability distribution of a quantum
object”.

3 Aspects of Concepts

In colloquial speech an “aspect of a thing” contains some special information
about a thing. An example of an aspect of an actual person, say of my father
in his youth, might be the set of towns where he lived during his youth. That
is a local aspect, another one is his educational aspect, describing which schools
he visited during his youth. Obviously, the locality of an actual packet of a
spatiotemporal CSS is also such an aspect of that actual packet. The following
definition introduces the notion of an “aspect of a concept with respect to some
view” in an arbitrary given formal context.

Definition 7. “Q-aspect of a concept and distributed concepts”
Let K := (G,M, I) be a formal context and Q ⊆ M . Then the Q-part of K is the
formal context KQ := (G,Q, I ∩ (G × Q)), its concept lattice is denoted by BQ,
and its object concept mapping by γQ. For any concept c := (Ac, Bc) ∈ B(K)
the set

αQ(c) := {γQ(g)|g ∈ Ac}
is called the aspect of the concept c with respect to the view Q, in short the
Q-aspect of c. If |αQ(c)| ≥ 2, then c is called distributed in BQ.

In this paper we are interested in the Q-aspects of concepts of the derived
context K = (G,N, J) of a CSS K :=(G, M, (B(Sm))m∈M , I) with semantic
scales Sm := (Gm, Nm, Im) (m ∈ M). Then the set of attributes of K is N =
{(m,n)|m ∈ M,n ∈ Nm}. For a many-valued attribute m ∈ M we call

258 Karl Erich Wolff

αm(c) := α{m}×Nm
(c)

the m-aspect of c or the aspect of c in the m-part of K.
The following proposition shows that the location L(p,t) of an actual packet

of a spatiotemporal CSS can be described as an aspect.

Proposition 1 Let K :=(G, M, (B(Sm))m∈M , I) be a CSS with semantic scales
Sm (m ∈ M). Let C := (K, (P, T, L)) be a spatiotemporal CSS. Let p = (Ap, Bp)
be any packet and t = (At, Bt) any time granule of C. Then
pK := (Ap, (Ap)K) and tK := (At, (At)K) and their infimum pK ∧ tK are formal
concepts of the derived context K of K, and for any view Q in K

αQ(pK ∧ tK) = {γQ(g)|g ∈ Ap ∩ At}.

Consequently we obtain for the special view QL := {(L, n)|n ∈ NL}

αL(pK ∧ tK) = L(p, t).

The proof can be easily obtained from the well-known fact that the mapping
(A,B) #−→ (A,AK) is an infimum-preserving order-embedding from the concept
lattice of the Q-part into the concept lattice of K as described in [GW99], page
98, Prop. 31.

4 The Information Distribution of an Aspect of a
Concept

For each Q-aspect of a concept we introduce its information distribution and its
relative frequency distribution which can be understood as a very meaningful
mathematical representation of the famous “probability distribution of a quan-
tum mechanical system”.

Definition 8. “The Information Distribution on a Q-aspect of a con-
cept”
Let K := (G, M, (B(Sm))m∈M , I) be a CSS with semantics Sm (m ∈ M) and
K := (G,N, J) its derived context. Let c = (Ac, Bc) be a formal concept of K
and Q ⊆ N . Then the mapping βc,Q is defined by

βc,Q : αQ(c) −→ P(Ac) where
βc,Q(γQ(g)) := {h ∈ Ac|γQ(h) = γQ(g)} for γQ(g) ∈ αQ(c).

βc,Q is called the information distribution of c on αQ(c), βc,Q(γQ(g)) the set
of c − instances at γQ(g), and |βc,Q(γQ(g))| the information frequency of c in
γQ(g). If Ac �= ∅ and Ac is finite, then the relative information frequency �c,Q

is defined by

�c,Q : αQ(c) −→ [0, 1]
�c,Q(γQ(g)) := |Ac|−1|βc,Q(γQ(g))|.

States of Distributed Objects in Conceptual Semantic Systems 259

The relative information frequency �c,Q generates the corresponding probability
Pc,Q which has for each subset S ⊆ αQ(c) the value

Pc,Q(S) =
∑

{�c,Q(γQ(g))|γQ(g) ∈ S}.

Remark: The relative information frequency should be distinguished from the
proportion of c-instances in the contingent of γQ(g):

πc,Q(γQ(g)) := |βc,Q(γQ(g))||γ−1
Q (γQ(g))|−1 (γQ(g) ∈ αQ(c)).

These definitions will be illustrated by examples in section 6.

5 States as Special Aspects

States of actual objects in a Conceptual Time System with Actual Objects and a
Time Relation (CTSOT) have been introduced by the author [Wo02b] as object
concepts of the derived context of the event part of a CTSOT. In the following
definition of a state we generalize from single object concepts to sets of object
concepts, and from the event part to arbitrary parts of the derived context. The
main idea is to define in a given spatiotemporal CSS a Q-state of an “actual
object” as a suitable aspect in KQ.

Definition 9. “Q-state of an actual object of a spatiotemporal CSS”
Let C := (K, (P, T, L)) be a spatiotemporal CSS where K :=(G,
M, (B(Sm))m∈M , I) is a CSS with semantic scales Sm = (Gm, Nm, Im)
(m ∈ M). Let K = (G,N, J) be the derived context of K, p := (Ap, Bp) ∈ B(SP)
and t := (At, Bt) ∈ B(ST). Let rP (p) and rT (t) be the realizations of p and
t in B(K). For any view Q ⊆ N we define the Q-state of the “actual object”
(rP (p) ∧ rT (t)) in KQ by

stateQ(p, t) := αQ(rP (p) ∧ rT (t)).

The following Proposition 2 shows that the states of a CTSOT can be de-
scribed as singleton states of a suitable CSS:

Proposition 2 Let C := (P0, G0, Π,T0,C0, R) be a CTSOT where P0 is a set
(of “persons”, or “objects”) and G0 a set (of “time granules”) and Π ⊆ P0×G0

a set (of “actual persons”) and T0 = ((Π,M,W, IT0), (Sm|m ∈ M)) is the time
part and C0 = ((Π,E, V, IC0), (Se|e ∈ E)) is the event part and R ⊆ Π × Π is
“the time relation” of C. Let KE be the derived context of the event part of C.

Then there exists a spatiotemporal CSS Ĉ := (K, (P, T, L)) with semantic
scales SP , ST and SL with object concept mappings γP , γT and γL, and there
exists a subset Ê of the attribute set of the semantically derived context of Ĉ
and an isomorphism f from KE onto the Ê-part KÊ of the semantically derived
context KĈ of Ĉ and an (f-induced) isomorphism f̂ from B(KE) onto the concept
lattice B(KÊ) such that for all p ∈ P0 and all t ∈ G0 and p := γP (p) and
t := γT (t)

260 Karl Erich Wolff

{f̂(γE(p, t))} = αÊ(rP (p) ∧ rT (t)) = stateÊ(p, t),

hence the singleton consisting of the image of a state of an actual object in the
given CTSOT is the Ê-state of the corresponding realized actual object.

Proof. From the CTSOT C we construct a spatiotemporal CSS Ĉ := (K, (P, T, L))
where P := P0, T := G0 and L := E and K := (Π, {P, T, L}, (BP ,BT ,BL), IK).
The semantic scales are chosen as the nominal scales SP := (P, P,=), ST :=
(T, T,=) and SL := (GL, NL, IL) where GL := {(e(p, t)|e ∈ E)|(p, t) ∈ Π},
NL := {(e, n)|e ∈ E, n ∈ Ne} and Ne is the attribute set of the scale Se :=
(Ge, Ne, Ie) in the given CTSOT C. We define the incidence relation IL by

IL := {((ẽ(p, t)|ẽ ∈ E), (e, n)) ∈ GL × NL|e(p, t)Ien}.

The ternary incidence relation IK is defined as {((p, t),m,m(p, t))|m ∈ {P, T, L}}
where the values of the instance (p, t) are defined as P (p, t) := γP (p), T (p, t) :=
γT (t), and L(p, t) := γL((ẽ(p, t)|ẽ ∈ E)). That is visualized in Table 1:

Table 1. A data table of a CSS representing the event part of a CTSOT

instances P T L

(p,t) γP (p) γT (t) γL(ẽ(p, t)|ẽ ∈ E)

To finish the proof we define Ê := {L} × NL which is a subset of the at-
tribute set of the semantically derived context of Ĉ. Let KÊ = (Π, Ê, Ĵ) be
the Ê-part of the semantically derived context of Ĉ. Then the following map-
ping f with f(p, t) := (p, t) and f(e, n) := (L, (e, n)) is an isomorphisms from
the formal context KE = (Π,NL, IE) onto KÊ since for all (p, t) ∈ Π and
for all (e, n) ∈ NL (p, t)IE(e, n) ⇔ e(p, t)Ien ⇔ ((ẽ(p, t)|ẽ ∈ E)IL(e, n) ⇔
(e, n) ∈ int(γL((ẽ(p, t)|ẽ ∈ E))) ⇔ (e, n) ∈ int(L(p, t)) ⇔ (p, t)Ĵ(L, (e, n)) ⇔
f(p, t)Ĵf(e, n).

Let f̂ : B(KE) → B(KÊ) where f̂(A,B) := (fA, fB) be the f-induced concept
lattice isomorphism. Then for all p ∈ P0 and all t ∈ G0 let p := γP (p) =
({p}, {p}) and t := γT (t) = ({t}, {t}); from the definition of a Q-state we get
that stateÊ(p, t) = αÊ(rP (p) ∧ rT (t)). Since the ext(rP (p)) is by definition of
the realization the set {(P, p)↓} = {(q, s) ∈ Π |P (q, s) = p} = {p} × G0 and the
ext(rT (t)) = {(T, t)↓} = {(q, s) ∈ Π |T (q, s) = t} = P0 × {t}. Hence (q, s) ∈
(ext(rP (p))∩ ext(rT (t)) if and only if (q, s) = (p, t). Hence αÊ(rP (p)∧ rT (t)) =
{γÊ(p, t)} = {f̂(γE(p, t))} since f̂ is the f-induced concept lattice isomorphism.

That demonstrates that the states of the possibly distributed actual objects
of a spatiotemporal CSS cover the states of a CTSOT as special singleton cases.

States of Distributed Objects in Conceptual Semantic Systems 261

6 An Example

The following example shows a small part of some industrial data measured
at a distillation column during 20 days using certain “variables” (many-valued
attributes) like “input” and “pressure” as indicated in Table 2. In this simple
example there is only one object, namely the distillation column, and the time
variable “day” is a key. Therefore this system can be described as a CTSOT,
and hence as a CSS with a derived context K which contains all the attributes
which are used in the following.

Table 2. A data table of a conceptual semantic system

instances distillation column day input pressure

1 1 1 616 119

.

20 1 20 664 120

For that example we now visualize the information distribution and the infor-
mation frequency of a Q-aspect of the attribute concept c := μ(pressure > 120)
which means in this distillation column “high pressure”. We take Q as the set
of all attributes of the concept lattice of KQ in Figure 2. The extent of c is
Ac := {2, 4, 6, 7, 10}which is partitioned in the contingents βc,Q(γQ(3)) = {2, 6},
βc,Q(γQ(1)) = {4, 7}, and βc,Q(γQ(11)) = {10} as represented in Figure 1 which
shows the concept lattice of KQ∪Bc where Bc is the intent of c. The corre-
sponding relative information frequencies are 2/5, 2/5, 1/5; the proportions
πc,Q(γQ(g)) of the c-instances in these three contingents are 2/6, 2/6, 1/3. In
Figure 2 we visualize the aspect of “high pressure” by black circles in a line
diagram of KQ. Clearly, by definition of an aspect, “high pressure” is reported
at least once in each of the concepts of that aspect, and these concepts are
all subconcepts of the attribute concept μ(input ≤ 645). It is obvious that we
can see that information much more clear in Figure 1 using the implication
“(pressure > 120) ⇒ (input ≤ 645)”. But the concept lattice in Figure 1 is
more complicated. That argument is not really convincing in that simple exam-
ple, but in general the concept lattice of KQ∪Bc may be much larger than that
of KQ. Therefore a visualization of aspects in a line diagram of KQ can be used
very effectively in practice.

A well-known example of that kind is a (conceptually interpreted) meteoro-
logical chart where the nice and simple two-dimensional map is enriched by level
lines for several pressure values. Clearly, each level line, say {(x, y)|f(x, y) = c0}
can be represented as the aspect of a concept. The same holds for sets of the
form {(x, y)|f(x, y) ≥ c0} which are often represented on a meteorological chart
by oval-like figures indicating “high pressure”. When these oval-like figures move
over the chart they are identified from one day to the next and get names - as if
being a physical object.

262 Karl Erich Wolff

Fig. 1. Selection of the instances with high pressure

Fig. 2. In black: the aspect of “high pressure”; the arrows (→) show the five
instances indicating “high pressure” and visualize the information frequencies
2/5, 2/5, and 1/5.

States of Distributed Objects in Conceptual Semantic Systems 263

Clearly, such abstract objects like “high pressure” are represented in Con-
ceptual Semantic Systems usually as concepts of semantic scales. While scale
concepts in different scales cannot be compared, their corresponding realized
concepts (see Def. 4) can be compared in the semantically derived context where
they are connected by instances.

7 Connections to the Statistical Interpretation of
Quantum Theory

Now we relate Conceptual Semantic Systems to some leading ideas in the statis-
tical interpretation of Quantum Theory. For that purpose we quote some state-
ments from the Nobel Lecture of Max Born on The Statistical Interpretation of
Quantum Mechanics [Bor54]. On page 261 he wrote:

Schrödinger thought that his wave theory made it possible to return to
deterministic classical physics. He proposed (and he has recently empha-
sized his proposal anew’s), to dispense with the particle representation
entirely, and instead of speaking of electrons as particles, to consider
them as a continuous density distribution |ψ|2 (or electric density e|ψ|2).

Following an idea of Einstein who interpreted the square of the wave amplitude
of an optical wave as the probability density for the occurrence of photons Max
Born [Bor54] (page 262) argued:

This concept could at once be carried over to the ψ-function: |ψ|2 ought
to represent the probability density for electrons (or other particles). It
was easy to assert this, but how could it be proved?

To my knowledge there is no generally accepted interpretation of the ψ-function
in Quantum Theory. As a new step towards a meaningful interpretation of the
foundations of Quantum Theory I plan to combine the experience of physicists as
described for example in [Boh52, But99, Du01, Kuc99, Pa04] with the conceptual
framework presented in this paper.

For the intended applications in Quantum Theory the definition of a Q-
aspect of a concept c plays an important role since αQ(c) represents nicely the
idea of the set of “places” where a “distributed (quantum) object c” has been
observed. The concept lattice BQ plays the role of a general “space” into which
an “object” is “embedded” by means of its Q-aspect.

Max Born [Bor54] (page 265-266) clearly distinguished between particles and
objects in a similar sense as we do:

The concept of a particle, e.g. a grain of sand, implicitly contains the
idea that it is in a definite position and has definite motion. ... Every
object that we perceive appears in innumerable aspects. The concept of
the object is the invariant of all these aspects. From this point of view,
the present universally used system of concepts in which particles and
waves appear simultaneously, can be completely justified.

264 Karl Erich Wolff

It was shown by the author in [Wo04c] that particles and waves can be under-
stood as special cases of general objects, called “packets” which represent in
the framework of Conceptual Semantic Systems the idea of a “wave packet” in
physics. Born’s “innumerable aspects” of an object are now mathematically well
presented by the Q-aspects of a concept.

If we wish to “measure” the “probability that the general object c is at
the location γL(g)” then we have to arrange our experiment, which yields the
many-valued context of a spatiotemporal CSS, in such a way that the relative
information frequency �c,L := �c,{L}×NL

, which we call the BORN-frequency,
can be interpreted as the intended probability, for example by choosing a “spa-
tial uniform distribution” of the information units . Is there any other way to
“measure that probability”?

Max Born finished his Nobel lecture [Bor54] (page 266) with the statement:

The lesson to be learned from what I have told of the origin of quantum
mechanics is that probable refinements of mathematically methods will
not suffice to produce a satisfactory theory, but that somewhere in our
doctrine is hidden a concept, unjustified by experience, which we must
eliminate to open up the road.

Among the possible candidates for such hidden concepts is maybe the concept
of “a continuously fine precision” which can not be justified by any experience
in practice. It can be replaced in many applications by a pragmatically based
usage of granularity in theory and practice.

8 Conclusion and Future Research

We have shown how the notion of a state of an actual object in a CTSOT can
be generalized to the notion of a Q-state of a “distributed actual object” of a
spatiotemporal CSS. That seems to be the suitable conceptual representations
of the idea of “the state of a quantum mechanical system”. Even more important
is the definition of a Q-aspect of a concept c and its numerous applications in
many fields where “distributed objects” are investigated. That seems to be a very
powerful tool for the investigation of the foundations of Quantum Theory. First
results are the formal definitions of particles and waves in Conceptual Semantic
Systems and the proof that they cover the classical particles and waves in physics.
The introduction of the information distribution and the (relative) frequency
distribution of a concept with respect to a view Q yields a nice conceptual
representation of “the probability distribution of a quantum mechanical system”.

These first approaches have to be discussed in the near future with physicists
and other scientist working with “distributed systems”.

The application of Conceptual Semantic Systems to Conceptual Graphs and
Power Context Families will be discussed in another paper.

States of Distributed Objects in Conceptual Semantic Systems 265

References

[Boh52] D. Bohm: A suggested interpretation of the quantum theory in terms of
“hidden” variables. Phys.Rev. 85, 1952.

[Bor54] M. Born: Die statistische Deutung der Quantenmechanik. Nobelvor-
trag. In: [Bo63], II, 430-441. English translation: The statistical inter-
pretation of quantum mechanics. Nobel Lecture, December 11, 1954.
http://nobelprize.org/physics/laureates/1954/born-lecture.html

[Bor63] M. Born: Ausgewählte Abhandlungen. Vandenhoeck and Ruprecht,
Göttingen 1963.

[But99] J. Butterfield (ed.): The Arguments of Time. Oxford University Press,
1999.

[Ca98] E. Castellani (ed.): Interpreting Bodies: Classical and Quantum Objects in
Modern Physics. Princeton University Press 1998.

[Du01] D. Dürr: Bohmsche Mechanik als Grundlage der Quantenmechanik.
Springer, Berlin 2001.

[GW99] B. Ganter, R. Wille: Formal Concept Analysis: mathematical foundations.
Springer, Heidelberg 1999; German version: Formale Begriffsanalyse: Math-
ematische Grundlagen. Springer, Heidelberg 1996.

[MLG03] A. de Moor, W. Lex, B. Ganter (eds.): Conceptual Structures for Knowl-
edge Creation and Communication. LNAI 2746, Springer, Heidelberg
2003.

[Kuc99] K. Kuchar: The Problem of Time in Quantum Geometrodynamics. In
[But99], 169-195.

[Pa04] O. Passon: Bohmsche Mechanik. Eine elementare Einführung in die de-
terministische Interpretation der Quantenmechanik. Verlag Harri Deutsch,
Frankfurt 2004.

[PW99] S. Prediger, R. Wille: The lattice of concept graphs of a relationally scaled
context. In: W. Tepfenhart, W. Cyre (eds.): Conceptual structures: stan-
dards and practices. LNAI 1640. Springer, Heidelberg 1999, 401–414.

[PCA99] U. Priss, D. Corbett, G. Angelova (eds.): Conceptual structures: integration
and interfaces. LNAI 2393. Springer, Heidelberg 2002.

[Rei56] H. Reichenbach: The Direction of Time. Edited by M. Reichenbach. Berke-
ley: University of California Press, 1991. (Originally published in 1956.)

[So84] J. F. Sowa: Conceptual structures: information processing in mind and ma-
chine. Adison-Wesley, Reading 1984.

[SWi92] S. Strahringer, R. Wille: Towards a Structure Theory for Ordinal Data. In:
M. Schader (ed.): Analysing and Modelling Data and Knowledge. Springer,
Heidelberg 1992; 129–139.

[TFr98] G. Toraldo di Francia: A World of Individual Objects? In: [Ca98] 21–29.
[Wi97] R. Wille: Conceptual Graphs and Formal Concept Analysis. In: D. Lucose,

H. Delugach, M. Keeler, L. Searle, J. F. Sowa (eds.): Conceptual structures:
fulfilling Peirce’s dream. LNAI 1257. Springer, Heidelberg 1997, 290–303.

[Wi00] R. Wille: Contextual Logic summary. In: G. Stumme (ed.): Working with
conceptual structures: Contributions to ICCS 2000. Shaker-Verlag, Aachen
2000, 265–276.

[Wi02] R. Wille: Existential concept graphs of power context families. In: [PCA99],
382–395.

[Wi03] R. Wille: Conceptual Contents as Information - Basics for Contextual Judg-
ment Logic. In: [MLG03], 1–15.

266 Karl Erich Wolff

[Wo00a] K.E. Wolff: Concepts, States, and Systems. In: D.M. Dubois, (ed.): Com-
puting Anticipatory Systems. CASYS99 - Third International Conference,
Liège, Belgium, 1999, American Institute of Physics, Conference Proceed-
ings 517, 2000, 83–97.

[Wo00b] K.E. Wolff: Towards a Conceptual System Theory. In: B. Sanchez, N. Nada,
A. Rashid, T. Arndt, M. Sanchez (eds.): Proceedings of the World Multi-
conference on Systemics, Cybernetics and Informatics, SCI 2000, Vol. II:
Information Systems Development, International Institute of Informatics
and Systemics, 2000, ISBN 980-07-6688-X, 124–132.

[Wo01] K.E. Wolff: Temporal Concept Analysis. In: E. Mephu Nguifo et al. (eds.):
ICCS-2001 International Workshop on Concept Lattices-Based Theory,
Methods and Tools for Knowledge Discovery in Databases, Stanford Uni-
versity, Palo Alto (CA), 91–107.

[Wo02a] K.E. Wolff: Transitions in Conceptual Time Systems. In: D.M. Dubois
(ed.): International Journal of Computing Anticipatory Systems vol. 11,
CHAOS 2002, 398–412.

[Wo02b] K.E. Wolff: Interpretation of Automata in Temporal Concept Analysis. In:
[PCA99], 341–353.

[Wo04a] K.E. Wolff: Towards a Conceptual Theory of Indistinguishable Objects.
In: Eklund, P. (ed.): Concept Lattices: Proceedings of the Second Inter-
national Conference on Formal Concept Analysis. LNCS 2961, Springer-
Verlag, Heidelberg, 2004, 180–188.

[Wo04b] K.E. Wolff: States, Transitions, and Life Tracks in Temporal Concept Anal-
ysis. Preprint Darmstadt University of Applied Sciences, Mathematics and
Science Faculty, 2004.

[Wo04c] K.E. Wolff: ’Particles’ and ’Waves’ as Understood by Temporal Concept
Analysis. In: K.E. Wolff, H.D. Pfeiffer, H.S. Delugach (eds.): Conceptual
Structures at Work. 12th International Conference on Conceptual Struc-
tures, ICCS 2004. Huntsville, AL, USA, July 2004. Proceedings. Springer
Lecture Notes in Artificial Intelligence, LNAI 3127, Springer-Verlag, Hei-
delberg 2004, 126–141.

[WY03] K.E. Wolff, W. Yameogo: Time Dimension, Objects, and Life Tracks - A
Conceptual Analysis. In: [MLG03], 188–200.

[WY05] K.E. Wolff, W. Yameogo: Turing Machine Representation in Temporal
Concept Analysis. In: B. Ganter, R. Godin (eds.): Formal Concept Anal-
ysis. Third International Conference ICFCA 2005. Springer Lecture Notes
in Artificial Intelligence, LNAI 3403, Springer-Verlag, Heidelberg 2005,
360–374.

Hierarchical Knowledge Integration

Using Layered Conceptual Graphs

Madalina Croitoru, Ernesto Compatangelo, and Chris Mellish

Department of Computing Science, University of Aberdeen
King’s College, Aberdeen, AB243UE

Abstract We describe the ‘Hierarchical as View’ approach to knowl-
edge integration from heterogeneous sources. This is based on a novel
representation called Layered Conceptual Graphs (LCGs), a hierarchical
extension of conceptual graphs that address interoperability issues.
We introduce LCGs on the basis of a new graph transformation system,
which could be an appropriate hierarchical graph model for applications
that require consistent transformations. We highlight a new type of ren-
dering based on the additional expansion of relation nodes.
Both the querying and integration capabilities of our approach are based
on projection, an operation also defined for simple conceptual graphs.
Integration is performed in a way that neither depends on the order in
which the sources are combined nor on their physical availability.

1 Introduction

Combining implicit information, a knowledge integration system offers answers to
queries that none of the isolated sources can answer on their own. Of course, the
extent to which this is possible explicitly depends on the reasoning capabilities
of the formalism used to represent the (combined) knowledge sources.

The typical architecture of global information systems consists of one well-
designed global domain that integrates a number of wrapped sources. The in-
tegration process has been often performed describing the data sources as con-
taining answers to views over the global schema. This first kind of approach,
exemplified by the TSIMMIS system [1], is known as ‘Global-As-View’ (GAV).
The integration process has also been performed by describing the mediated
schema as containing answers to views over source relations. This second kind of
approach, exemplified by the Information Manifold [2], is known as ‘Local-As-
View’ (LAV).

While the LAV approach allows new sources to be added and removed in a
modular manner, the GAV approach requires source descriptions to be modified
when such changes occur. Consequently, query answering is straightforward in
GAV-based systems, as the answers can be obtained by simply composing the
query with the views. However, LAV-based systems require a more sophisticated
form of query rewriting. An approach called ‘Both As View’, which is based on
the use of reversible schema transformation sequences, was thus proposed in the
Automed project [3] to combine the best of both the GAV and LAV worlds.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 267–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

268 Madalina Croitoru, Ernesto Compatangelo, and Chris Mellish

In this paper, we present a formal approach to knowledge integration where
the representation formalism is based on an extension of Conceptual Graphs
(CGs for short). We denote such extension, which enables the creation of a
hierarchical structure of CGs, a Layered Conceptual Graph (LCG for short). The
hierarchical structure of LCGs is obtained by building a new layer every time
new sources are integrated into the existing LCG. The alignment/articulation
issues induced by overlapping knowledge are addressed by means of constraints
encoded in the conceptual representation.

We introduce layered conceptual graphs in order to formalise a novel ap-
proach to knowledge integration called ‘Hierarchical as View’ (HAV for short).
This allows for the easy addition of data sources as well as fast querying, ex-
ploiting the benefits of the Both as View approach in a structured way.

The presentation is structured as follows. Section 2 introduces the notion of
layered conceptual graph and explain how LCGs are used to perform hierarchical
integration. Section 3 formally describes LCGs. Section 3.2 analyses the projec-
tion operation for LCGs. Section 3.3 specifies the semantics of LCGs. Since this
paper presents ongoing work, in section 4 we discuss the applications of LCGs
from the interoperability perspective along with the further formalisation and
practical issues to be addressed in the future.

2 Integration with Layered Conceptual Graphs

A simplified example of our knowledge integration approach based on hierarchi-
cal conceptual graphs is shown in Figure 1. At each level, several data sources

18

V2

S5 S6 S7 S8

V1

S4

S1 S2
S3

V3

Fig. 1. Hierarchical architecture for integration

Hierarchical Knowledge Integration Using Layered Conceptual Graphs 269

are depicted as small squares, while different articulation views are depicted as
rectangles. The bidirectional links between sources and views represent pointers
used for navigation. Due to the nature of the formalism employed, the final in-
tegration structure will not depend on the order of the sources to be integrated.
Moreover, several sources can be integrated at the same time.

Whenever a new source is added to the existing structure, both the factual
and ontological knowledge of the sources must be combined with those of the ex-
isting integrated structure. One way of solving such problem uses articulation [4].
Articulation is performed by linking two concepts that represent approximately
the same notion and adding a node that denotes the two related concepts in the
articulation. The new node and the link between the two concepts are collec-
tively denoted as articulation rules. Together with the two data sources, these
rule compose the articulation of the data sources.

For instance, let us consider Figure 2, originally introduced in the context of
the ONION articulation system [5]. Here, the two graphs Carrier and Factory

Transportation

Cars Trucks

Driver

Price

Owner

Model

Carrier

Transportation

Goods Vehicle

Weight

CargoCarrier

Buyer Price

TruckFactory

Fig. 2. The graphs describing two ontologies, Carrier and Factory

represent two simplified source ontologies, while the integration graph Trans-
portation shown in Figure 3 represents their possible articulation.

The data structure discussed in this paper, namely Layered Conceptual
Graphs (LCGs for short) is a rigorously defined representation formalism evolved
from conceptual graphs [6]. We have introduced this new data structure to ad-
dresses the inherent ontological and factual issues of hierarchical integration.
This allows us to highlight a new type of rendering based on the additional
expansion of relation nodes. The idea of a detailed context of knowledge can
be traced back to the definition of Simple Conceptual Graphs (SCGs) [6], to
the work of [7] and to the definition of the more elaborate Nested Conceptual
Graphs [8]. The querying capabilities associated with our approach are supported
by the logically sound projection operation, which is defined between SCGs and

270 Madalina Croitoru, Ernesto Compatangelo, and Chris Mellish

Transportation

CarsTrucks

Person

Price
PassengerCar

Owner

VehicleCargoCarrier

Carrier Factory

Transportation

Fig. 3. The articulation ontology Transportation

LCGs. The difference between Layered Conceptual Graphs and Nested Graphs
is due to the fact that nested graphs do not address the description of relations
between the “zoomed” knowledge and its context. The nodes’ context in nested
graphs allows transition between conceptual graphs but the overall conceptual
structure is no longer a properly defined bipartite graph.

3 Formalising Layered Conceptual Graphs

In this section we give the full mathematical definitions of the structures em-
ployed to perform integration, showing that our formalism meets the method-
ological requirements of such integration framework.
A bipartite graph is a graph G = (VG, EG) with the nodes set VG = VC ∪ VR,
where VC and VR are finite disjoint nonempty sets, and each edge e ∈ EG is a
two element set e = {vC , vR}, where vC ∈ VC and vR ∈ VR. Usually, a bipartite
graph G is denoted as G = (VC , VR;EG). We call G∅ the empty bipartite graph
without nodes and edges.

Let G = (VC , VR;EG) be a bipartite graph. The number of edges incident to
a node v ∈ V (G) is the degree, dG(v), of the node v. If, for each vR ∈ VR there
is a linear order e1 = {vR, v1}, . . . , ek = {vR, vk} on the set of edges incident
to vR (where k = dg(v)), then G is called an ordered bipartite graph. A simple
way to express that G is ordered is to provide a labelling l : EG → {1, . . . , |VC |}
with l({vR, w}) = index of the edge {vR, w} in the above ordering of the edges
incident in G to vR. l is called a order labelling of the edges of G. We denote an
ordered bipartite graph by G = (VC , VR;EG, l).

Hierarchical Knowledge Integration Using Layered Conceptual Graphs 271

For a vertex v ∈ VC ∪ VR, the symbol NG(v) denotes its neighbours set, i.e.
NG(v) = {w ∈ VC ∪ VR|{v, w} ∈ EG}. Similarly, if A ⊆ VR ∪ VC , the set of
its neighbours is NG(A) = ∪v∈ANG(v) − A. If G is an ordered bipartite graph,
then for each r ∈ VR, the symbol N i

G(r) denotes the i-th neighbour of r, i.e.
v = N i

G(r) if and only if {r, v} ∈ EG and l({r, v}) = i.
Throughout this paper we use a particular type of subgraph of a bipartite

graph: G1 = (V 1
C , V 1

R;E1
G) is a subgraph of G = (VC , VR;EG) if V 1

C ⊆ VC ,
V 1

R ⊆ VR, NG(V 1
R) ⊆ V 1

C and E1
G = { {v, w} ∈ EG|v ∈ V 1

C , w ∈ V 1
R}. In other

words, we require that the (ordered) set of all edges incident in G to a vertex
from V 1

R must appear in G1. Therefore, a subgraph is completely specified by its
vertex set. In particular, if A ⊆ VC :

– The subgraph spanned by A in G, denoted as $A%G, has VC($A%G) = A ∪
NG(NG(A)) and VR($A%G) = NG(A).

– The subgraph generated by A in G, denoted as &A'G, has VC(&A'G) = A
and VR(&A'G = {v ∈ NG(A)|NG(v) ⊆ A} .

– For A ⊆ VR, the subgraph induced by A in G, denoted [A]G, has VC([A]G) =
NG(A) and VR([A]G) = A .

3.1 Layered Conceptual Graphs

The simple conceptual graphs are defined following the work of [9].

Definition 1. A support is a 4-tuple S = (TC , TR, I, ∗) where:

– TC is a finite partially ordered set (poset), (TC ,≤), of concept types, defining
a type hierarchy which has a greatest element �C , namely the universal type.
In this specialisation hierarchy, ∀x, y ∈ TC the symbolism x ≤ y is used to
denote that x is a subtype of y.

– TR is a finite set of relation types partitioned into k posets (T i
R,≤)i=1,k of

relation types of arity i (1 ≤ i ≤ k), where k is the maximum arity of a
relation type in TR. Moreover, each relation type of arity i, r ∈ T i

R, has
an associated signature σ(r) ∈ TC × . . . × TC︸ ︷︷ ︸

i times

, which specifies the maximum

concept type of each of its arguments. This means that if we use r(x1, . . . , xi),
then xj is a concept with type(xj) ≤ σ(r)j (1 ≤ j ≤ i). The partial orders
on relation types of the same arity must be signature-compatible, i.e. it must
be such that ∀r1, r2 ∈ T i

R r1 ≤ r2 ⇒ σ(r1) ≤ σ(r2).

– I is a countable set of individual markers, used to refer specific concepts.

– ∗ is the generic marker to denote an unspecified concept (with a known type).

– The sets TC, TR, I and {∗} are mutually disjoint and I ∪ {∗} is partially
ordered by x ≤ y if and only if x = y or y = ∗.

272 Madalina Croitoru, Ernesto Compatangelo, and Chris Mellish

Definition 2. A simple conceptual graph is a 3-tuple SG = [S,G, λ], where:

– S = (TC , TR, I, ∗) is a support;

– G = (VC , VR;EG, l) is an ordered bipartite graph;

– λ is a labelling of the nodes of G with elements from the support S:
∀r ∈ VR, λ(r) ∈ T

dG(r)
R ; ∀c ∈ VC , λ(c) ∈ TC ×

(
I ∪ {∗}

)
such that

if c = N i
G(r), λ(r) = tr and λ(c) = (tc, refc), then tc ≤ σi(r).

Acyclic digraph
representing (T ,<)

Acyclic digraph
representing (T ,<)

C

R

Conceptual graphs
describing a source

Fig. 4. A simple conceptual graph

An example of simple conceptual graph is shown in Figure 4. As suggested,
a SCG provides a semantic set of pointers to two ontologies. This is the starting
point of our research, in which we view an articulation as a semantic provider
of pointers to sources like those portrayed in Figure 5.

In this paper the sources are represented as conceptual graphs. Therefore, in
Figure 5 the squares and the ovals represent concept and relation nodes. These
nodes can either be simple or complex as we will show in the next definitions. If
the data sources are expressed by the means of other formalisms(e.g. RDF, OWL
etc), then the sources “schema” will be represented using a CG like language,
and the interaction between the sources and the integration system will be done
by the means of a wrapper.

The pointers depicted in Figure 5 can either address the sources or a new
hierarchy which is specific for this level of integration. In this new hierarchy, we
added several new ‘artificial’ concepts that will be used for integration.

Note that we have associated a separate formal hierarchy, which belongs to
the integrations structure as a whole, to those relations that have been specif-
ically introduced for integration purposes. This relations were denoted as ‘se-
mantic bridges’ in the ONION articulation system [5]. However, in our opinion

Hierarchical Knowledge Integration Using Layered Conceptual Graphs 273

S1
S2

ArtCG

Art
T c Art

T
 R

(semantic bridges)

Fig. 5. Articulation principle

semantic bridges in ONION are not detailed enough. Conversely, we think that
our hierarchy of integration relations makes semantic bridges easier to under-
stand and to use from both navigational and reasoning viewpoints [10].

At each level, we highlight the specific support for that level; this support
changes from level to level. In order to formalise this transition, we introduce
a new concept, namely transitional description. This also facilitate the formal
definition of Layered Conceptual Graphs. Note that transitional descriptions are
not ‘rules’, as referred in the conceptual graphs literature.

Definition 3. Let G = (VC , VR;EG) be a bipartite graph. A transitional de-
scription associated to G is a pair T D = (D, (G.d)d∈D∪NG(D)) where

– D ⊆ VC is a set of complex nodes.
– For each d ∈ D ∪ NG(D) G.d is a bipartite graph.

– If d ∈ D then G.d is the description of the complex node d. Distinct complex
nodes d, d′ ∈ D have disjoint descriptions G.d ∩ G.d′ = G∅.

– If d ∈ NG(D) then either G.d = G∅ or G.d �= G∅ and, in this case, NG(d)−
D ⊆ VC(G.d) and VC(G.d) ∩ VC(G.d′) �= ∅ if and only if d′ ∈ NG(d) ∩ D.

Definition 4. If T D = (D, (G.d)d∈D∪NG(D)) is a transitional description asso-
ciated to the bipartite graph G = (VC , VR;EG), then the graph T D(G) obtained
from G by applying T D is constructed as follows:

274 Madalina Croitoru, Ernesto Compatangelo, and Chris Mellish

PassengerCar

owner

CarTruck

has1

has2

cars

price

ownerP

has

SameAsG

Vehicle

vehicle

buyer
has

truck

hasmodel

ownerC

vehicle
SameAs

cars

buyer
SameAs

ownerP

owner

ownerP

SameAs

G.vehicle

G.PassengerCar

G.CarTruck

G.SameAsG

G.has1

G

vehicle buyer cars price ownerP

hashas

owner truck model ownerC

has

SameAs SameAs SameAs

owner
requires

ownerC

ExtraLicence

G.has2

ExtraLicence

requiresTD(G)

Fig. 6. LCG example

1. Take a new copy of &VC − D'G.

2. For each d ∈ D, take a new copy of the graph G.d and make the disjoint
union of it with the current graph constructed.

3. For each d ∈ NG(D), identify the nodes of G.d which are already added to
the current graph (i.e. the atomic nodes of G that are neighbours of d and
the nodes of G.d′ which appear in G.d). For each complex neighbour d′ of
d in G, add the remaining nodes of G.d as new nodes in the current graph
and link all these nodes by edges as described in G.d (in order to have an
isomorphic copy of G.d as a subgraph in the current graph).

Figure 6 suggests how transitional descriptions can be applied for the real
world example introduced in Figure 3. The conceptual graph notations used are
not rigourously depicted (e.g. generic markers, labelled edges, support details)
the purpose of this picture being to highlight the benefits of a hierarchical ap-
proach. The graph G has VC = {V echicle, PassengerCar, owner, CarT ruck},
VR = {SameAsG, has1, has2} and the set of complex nodes from VC (shown
as bold rectangles) is D = {V echicle, PassengerCar, CarT ruck}. The complex
relations are SameAsG, has1 and has2. In the description of G.has2, a new node
appears besides already existing nodes.

Proposition 1. If G = (VC , VR;EG) is a bipartite graph and T D is a transi-
tional description associated to G, then the graph T D(G) obtained from G by
applying T D is also a bipartite graph.

Hierarchical Knowledge Integration Using Layered Conceptual Graphs 275

Definition 5. Let SG = [S,G, λ] be a simple conceptual graph, where G =
(VC , VR;EG, l). A transitional description associated to SG is a pair T D =
(D, (SG.d)d∈D∪NG(D)) where:

– D ⊆ VC is a set of complex nodes.

– For each d ∈ D ∪ NG(D), SG.d = [S.d,G.d, λ.d] is a SCG.

– If d ∈ D, then SG.d is the description of the complex node d. Distinct
complex nodes d, d′ ∈ D have disjoint descriptions G.d ∩ G.d′ = G∅.

– If d ∈ NG(D), then either G.d = G∅ or G.d �= G∅. In this case, NG(d)−D ⊆
VC(G.d) and VC(G.d) ∩ VC(G.d′) �= ∅ for each d′ ∈ NG(d) ∩ D. Moreover,
Sd ⊇ S ∪d′∈NG(d) Sd′ , λ.d(v) = λ(v) for v ∈ NG(d)−D and λ.d(v) = λ.d′(v)
for v ∈ VC(G.d) ∩ VC(G.d′).

Note that if G.d = G∅ for d ∈ NG(D), we have no description available
for relation vertex d. This either depends on a lack of information or on an
inappropriate expounding. The idea traces back to the notion of context in [6]
or to the more elaborate notion of nested conceptual graph [11]. However, as our
approach is not just a diagrammatic representation, the bipartite graph structure
is taken into account.

Definition 6. If T D = (D, (SG.d)d∈D∪NG(D)) is a transitional description as-
sociated to the SCG SG = [S,G, λ], then the SCG T D(SG) obtained from SG
by applying T D is T D(SG) = [S′, T D(G), λ′]. Here, T D(G) is the bipartite
graph T D(G) obtained from G by applying T D, S′ = ∪d∈D∪NG(D)S.d and λ′

is any legal labelling function defined on V (T D(G)) which preserves the labels
given to the vertices in V (G) and V (G.d) for all v ∈ D ∪ NG(D).

Using proposition 1, we can verify that T D(SG) is a simple conceptual graph.
Note that last condition in definition 5 (concerning the support of a SCG that
describes a relation vertex adjacent to at least one complex concept vertex) states
that we have all the information which is needed to express the ontological and
factual details which appear in this description.

The inclusion Sd ⊇ S ∪d′∈NG(d) Sd′ is conceived only as an availability of
concept and relation types concerned. Moreover, the above union is a semantic
union and problems related to compatibility (i.e. ontology alignment and/or
matching [4]) must be solved by suitable constraints added in the SCG SG.d.
The support of T D(SG), S′ contains the supports of all the SCGs that describe
the complex nodes from D. We denote these as remote supports, which are
located in the sources of T D(SG). The remaining S′ −∪d∈DS.d contains S, the
support of SG, and all the above mentioned ontological information needed to
establish semantic bridges between sources. The latter kind of support is called
the articulation support of T D(SG).

Definition 7. Let d a non-negative integer. A layered conceptual graph (LCG)
of depth d is a family LG =

〈
SG0, T D0, . . . , T Dd−1

〉
where:

– SG0 = [S0, (V 0
C , V 0

R;E0), λ0)] is a SCG,

– T D0 is a transitional description associated to SG0,

276 Madalina Croitoru, Ernesto Compatangelo, and Chris Mellish

– for each k, 1 ≤ k ≤ d − 1, T Dk is a transitional description associated to
SGk = [Sk, (V k

C , V k
R ;Ek), λk)] = T Dk−1(SGk−1).

SG0 is the base simple conceptual graph of the layered conceptual graph LG and
SGk = T Dk−1(SGk−1) (k = 1, . . . , d), are its layers.

In other words, if we have a interconnected world described by a SCG and if
we can provide details about both some complex concepts and their relationships,
then we can construct a second level of knowledge about this world, describing
these new details as conceptual graphs and applying the corresponding substi-
tutions. This process can be similarly performed with the last constructed level,
thus obtaining a coherent set of layered representations of the initial world. The
informal example in Figure 5 can be easily expressed as a LCG of depth 1.

We can define substructures of the LCG model which can be useful to devise
a customisable and versatile functionality that deals with large graph structures.

Definition 8. If LG1 = {LG0
1, . . . , LGd1

1 } and LG2 = {LG0
2, . . . , LGd2

2 } are
two LCGs on a common support, then LG2 is a layered conceptual subgraph
(LC subgraph) of LG1 if d2 ≤ d1 and ∃k, 0 ≤ k ≤ d1 − d2, such that for all
i ∈ {0, . . . , d2}: Gi

2 is a subgraph of Gk+i
1 , Di

2 ⊆ Dk+i
1 and G2.d is a subgraph of

G1.d for each d ∈ Di
2 ∪ NGi

2
(Di

2).

A simple way to obtain a layered conceptual subgraph of a given LCG, namely
LG = {LG0, . . . , LGd}, is to consider an interval [l..k] ⊆ [0..d], setting Dk ← ∅;
the resulting layered conceptual subgraph is then denoted as LG[l..k].

For integration applications, it is interesting to consider the following par-
ticular type of LC subgraph. If for each level k, 0 ≤ k ≤ d − 1, of the LCG
LG = {LG0, . . . , LGd}, a set FDk of forbidden descriptions is provided, then
LG−∪d−1

k=0FDk is the LC subgraph of LG obtained by replacing Dk ← Dk−FDk

in each T Dk. The construction of the LC subgraph can be performed either in a
top-down or in a bottom-up way, depending on how the forbidden descriptions
(i.e. the not available sources) are provided.

3.2 Reasoning with Layered Conceptual Graphs

Projection [6] is the fundamental operation on simple conceptual graphs, since it
can be used to define a pre-order on the set of SCGs based on the same support.

If SG = (G, λG) and SH = (H,λH) are two SCGs defined on the same
support S, then a projection from SG to SH is a mapping

Π : VC(G) ∪ VR(G) → VC(H) ∪ VR(H) such that:

– Π(VC(G)) ⊆ VC(H) and Π(VR(G)) ⊆ VR(H);

– ∀c ∈ VC(G), ∀r ∈ VR(G) if c = N i
G(r) then Π(c) = N i

H(Π(r));

– ∀v ∈ VC(G) ∪ VR(G) λG(v) ≥ λH(Π(v)).

Hierarchical Knowledge Integration Using Layered Conceptual Graphs 277

If there is a projection SG → SH , then SG subsumes SH (i.e. SG ≥ SH).
This subsumption relation is a pre-order on the set of all SCGs defined on the
same support. Subsumption checking is an NP-complete problem [9].

Projection can be extended to LCGs; however, with knowledge integration
in mind, we only consider the case where queries are SCGs.

Definition 9. A descending path of length k in the layered conceptual graph
LG =

〈
SG0, T D0, . . . , T Dd−1

〉
is a sequence P = v0, . . . , vk (k ≤ d),where

vi ∈ V (SGi) and, for each i, 1 ≤ i ≤ k, condition vi ∈ V (G.vi−1) holds. The
last vertex of P is denoted as end(P). Moreover k, i.e. the length of P , is denoted
by length(P). The set of all descending paths of LG is referred as P(LG).

Definition 10. Let LG =
〈

SG0, T D0, . . . , T Dd−1
〉

be a layered conceptual
graph of depth d and SQ = (SQ, Q, λQ) be a SCG such that SQ ⊆ ST Dd .
A projection from SQ to LG is a mapping Π : VC(Q) ∪ VR(Q) → P(LG) such
that ∀v ∈ V (Q), if Π(v) = Pv:

– if v ∈ VC(Q), then end(Pv) ∈ VC(SGlength(Pv)) − Dlength(Pv) and
if v ∈ VR(Q) then end(Pv) ∈ VR(SGlength(Pv)) − NSGlength(Pv)(Dlength(Pv));

– ∀c ∈ VC(Q), ∀r ∈ VR(Q) if c = N i
G(r), then length(Pc) ≤ length(Pr)

and for each v on Pr at distance k from the start vertex of Pr such that
length(Pc) ≤ k ≤ length(Pr), we have N i

SGk(v) = end(Pc).

– ∀v ∈ VC(Q) ∪ VR(Q), λG(v) ≥ λSGlength(Pv)(end(Pv)).

If there is projection from SQ to LG, then SQ subsumes LG (SQ ≥ LG). With
our integration objectives in mind, we preferred this (algorithmic, but somehow
cumbersome) definition of projection, which mimics the GAV navigation through
the mediated (i.e. articulated) schema.

3.3 Layered Conceptual Graph Semantics

The semantics associated with layered conceptual graphs are based on the se-
mantics of conceptual graphs. A semantics Φ is provided which maps each SCG
G based on a support S into a first order logic formula Φ(G) [6]. This is such that
if Φ(S) is the set of formulas associated to the support S, then for any two simple
conceptual graphs G and H defined on S, if G ≥ H then Φ(S), Φ(H) |= Φ(G)
(soundness). Completeness, i.e. the fact that if Φ(S), Φ(H) |= Φ(G) then G ≥ H ,
holds only if H is in normal form. In other words, it only holds if each individual
marker appears at most once in concept node labels.

In our layered conceptual graphs formalism, we plan to use an extension of
the semantics Ψ introduced in [8], for which projection is sound and complete
with respect to first order logic without any restriction.

If S = (TC , TR, I, ∗) is a support, then a constant is assigned to each in-
dividual marker from I, a binary predicate is assigned to each concept type
from TC , and an n-ary predicate is assigned to each relation type of arity n
from T n

R. For sake of simplicity, each constant or predicate has the same name

278 Madalina Croitoru, Ernesto Compatangelo, and Chris Mellish

as the support element it is associated to. Hence, if t ∈ TC , then the binary
predicate t(y, x) holds. Intuitively, this means that the concept represented by
node x is y and that its type is t. A set of formulae Ψ(S), which corresponds
to the interpretation of the partial orderings of TC and TR, is associated to S.
For all t, t′ ∈ TC such that t ≥ t′, formula Ψ(t, t′) = ∀x∀y(t′(x, y) → t(x, y)) is
added to Ψ(S). Moreover, for all t, t′ ∈ T n

R such that t ≥ t′, formula Ψ(t, t′) =
∀x1 . . .∀xn(t′(x1, . . . , xn) → t(x1, . . . , xn)) is added to Ψ(S). This can be viewed
as a single formula by taking the conjunction of all formulas introduced in it.
Any simple conceptual graph G based on the support S is translated by Ψ into
a formula Ψ(G) constructed as follows.

– Firstly, to each concept node c ∈ VC a variable xc is assigned.

– Afterwards, for each relation node r ∈ VR with type(r) = tr, degree p and
N i

G(r) = ci, i = 1, . . . , p, the atom Ψ(r) = tr(xc1 , . . . , xcp) is constructed.

The atom Ψ(c) = tc(yc, xc) is associated to each concept node c ∈ VC with
type(c) = tc. Here, xc is the variable associated to the node c and yc is a term
built using the following rule:

If the marker of c is an individual marker, then yc is the constant asso-
ciated to this marker and if c has a generic marker in G, then yc is a
(distinct) new variable.

If VC = {c1, . . . , cn} and m of these concept nodes have generic markers, then

Ψ(G) = ∃xc1 . . .∃xcn∃y1 . . .∃ym(∧n
i=1Ψ(ci) ∧ ∧r∈VRΨ(r))

The semantics Ψ∗ of layered conceptual graphs is an inductive extension of
the semantics Ψ of conceptual graphs. Let LG =

〈
SG0, T D0, . . . , T Dd−1

〉
be

a LCG and SLG = (TC , TR, I, ∗) be the union of the supports of its levels. A
constant is assigned to each individual marker from I, a ternary predicate is
assigned to each concept type from TC , and an n + 1-ary predicate is assigned
to each relation type of arity n from T n

R. As stated above, each constant or
predicate has the same name as the element of the support it is associated to. If
t ∈ TC , then the ternary predicate t(x, y, z) holds. Intuitively, this means that
(i) at level x, y is a concept vertex, (ii) the concept represented by this vertex is
z, and (iii) its type is t. Similarly, if t ∈ T n

R, then predicate t(x, z1, . . . , zn)holds.
This means that (i) a relation vertex on the level x exists and that (ii) the
relation represented by this vertex is t(z1, . . . , zn).

The set of formulae Ψ∗(SLG) is obtained as above, with the exception that
the predicates associated to concept types became ternary ones in this case.

Formula Ψ∗(LG) associated by Ψ∗ to the LCG LG is constructed as follows.
Let xk, where 0 ≤ k ≤ d−1, be the variables that represent the levels. Moreover,
let Ψ∗(SGk) be the formula obtained from Ψ(SGk) by adding xk as the first
argument of each member predicate. Then,

Ψ∗(LG) = ∃x0∃x1 . . .∃xd−1(∧d−1
k=0Ψ

∗(SGk))

Hierarchical Knowledge Integration Using Layered Conceptual Graphs 279

Using the corresponding result on conceptual graphs [8] and the definition of
a transitional system, it can be proven that projection (as defined in the previous
subsection) is sound and complete with respect to Ψ∗: SQ ≥ LG if and only if

Ψ∗(SLG), Ψ∗(LG) |= Ψ∗(SQ)

Since the semantics of LCGs are similar to the semantics of nested graphs
a few words to compare the two formalisms are necessary. Transitional descrip-
tions for LCGs are a syntactical device which allows a successive construction
of bipartite graphs. The knowledge detailed on a level of a hierarchy is put in
context by using descriptions for relation nodes as well, while nested graphs
only detail the concept nodes. Nested Graphs can be viewed as a particular in-
stance of layered conceptual graphs when a complex relation description is the
empty graph. From a semantic point of view, the logical variables that appear
in the formula associated to LCGs are level related, and not context related like
in nested graphs. We can say that while nested graphs provide a set of local
contexts, layered conceptual graphs provide a global context for each level.

4 Discussion and Further Work

Data integration approaches must to find structural transformations and seman-
tic mappings that lead to the correct merge of information and that allow users
to query the so-called mediated schema. Articulation as a integration mechanism
provides a valid solution for creating these semantic mappings.

We introduce a representation formalism that is suitable for the hierarchical
integration of knowledge. The set of requirements for knowledge representation
formalisms must include (i) the existence of a declarative semantics, (ii) a logical
foundation, and (iii) the possibility of representing structured knowledge [12].
Our representation structures fulfil all these conditions in a formal way.

This paper presented ongoing work on the formalisation of layered conceptual
graphs. These are defined on the basis of a new graph transformation system,
which could also be an appropriate hierarchical model for real world applications
that require consistent transformations such as hypermedia models.

The introduction of layered conceptual graphs is motivated by the develop-
ment of an integration approach that performs combination in a structured way.
However (as discussed in the previous section) several practical and algorithmic
issues still need to be addressed before an implementation can be effectively fi-
nalised. A possible priority will be a methodology for the semantic integration
of the different source supports.

The definition of layered conceptual subgraphs allows the run-time adapta-
tion of the cropped mediated schema. This portion is only addressing the user
needs and rights, thus reducing the search space in practical cases. Its construc-
tion relates to the Local-As-View integration methodology. Reasoning mimics
the Global-As-View approach since is based on hierarchical projection.

280 Madalina Croitoru, Ernesto Compatangelo, and Chris Mellish

References

[1] Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y.,
Ullman, J.D., Vassalos, V., Widom, J.: The TSIMMIS approach to mediation:
Data models and languages. Journal of Intelligent Information Systems 8 (1997)
117–132

[2] Levy, A.: The Information Manifold Approach to Data Integration. Intelligent
Systems 13 (1998) 12–16

[3] Jasper, E., Tong, N., Brien, P.M., Poulovassilis, A.: Generating and optimising
views from both as view data integration rules. Proc. of the 6th Baltic Conf. on
Database and Information Systems (2004)

[4] Mitra, P., Wiederhold, G., Decker, S.: A scalable framework for the interopera-
tion of information sources. In: Proc. of the 1st Semantic Web Working Symp.
(SWWS’01). (2001) 317–329

[5] Mitra, P., Wiederhold, G., Kersten, M.L.: A Graph-Oriented Model for Ar-
ticulation of Ontology Interdependencies. In: Proc. of the VII Conf. on Ex-
tending Database Technology (EDBT’2000). Lecture Notes in Computer Science,
Springer-Verlag (2000) 86–100

[6] Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley (1984)

[7] Esch, J., Levinson, R.: An implementation model for contexts and negation in
conceptual graphs. In Ellis, G., Levinson, R., Rich, W., Sowa, J.F., eds.: Proc. of
the 3rd Int’l Conf. on Conceptual Structures (ICCS’95). Volume 954 of Lecture
Notes in Computer Science., Springer (1995) 247–262

[8] Chein, M., Mugnier, M.L., Simonet, G.: Nested Graphs: A Graph-based Knowl-
edge Representation Model with FOL Semantics. In Cohn, A.G., Schubert, L.K.,
Shapiro, S.C., eds.: in Proc. of the 8th Int’l Conf. on the principles and Knowledge
Representation and Reasoning (KR’98), Morgan Kaufmann (1998) 524–535

[9] Chein, M., Mugnier, M.L.: Conceptual graphs: Fundamental notions. Revue
d’Intelligence Artificielle 6-4 (1992) 365–406

[10] Compatangelo, E., Croitoru, M.: Domain knowledge articulation using integra-
tion graphs. In: in Proc. of the Eurolan W.shop on Ontologies and Information
Extraction. (2003) 45–55

[11] Chein, M., Mugnier, M.L.: Positive nested conceptual graphs. In Lukose, D.,
Delugach, H.S., Keeler, M., Searle, L., Sowa, J.F., eds.: Proc. of the 5th Int’l Conf.
on Conceptual Structures (ICCS’97). Volume 1257 of Lecture Notes in Computer
Science., Springer (1997) 95–109

[12] Baader, F.: Logic-based knowledge representation. In: Artificial Intelligence To-
day, Recent Trends and Developments. Number 1600 in Lecture Notes in Com-
puter Science (1999) 13–41

Evaluation of Concept Lattices in a Web-Based

Mail Browser

Shaun Domingo and Peter Eklund

School of Economics and Information Systems
The University of Wollongong

Northfields Avenue, Wollongong, NSW 2522, Australia
sdom@advanced-stocktaking.com, peklund@uow.edu.au

Abstract Concept lattices assist human understanding in three ways:
firstly, by collecting formal concepts that contain maximal sets of objects
with shared attributes; secondly, the relatedness of concepts is revealed
by providing a hierarchy of formal concepts in the information space.
Finally, the concept lattice (drawn as a line diagram) reveals inferences
that can automatically derive association rules. Therefore, a major hy-
pothesis of the application of concept lattices is that they visually assist
in understanding the structure of information contained within an infor-
mation space. However, there has been little in the way of empirical tests
to substantiate this hypothesis. This paper describes the process and re-
sults of a usability evaluation for a program called Mail-Strainer, a
Web-based variant of the Mail-Sleuth program, which in turn is based
on the Conceptual Email Manager (Cem).

1 Introduction

This paper presents software with a design methodology that places Formal
Concept Analysis (FCA) as the core navigation and visualisation aid to manage
Web-based email. The hypothesis is that if users are able to read and understand
the Mail-Strainer line diagram, then the program serves as an appropriate
tool to manage Webmail. In so far as Mail-Strainer is a authentic imple-
mentation of concept lattices for information visualisation, its evaluation can be
used to draw conclusions about the ability of novice FCA users to interpret line
diagrams.

The paper is presented in two parts. The first looks at the development of an
open source Web-mail implementation based on SquirrelMail [1]: the resulting
FCA Web-mail environment is called Mail-Strainer. To gauge how true an
implementation Mail-Strainer is of FCA, we need to understand its pedigree.
This description of the Mail-Strainer is intended to convince the reader it
is an authenticate FCA implementation. The second part of the paper includes
the presentation of results from a usability study with 16 University students.
The conclusions drawn about the information visualisation aspects of Mail-
Strainer are used to infer conclusions about the ease of use and readability of
concept lattices by an audience untrained in Formal Concept Analysis (FCA).

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 281–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

282 Shaun Domingo and Peter Eklund

Fig. 1. A screenshot of the MailStrainer program showing the re-used elements of the
flash-lattice drawing program (center) and a multiple inheritance tree-widget on the right.
On the left are typical Webmail controls such as those used in Mirapoint. MailStrainer
is built on top of the open-source SquirrelMail program and is a concept lattice-based
Webmail environment.

2 Background and Survey: Email Management and FCA

Email management is a specific type of knowledge management problem. It is a
sub-class of document management in that the typical methodologies for index-
ing, searching and modifying documents are employed. It differs from document
management in that the task of processing email is based on a single identifi-
able process – namely, retrieving and browsing email in a single context. The
research described in this paper looks at the issue of Email Management with
this in mind.

Cole and Stumme [8] describe a technique for organizing email to be searched
and browsed with a central visual concept lattice component. In a series of papers
by Cole, Eklund and Stumme [8, 9, 6, 7], the authors show how a concept lattice
can be used to navigate text document collections. More generally, information
retrieval systems based on concept lattices have been experimentally evaluated
in Godin et al [11] and Carpineto and Romano [2, 3] who have shown that the
FCA-based technique is useful for document browsing and discovery.

Evaluation of Concept Lattices in a Web-Based Mail Browser 283

2.1 MailStrainer Objectives

Web-based mail (Webmail) is a popular client type for email. The hypothesis
of this research is that if it is possible to build a Webmail interface using con-
cept lattices: if users then understand how to examine concept lattices it follows
that they will have a greater likelihood to search, browse and manage email
in the Web-based context. One aim is to engineer an interactive environment
for searching and browsing email in a Web-based context. The work therefore
extends research carried out by Cole et al. [7], applying concept lattices as a
lightweight visualisation package and applying a virtual file structure for man-
aging email in an open-source, server-side environment. The functionality of a
Conceptual Email Manager (Cem) [7] from a user’s perspective is to:

1. retrieve previously stored emails – in a visual and logically clustered way;
2. discover knowledge in the email collection – to find collections of emails the-

matically linked and discover patterns of communication between different
groups or to detect frequently recurring topics.

From an implementation perspective, the system functionality is to:

1. engineer a method for indexing mailboxes, via a protocol such as IMAP, and
determine how to integrate the Mail-Strainer framework into an open-
source Webmail package;

2. adapt the existing implementation of the concept lattice in the parent pro-
gram – Mail-Sleuth – and apply it to a Web-based context, examining the
index structures built in point 1.;

3. create the necessary navigational structures required to mimic the Mail-
Sleuth (Cem) folder structure presented through a traditional tree widget.

2.2 FCA and Information Retrieval

In [4], Carpineto and Romano present an overview on Information Retrieval
using Formal Concept Analysis (FCA). In applying FCA to the domain of email
management (or document retrieval systems in general), we consider documents
to be the objects, and a set of index-terms or keywords to be the attributes
that describe a particular email or document. A concept within the domain of
such a system would consist of a subset of the documents and a subset of the
index-terms. Cole and Eklund [5] report that previous applications that have
made use of FCA for Information Retrieval can be divided into two categories:
(i) those that generate a large concept lattice, the number of concepts is roughly
the square of the number of documents; (ii) those that use conceptual scaling
and/or object zooming to reduce computational and display complexity.

Carpineto and Romano [4] explain that automatic generation of index terms
can be done in several ways. While “full-text retrieval is easily handled by most
statistical information retrieval systems, it is not practical for concept lattice-
based applications, for which we need to generate a restricted set of terms”.
To overcome this problem they suggest that a five step approach involving text

284 Shaun Domingo and Peter Eklund

segmentation, word stemming, stop wording, word weighting (based on term fre-
quency) and word selection, i.e. using some heuristic threshhold with which to
select the index terms (attributes) with the highest weighting.

Cole and Stumme [8] describe the process of creating a Hierarchy of Classi-
fiers for an email knowledge base. This Hierarchy of Classifiers is based on partial
order theory, and allows a series of catchwords to be associated with an email.
Further, the Hierarchy of Classifiers allows a specific ordering of these catchwords
implied by the user’s search query. The Hierarchy of Classifiers play an impor-
tant role in internally mapping email concepts based on the email knowledge
base.

2.3 Conceptual Email Manager (Cem)

There are several detailed papers that outline arguments for using a concept
lattice within a Conceptual Email Manager (Cem). Cole and Stumme [8] tie
the archetypical Conceptual Email Manager with Formal Concept Analysis, and
hence, with concept lattices. They describe a Conceptual Email Manager as three
high-level structures:

(i) a formal context which assigns to each email a set of catchwords;
(ii) a hierarchy on the set of catchwords in order to define an information
ordering over the catchwords; and
(iii) a mechanism for creating conceptual scales which are used within a
graphical interface for the retrieval of emails.

An important realisation about filing email is that it is usually multi-attrib-
uted. When we classify email under one attribute it detracts from the meaning of
the email because we loose the ability to recall the email by its other attributes.
This is a general problem with the traditional hierarchical filing methods. Cre-
ating folders for files for an email means it must fit into one directory or file
otherwise copies need to be made. Meaning is lost as a result of decreasing the
number of attributes an object is associated with. In a Cem, “the formal con-
cepts replace the folders. In particular, this means that emails can appear in
different concepts” [8]. A concept lattice is a proven visual tool for navigational
aid and moreover, a good conceptual organiser.

2.4 Mail-Sleuth

In Mail-Sleuth, conceptual scales are determined by the user, and the realised
scales are derived from them when a diagram is requested by the user. Mail-
Sleuth is capable of restoring scales defined in previous sessions, via the storage
of scales against unique names. There were four requirements in the design of
Mail-Sleuth, namely:

1. to assist the user in editing and browsing a classifier hierarchy (the underly-
ing folder structure): the classifier hierarchy is a partially ordered set (M,≤)
where each element of M is a classifier. The structure of (M,≤) must be
evident, and modifiable.

Evaluation of Concept Lattices in a Web-Based Mail Browser 285

Fig. 2. The final “look” of Mail-Sleuth. The line diagram is highly stylized and inter-
active. Folders “lift” from the view surface and visual clues (red and blue arrows) suggest
the queries that can be performed on vertices. Layer colors and other visual features are
configurable. Unrealized vertices are not drawn and “Derived” Virtual Folders are differ-
entiated from Named Virtual Folders. A high level of integration with the Folder List to
the left and the Folder Manager (see tab) is intended to promote a single-user Conceptual
Information System task flow using small diagrams [13].

2. to help the client visualise and modify conceptual scales.
3. to allow the client to manage the assignment of classifiers to emails (query

to structure attribution): Mail-Sleuth should (a) automatically associate
emails with classifiers based on email content, and (b) view and modify email
classifiers

4. to assist the client in searching the conceptual space of emails for both
individual and conceptual groupings of emails: navigation through concept
lattices derived from conceptual scales.

Eklund et al. [13] describe an independent test and survey that was carried
out on Mail-Sleuth. In a discussion about the incorporation of the concept
lattice in Mail-Sleuth they state that “participants were able to read the
lattice diagrams without prompting” [13]. This gives partial evidence for the
incorporation of line diagrams within an email management context but needs
to be independently verified in the context of this study.

286 Shaun Domingo and Peter Eklund

This research will therefore make use of concept lattices for two reasons. The
first is that it is a authentic implementation of concept lattices for information
visualization. The second is that, usability testing for Mail-Sleuth suggested
user acceptance and understanding of concept lattices. This prompts speculation
that if the interface of Mail-Strainer closely resembles that of Mail-Sleuth,
then a similar usability rating would result.

3 Usability Evaluation

3.1 Test Methodology

This research adopts a quasi-naturalistic approach to HCI research methodol-
ogy [12] where the experimenter attempts to set up an trial as close as possible to
a real-life situation, while still maintaining some level of control over the exper-
iment. In the case of Mail-Strainer, Webmail will look as similar as possible
to the University of Wollongong’s Mirapoint Webmail: a system the subjects are
familiar with.

One of the driving forces behind this research is the opportunity to endorse
awareness about Formal Concept Analysis and its use by way of developing a
prototype that makes use of concept lattices. Mail-Strainer has two main
user contexts. The first monitors the effect that visualisation – through the use
of concept lattices – has on a user in a Web-based environment. This involves a
usability analysis and exploration as to whether or not Mail-Strainer meets
the requirements of a user configured email management tool. The second con-
text examines how Mail-Strainer works within the environment in which it
is embedded.

3.2 Test Subjects

The study seeks to create an understanding of users across a range of disciplines
and computer usage capabilities and capacities. One of the necessary require-
ments in the design of Mail-Strainer is that it targets a wide range of users
of diverse ability, culture and age. This study is aimed at sixteen test subjects
sought to complete a usability test of Mail-Strainer based on a pre-conceived
usability script. Twenty is a good sample for a study of this magnitude, and
while there should have been 20 undertaking the usability sessions, 4 were un-
able to attend due to last minute difficulties. A commercial study might look at a
sample of up to 300–400 people in a much broader demographic. Sixteen partici-
pants attended testing sessions for around 1 to 1.5 hours each. Attendance times
differed substantially because users took different amounts of time to complete
the script and answer the survey/feedback questions.

A reduced and specific target audience is chosen for pragmatic reasons and
to eliminate several unnecessary variables. In an attempt to understand how
Mail-Strainer affects its target audience, a sample of University students
from a range of disciplines were chosen (see Fig. 5). These students were asked

Evaluation of Concept Lattices in a Web-Based Mail Browser 287

Description

1 Mail-Strainer makes it easier to locate emails - especially when the inbox is
full and also makes it easier to locate specific attachments

2 The Concept Lattice is good because it shows links between folders and emails

3 A comprehensive and functional tool and fairly simple to operate, a powerful
search facility with customisable queries for most useful email qualities

4 Appealing to visual senses

5 Great for searching for specific emails, when you are too lazy or have too much
mail in your mailboxes

6 Easy to navigate - even for a computer dummy

7 Mail-Strainer would be an extremely useful tool, especially for someone who
received > 200 emails per day (or just lots of email in general) - many people
mentioned this

8 Extremely useful tool for email sorting and categorisation

9 Once over the initial learning curve, it is quite simple to use, it would be useful
to someone who took the time to figure it out

10 Virtual Folders make viewing of a particular subset of emails much easier, and
you don’t have to remember where you put an email (like with traditional
filing)

11 Allows the user to personalise their mailboxes to suit their requirements

12 Mail-Strainer is a much better way of organising email than simply placing
separate emails into folders that have no connection/interaction, and provides
a permanent way of searching and categorising mail without having to repeat
the search query

13 Good idea to have the Mail-Strainer tree in conjunction with the lattice

14 Folder Manager is easy to use

Table 1. Mail-Strainer Positives as identified by Testing Participants

to use Mail-Strainer within a restricted test-bed. Within testing sessions, par-
ticipants provide evaluative feedback in response to a series of survey questions
(shown in Table 3), and in most cases, one-on-one interview questions as well as
providing feedback through a test script (summarized in Tables 1 and 2). The
test-bed includes an instance of Mail-Strainer embedded within SquirrelMail
and an adequate set of test email. The test data is a single IMAP email account
with an mailbox containing approximately 300 mail items. This mailbox is the
same as that used in Access Testing’s evaluation of the Mail-Sleuth product
reported in [13].

To summarise previous ideas mentioned in this section, the second phase of
this research focuses on hypothesis testing through qualitative cross-sectional
study and assessment: encouraging users to evaluate Mail-Strainer as an
email management tool through participation and observation. It observes group
statistics that point out the participants abilities to complete the tasks in the
test script. The second phase is a conversion of the results from this study into
an argument in favour or against the use of Web-based email management using
Mail-Strainer.

288 Shaun Domingo and Peter Eklund

Description

1 There is a large learning curve related to understanding the Line Diagram,
and Mail-Strainer in general

2 The concept lattice is invaluable but needs more assistance and explanation

3 Should be able to delete emails though Mail-Strainer folders and deleting
folders with a tick-box would also be a benefit

4 Creating substructures within the folder structure was an issue (programmer’s
fault)

5 One person said that “Mail-Strainer was annoying to navigate”

6 The “monster lattice” is a problem that occurs when there are too many
structures within the folder structure. This is both a problem computationally
and also in terms of readability. There should be a reduced Line Diagram
(functionality wasn’t turned on at testing time)

7 Would be less frustrating when the bugs are ironed out, e.g., Mail-Strainer
became very slow when adding 2 extra ’queries’ (structures)

8 There should be more limitations so that the items that are in trash are not
indexed (this is available in Mail-Sleuth)

9 Labels on the lattice were hard to read (this was typically a user navigational
issue - not understanding the components in the panel properly), but was a
statement made on a number of other occasions also

10 Users couldn’t understand what the bottom two buttons in the navigational
component did

11 Some people didn’t like the generate structure by keywords (especially having
to supply 2 or more keywords)

12 Mail-Strainer may not be useful for a home user (who uses Client-Side Email
Management Software)

13 Although the system is intended for people with many emails in their mail-
boxes, it might not be useful for this target audience since it gets slower as
there are more emails

Table 2. Mail-Strainer negatives as identified by testing participants

3.3 Data Collection

This empirical study seeks to gather information in relation to the following
questions. Firstly, from the test script (described in Section 3.4): 1. Can users
define what each of the main components in Mail-Strainer actually does? 2. Are
users able to perform email management using Formal Concept Analysis? 3.
What are the positives and negatives about this tool?

Secondly, via self-assessed psychometric surveys (described in Table 3): (i)
What are user’s main goals in relation to using Webmail? (ii) Do Webmail users
have a pre-established reliance on existing email solutions? (iii) What type of
email manager are they (see Section 2.3.2)? (iv) Does Mail-Strainer actually
perform the task it says it does? (v) What features presented by this tool assist
in managing email? (vi) What features presented by this tool make it more
difficult to manage email? (vii) Could Mail-Strainer or a related tool be used to
improve Webmail in the future?

Evaluation of Concept Lattices in a Web-Based Mail Browser 289

Fig. 3. (left) The concept lattice shows the distribution by discipline of the students
involved in the study and (right) A bar graph displays the distribution of task completion.
The number indicates those participants capable of completing any particular task in the
test script. We take the word “complete” to mean both finished and accurate.

3.4 Test Script and Results

TASK1: Participants were asked to Find out how many emails there are in
the ‘This Week’ structure. This task was relatively simple, and required the
participants to be able to read straight off the line diagram, or if need be,
from the contents of the Virtual Folder named “This Week”. The question
tests the participant’s ability to determine two things: (i) if he/she under-
stands the notion of intents and extents within the concept lattice; (ii) if
he/she understands the meaning behind the numbers attached to nodes in
the concept lattice.

It was worrying that only 10 out of the 16 participants could accomplish this
task. On closer examination, two recipients didn’t give a written answer to this
question. Two participants gave the answer 9, which could very well have been
accurate as a result of changing mailbox data due to real-time usability testing,
and the other two gave the answer 2, which meant that they hadn’t understood
how contingents work within the concept lattice. Therefore, we conclude that as
few as only 2 participants failed TASK1.

TASK2: Required the user to find all the emails that contained both .DOC
and .PPT attachments, and to open the email and browse it. This question
tested the participants ability to: (ii) drill down on the folder structure, and
understand the nature of conceptual scales within the concept lattice; (ii)
read the concept lattice and understand how to read intents and extents;
(iii) Retrieve the folder contents of the folder containing this item and open
the email within it.

The subject should ideally notice that they were able to retrieve all emails that
contained .PPT and .DOC documents from two locations. They could have
clicked on the concept “PPT” in the top-level lattice, or they could have scaled

290 Shaun Domingo and Peter Eklund

their diagram by clicking on the DOC drill-down node to reveal a reduced lat-
tice. At this point the user should have seen that all emails in the PPT’s concept
also contained DOC attachments. For this task, 12 people were able to identify
the email as having the subject “Secure Pay Information” sent by Collins. Of
the other 4 participants, only 1 person was unable to complete this task and 3
others either completed the task and didn’t respond.

TASK3: The purpose of this task was to encourage the participant to use the
folder manager to Create a new virtual folder using the “Create Structures
from Keywords” functionality in Mail-Strainer.

In 14 cases, users were able to test this functionality and create a structure rele-
vant to the user’s Inbox. The users that could perform this task also understood
that they needed to refresh the left tree pane in order to reveal the new structure
they had just added. In the other 2 cases there was no response from the user.

TASK4: This task required users to understand the nature of derived concepts
within the concept lattice. In particular, they needed to be able to use the
lattice to find “how many emails containing image attachments arrived in
the last week”.

Only 7 were able to come to the conclusion that there was one email containing
an image attachment that arrived in the last week. There were 5 participants
that said there were 2 emails that contained these two attributes because they
were reading the contingent off the wrong lattice node.

TASK5: This task tested the participants ability to recall and act on what had
been learned in TASK3. In this step subjects needed to count how many
emails existed in their inbox, sent by “Jon Ducrou”. The user was tested
on their ability to: (i) create a structure from keywords, or create a folder
structure manually; (ii) find this newly created structure within the folder
structure within the top-level lattice, or as a conceptual scale; (iii) count
how many emails in total were from the user “Jon Ducrou” using the lattice
node labelling.

There were two emails embedded within this mailbox that were from “Jon”,
and 23 emails from the contact name “Jon Ducrou”. However, we only wanted
the emails that came from “Jon Ducrou” which meant that the user had to
be able to understand that the bottom-most concept, or greatest subconcept
contained in the lattice contained the number of emails from the contact “Jon
Ducrou”, namely 23.

There were a total of 6 people who said that 25 emails were from Jon Ducrou,
which is correct because Jon Ducrou (the person) actually sent these extra two
emails with an email-id “Jon” but incorrect in terms of the emails that came
from the email identity “Jon Ducrou” read from the line diagram. The other
person that got this question wrong answered with the answer 4. We cannot
ascertain how the participant came to this conclusion. The 7 people who got
this question wrong were still having problems reading the llne diagram at this
point of the testing session.

Evaluation of Concept Lattices in a Web-Based Mail Browser 291

Fig. 4. (left) The concept lattice shows the distribution of email type by self-assessment
of the subjects: 3 recognised email behavior types are frequent filer, spring cleaner and
no filer (right) Question 9 in the self-assessment survey presented in Table 3 shows the
distribution of subject responses on the key issue of the usefulness of the line diagram.

TASK6: this task was similar to that of TASK5. It introduces an extra concept
to examine, appearing within the scale of “Mail with Documents”. The user
was asked to “find all emails that contain PDF and DOC attachments”. This
question clearly asks the user to find the emails that contain a conjunction
of PDF and DOC attachments. In a similar way to TASK5, the user had
to undertake the following tasks to retrieve the answer: seven. (i) use the
top-level concept lattice (Mail-Strainer Folders drilldown node) to depict
a count of all emails containing PDF and DOC attachments, or the easier
way was to use the Mail-Strainer tree to find the drilldown folder “Mail
with Documents”; (ii) If the scale “Mail with Documents” was used, then
the user would find a much reduced lattice. The user had the simple task
of then determining that there were 7 emails containing PDF and DOC
attachments, not 10 or 9 or a mixture of responses as some participants
recorded. All objects within the concept “PDFs” inherited the attributes
“DOCs”.

Two participants said that there were a total 9 documents containing PDFs
and DOCs. This means one of two things. Either the 2 users were not aware of
the conjunction in the question or they thought that the actual way to find a
count of the emails was to add the number on the left of the label in each of
the upper and lower-right concepts. 3 participants reported that there were 7
PDFs, 2 DOCs, and 1 PPTs. This answer was also completely wrong: it seemed
these participants still did not understand the concept that every node in the
concept lattice inherited the attributes of its intent. There were 5 participants
that either could not complete the task or didn’t give a response.

TASK7 This task helped the participants become familiar with manual cre-
ation of drilldown nodes and virtual folders, i.e. they were required to make

292 Shaun Domingo and Peter Eklund

Fig. 5. This concept lattice shows the distribution by subject answer for the 10 questions
under survey.

their own structures. This task was impeded severely by the restriction that
participants were only able to create folders beneath the top level folder:
Mail-Strainer Folders. Therefore Virtual Folders, and top-level drill-down
folders were able to be created.

Of the 16 participants, 7 participants wrote down that they had achieved this
task, and this can be verified. Of the other 9 participants who didn’t respond 5
were verified to have played with the folder manager, attribute queries to folders,
and so forth. In conclusion, a total of 12 people were able complete this task.

3.5 Outcomes

The results of the usability testing and self-assessment surveys lead to the fol-
lowing outcomes:

– users had definite problems reading the line diagram during the testing ses-
sions. These problems were firstly associated with not understanding how to
read them, and secondly to do with overcomplicated concept lattices which
eventually overwhelmed them.

– further tutorial and help would be vital within any independent system.
There is a definite adjustment phase incorporated with reading line diagrams
for the novice user. Mail-Sleuth incorporates a good on-line help system,

Evaluation of Concept Lattices in a Web-Based Mail Browser 293

1. What is your home Faculty?
2. Would you say you have a higher reliance on Web-based email (using a Web browser to access

your email with things like Mirapoint) or client-based email (using a tool like Outlook Express,
Outlook, Eudora) in order to send, receive and browse email?

3. For each of the following locations, please select the method (web-based, client-based or N/A)
you would typically use to access your email. University? Work? Home? Friends? Interstate?
Overseas? Other?

4. There are supposedly three methods of filing email:
– Frequent Filer
– No Filer
– Spring Cleaner

Which classification best describes your method for filing email?
5. On a scale of 1-10 (10 is highest), how correct is the following statement? “Mail-Strainer is a

tool that gives you more power over searching and browsing your email on the Web”.
6. What features of Mail-Strainer did you find helped you complete the tasks listed in the testing

session script? (please circle all that apply).
– Graphical representation of email through the Line Diagram
– Ability to search email
– Graphics and Design of Mail-Strainer
– Virtual Folders

7. What features made it more difficult to complete the tasks listed in the testing session? (please
circle all that apply).

– Graphical representation of email through the Line Diagram
– Ability to search email
– Graphics and Design of Mail-Strainer
– Virtual Folders

8. Which Mail-Strainer features could be used to improve Webmail for use in the future? Please
select all that apply and write a couple of words suggesting why.

– Graphical representation of email through the Line Diagram
– Ability to search email
– Graphics and Design of Mail-Strainer
– Virtual Folders

9. In your own words, please describe what the Line Diagram allowed you to do, and comment
on whether or not this tool helped you to complete the allocated tasks in your script. (short
answer < 100 words).

10. Please rate your overall experience with Mail-Strainer from 1-10 (10 is best).

Table 3. Mail-Strainer self-assessment survey questions.

restructured using Formal Concept Analysis and line diagrams, which gives
the user practice at reading Line Diagrams while they learn [10].

– there are a number of considerations to take on board in regards to the
Mail-Strainer interface in relation to the concept lattice (especially the
navigational pane).

– envisaging further tutorials, and debugged programming problems, Mail-
Strainer would be a promising Email Management for Webmail.

4 Conclusion

This paper reports an applied software project to engineer an interactive environ-
ment for searching and browsing email in a Web-based architecture, employing
Mail-Sleuth’s component document visualisation technique using applied lat-
tice and order theory. Therefore, the project includes elements of survey, design
and software development for the purpose of building a prototype for evaluation:

294 Shaun Domingo and Peter Eklund

Mail-Strainer. A resultant, yet core component of this research was to exam-
ine Mail-Strainer’s acceptance as an Email Management tool through qual-
itative evaluation of users within the University of Wollongong domain, where
Webmail is a core component of blended learning activities in that institution’s
undergraduate program. The prospects for novice Formal Concept Analysis users
to read and interpret line diagrams remains promising but are not (as yet) con-
sidered overwhelming using the present tools.

References

[1] B. Bice. Building a web mail server with squirrelmail. SysAdmin
Magazine: The Journal for Uniz and Linux System Administrators, 11(7):
http://www.sysadminmag.com/articles/2002/0207/, 2002.

[2] C. Carpineto and G. Romano. Information retrieval through hybrid navigation
of lattice representations. International Journal of Human Computer Studies,
45(5):553–578, 1996.

[3] C. Carpineto and G. Romano. A lattice conceptual clustering system and its
application to browsing retrieval. Machine Learning, 24(2):95–122, 1996.

[4] C. Carpineto and G. Romano. Concept Data Processing: Theory and Practice.
Wiley, 2004.

[5] R. Cole and P. Eklund. Scalability in formal concept analysis: A case study using
medical texts. Computational Intelligence, 15(1):11–27, 1999.

[6] R. Cole, P. Eklund, and G. Stumme. CEM - a program for visualization and
discovery in email. In 4th European conference on principles and practice of
knowledge discovery in databases,. Springer,, September 2000.

[7] R. Cole, P. Eklund, and G. Stumme. Document retrieval for email search and
discovery using formal concept analysis. Journal of Experimental and Theoretical
Artificial Intelligence, 17(3):257–280, 2003.

[8] R. Cole, P., and G. Stumme. CEM – a program for visualization and discovery
in email. In D.A. Zighed, J. Kormorowski, and J. Zytkow, editors, Proceedings of
PKDD 2000, LNAI 1910, pages 367–374, Berlin, 2000. Springer.

[9] R.J. Cole and P.W. Eklund. Analyzing an email collection using formal concept
analysis. In European Conference on Knowledge and Data Discovery, PKDD’99,
LNAI 1704, pages 309–315. Springer, 1999.

[10] P. Eklund and B. Wormuth. Restructuring help systems using formal concept
analysis. In B. Ganter and R. Godin, editors, Proceedings of the 3rd International
Conference on Formal Concept Analysis - ICFCA’04. Springer, February 2005.

[11] R. Godi, R. Missaoui, and A. April. Experimental comparison of navigation in
a galois lattice with conventional information retrieval methods. International
Journal of Man-Machine Studies, 38:747–767, 1993.

[12] K. Kirakowski and M. Corbett. Effective Methodology for the Study of HCI.
Elsevier Science, 1990.

[13] J. Ducrou P. Eklund and P. Brawn. Concept lattices for information visualiza-
tion: Can novices read line diagrams. In Peter Eklund, editor, Proceedings of the
2nd International Conference on Formal Concept Analysis - ICFCA’04. Springer,
February 2004.

D-SIFT: A Dynamic Simple Intuitive FCA Tool

Jon Ducrou1, Bastian Wormuth2, and Peter Eklund1

1 School of Economics and Information Systems
The University of Wollongong

Northfields Avenue, Wollongong, NSW 2522, Australia
jrd990@uow.edu.au, peklund@uow.edu.au

2 Darmstadt University of Technology, Department of Mathematics,
Schloßgartenstr. 7, 64289 Darmstadt, Germany

bastian@wormuth.info

Abstract This paper introduces D-SIFT, a Web-based browser appli-
cation that provides untrained users in Formal Concept Analysis with
practical and intuitive access to core analysis functionality in Formal
Concept Analysis. D-SIFT is an information systems architecture that
supports natural search processes over a predefined database schema
and its attribute values. This enables the user to build concept lattices
interactively through the selection and refinement of dynamic defini-
tions of search boundaries (via interaction with an object “zoom” fea-
ture), and dynamic selection of search scales (via interaction with an at-
tribute “filter” feature), based on the attribute values contained within
the database. The paper investigates the claim that D-SIFT systems are
an advance on the search and analysis paradigm of the Toscana-system
workflow. In detail, the paper presents the architecture of the D-SIFT
browser and illustrates the resulting D-SIFT-systems on an example
database. The two examples illustrate the generality of system integra-
tion outcomes from D-SIFT. The Conceptual Information Systems that
result from applying the D-SIFT architecture present a new workflow
for building and interacting with Formal Concept Analysis-based infor-
mation systems. The workflow more closely aligns with dynamic schema
interaction, a popular technique used in conceptual modeling.

Introduction

This paper presents a new application framework for Formal Concept Analysis
(FCA). The initial idea behind the framework is the simplification of existing
application development frameworks for FCA, in particular the way humans
process standard searches in FCA. The software prototype – called D-SIFT–
consolidates various features that have been introduced by other applications [1,
2, 3].

One of the new features of D-SIFT is highlighting the filter and ideal of any
concept within the line diagram, and the dynamic creation and manipulation of
concept lattices. This allows the user to add and remove attributes from the dis-
played concept lattice according to his current preferences. D-SIFT extends the

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 295–306, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

296 Jon Ducrou, Bastian Wormuth, and Peter Eklund

classical features of FCA software with so-called mandatory attributes. Similar to
zooming in ToscanaJ, the user is able to restrict the displayed object set by the
selection of mandatory attributes. The resulting concept lattice is limited to ob-
jects which share these attributes. The core difference to zooming in ToscanaJ
and its predecessors is the way the user selects the bounding attributes. This pro-
cess in D-SIFT more closely resembles iterative search in information retrieval,
whereby the user starts from one or two keywords and progressively refines the
result set by the addition of further (or different) keywords

D-SIFT is also more easily accessible as a platform than existing FCA frame-
works. The required plug-ins used are provided in standard configurations of
most Web browsers, and the underlying database complies with the CSV file
format (text files with comma-separated entries). These are easy to create and
export from most applications. D-SIFT also follows the roles introduced in [4];
the separation of domain expert and the user of the Conceptual Information
System is even stronger in D-SIFT, as the application does not provide the pos-
sibility for changes on the conceptual level of the data – such actions must be
performed within the application that originated the CSV files on which D-SIFT
operates.

Creating a Conceptual Information System from a
Database

D-SIFT takes a user-supplied comma separated values database (CSV) and
provides an interface to the database as a conceptual information system. For
this reason the input format of D-SIFT closely aligns with a typical export
format from a relational database management system (RDBMS) and common
applications like Excel and OpenOffice.

The CSV format is simple, easy to read and edit. It is a common optional
output format for most modern and legacy applications and database systems.
The standard style for a CSV is to split text data into columns (or fields) sep-
arated by commas, and rows (or records) separated by newline characters. The
first line (or record) is often used as a comma separated list of the column head-
ings for the remaining records. CSV files are also forced to contain only data
that can be expressed as text; this caters to the input requirements of D-SIFT.

To translate the CSV database into a Conceptual Information System, the
user indicates how D-SIFT should treat each field. This requires the user to
indicate a field which is each entry’s identifier (entity in RDBMS modeling terms)
and then group the remaining fields into nominal or numerical scale models.

In order to extract objects with meaningful names, the user identifies the
field which provides an identifier for the database (e.g. a candidate key such as
name in a database of people). Nominal data, in FCA terms, is usually text (e.g.
names or locations in the people database), and sometimes represents boolean
values (e.g. attributes such as gender or attributes with values such as yes/no).
Numerical data is represented by numbers which, over the scope of the entire

D-SIFT: A Dynamic Simple Intuitive FCA Tool 297

field, have some form of ordering (e.g. a schema attribute such length in meters
with some entries longer than others).

There are instances where database attributes consisting of numeric data
should not be scaled numerically; for example identifiers such as social security
numbers, which may or may not be indicative of an order over the data values.
D-SIFT also gives the option to drop fields that are not of interest to the user,
by tagging those fields (e.g. comment or ID fields).

Interaction with the CSV file described to this point in the text allows D-
SIFT to collect enough information to construct the context and scale informa-
tion for the Conceptual Information System.

The user can now browse the Conceptual Information System via the D-
SIFT interface. To build a query, query elements are added to either the ‘Zoom’
or ‘Filter’ lists. Query elements are made up of one or more nominally-scaled
or numerically-scaled attributes. Nominally-scaled attributes comprise attribute
groups and an attribute value. Numerically-scaled attributes comprise an at-
tribute group, a size and an order. The size of a numerically scaled attribute
can be thought of as the number of intervals which will be produced, while the
order specifies the way in which the values should be compared. The orders are
of three types, Ordinal Up, Ordinal Down and Interordinal. Ordinal Up and
Down correspond to comparisons based on ≥ and ≤ respectively. Interordinal
generates both Ordinal Up and Down simultaneously(See Fig. 1).

If the database contains columns which are not nominal and not numerical,
they need to be scaled before the database is uploaded to D-SIFT. In this case
the author of the CSV file needs to apply the process of conceptual scaling to the
columns which cannot be handled with nominal, ordinal or interordinal scales.
Conceptual scaling processes the values of a many-valued attribute and resolves
the entries to several single-valued columns. After this process, D-SIFT can
access all information hidden in the database. More on conceptual scaling can
be found in [4] and [5].

A Typical Process of Searching and Exploring

While aiming to increase interface intuition and decrease the complexity of exist-
ing FCA application frameworks, the authors of D-SIFT intended to meet two of
Wille’s dimensions of Conceptual Knowledge Processing, namely exploring and
identifying [6]. A typical process of exploring or identifying always starts with
the aim to obtain an overview of a domain. In our example, a database concern-
ing cellphones, we imagine a potential customer of a new phone. The user may
have a rough idea of the technical features but no understanding which of these
he really needs or wants. The case scenario follows the user’s looking at all the
features – or specifying known features. After obtaining an overview of the data,
the user can sort the features into those that are essential and the remaining
features as softer constraints on the search. The user may have already encoun-
tered dichotomous features, but not knowing which to eliminate may continue
to use both. Step-by-step the user will make decisions and compromises before

298 Jon Ducrou, Bastian Wormuth, and Peter Eklund

Fig. 1. Concept lattices showing the different types of numeric scaling available via
the D-SIFT interface are (from top to bottom) Ordinal Up, Ordinal Down and
Interordinal. All are shown with a size of 3.

selecting the phone with the features that he desires most and satisfy the search
criteria. The last part of the search process will require many comparisons and

D-SIFT: A Dynamic Simple Intuitive FCA Tool 299

iterations when exploring the information landscape with multiple dichotomous
attributes. D-SIFT follows this basic process of searching and identifying. The
user can start with ‘all’, an exploration of the data by selecting all features
he is interested in. The resulting diagram presented by D-SIFT might be large,
but the diagram provides instant access to an overview of the data; the user
does not need to peruse tables or lists. The identification of features that are
distinguishing is simple – once the user becomes familiar with interpreting lat-
tices, he can easily select certain attributes from the top levels of the diagram,
change them to mandatory attributes and then pursue his search on a simplified,
smaller and less complex diagram. Here we also add the dimension comparison
to Wille’s tasks in Conceptual Knowledge Processing, because the diagram can
always be used to compare the existence (or otherwise) of certain combinations
of features.

Alternatively, the user can add and promote features from filter to zoom as a
way of refining results. The user starts with two or three of the most desired fea-
tures and uses the resulting diagram to decide whether to change attributes that
are filter to zoom, or add additional filter attributes. This process of promoting
filtered attributes to zoomed attributes reduces the size of the object set until
the user reaches a point where the uncertainty of a decision can be minimized.
By filtering only a few attributes at a time, this method produces smaller line
diagrams which increases the ease of identification and makes exploration
possible via incremental changes through interaction.

Case Scenario One: The Exploration Method

We now demonstrate the ideas described in the previous section with respect
to a more concrete interaction scenario. In this scenario, the user knows every
feature considered important (and desirable) in a new cellphone. In this case
scenario the user wants:

GPRS support
Infrared capabilities
Built-in MP3 player
Built-in organiser
Vibration alert
Voice-dial
WAP support

The user adds all the corresponding attributes as ‘filter’ attributes. The resulting
line diagram from these filter attributes is too large for the user to make an
instant decision, but the line diagram gives an overview of the search space and
it is possible to conclude the following from it:

1. The top-most concept has a contingent of 60, therefore there are 60 phones
with none of the desired features.

2. The bottom-most concept has an empty extent, therefore there is no phone
with all desired features.

300 Jon Ducrou, Bastian Wormuth, and Peter Eklund

3. The attributes vibe:yes, voicedial:yes and wap:yes are most common
in this diagram3.

This knowledge leads the user to zoom on the three common attributes, which
would seem a good way to reduce the complexity of the data while still maintain
the majority of the phones.

3 Recognizable by the fact they are darker in colour - indicating a large extent com-
pared to other concepts. This is the coloring style used in [7].

D-SIFT: A Dynamic Simple Intuitive FCA Tool 301

The result above shows that at least one desired feature can not be kept, and
that the selection is from 7 phones in 3 groups – each group has one of the
desired features missing.

– The Siemens SL 42, Siemens SL 45 and Siemens SL 45i do not have GPRS
Support.

– The Ericsson T65 does not have infrared capabilities.
– The Motorola Accompli 008, Nokia 6310 and Nokia 8310 do not have a

built-in MP3 player.

At this point the user could decide that infrared capability is the least desired
feature and opt for the Ericsson T65 as the phone to purchase.

Case Scenario Two: Attributes Addition Method

The user knows that two things he definitely wants in a cellphone are predictive
text and infrared capabilities. He starts the search and adds t9dict:yes and
infrared:yes as filter attributes.

This produces the simple lattice above showing 27 phones on the bottom
concept. This means there are 27 phones with both predictive text and infrared
capabilities. The list of 27 phones is too large for the user to reach a decision
straight away so he promotes t9dict:yes and infrared:yes to zoom attributes.
The user decides that an organiser and a long stand-by time are also important
features which would influence his purchase decision, so adds the corresponding
attributes as filters on the data. When adding stand-by time – the aim being
to emphasis phones with a greater stand-by time – he configures the stand-by
attribute to be ‘Ordinal Up’ resulting in the following diagram.

302 Jon Ducrou, Bastian Wormuth, and Peter Eklund

After looking at the generated lattice above, the user decides enough phones
come with an organiser to warrant adding organiser:yes as a ‘zoom’ attribute.
He realizes that a long stand-by time might come at the cost of increased phone
weight. To ensure that the phone he gets is not too heavy for his needs, he adds
the weight with the order ‘Ordinal Down’ so that lighter phones are emphasised
resulting the in following diagram.

D-SIFT: A Dynamic Simple Intuitive FCA Tool 303

The diagram above allows the user to quickly choose an optimum weight/
stand-by time combination. It is easy to see in the above diagram that the phone
most suitable to the requirements specified is the Nokia 8310.

Mathematical Characterization

In the following section we presume a basic knowledge of Formal Concept Anal-
ysis. For a introduction to FCA see [8], further mathematical foundations are
given in [9].

The mathematical base for D-SIFT is already covered by the formal de-
scription of a Toscana System, the Conceptual Data System (CDS). CDSs are
formalized in [2, 4], so we will give the most important definitions from Hereth
Correira and Kaiser to provide D-SIFT with a formal base.

The creation of a Conceptual Information System always starts with the
agreement on a formal context [4], in our case given by the uploaded CSV file.
The formal context can consist of single-valued or many-valued attributes; there-
fore we recall the definition of a many-valued context as follows:

Definition 1 (many-valued context): A many-valued context is a struc-
ture K := (G,M,

⋃
m∈M Wm, I) that consists of the set of objects G, the set

of attributes M , a set of values W :=
⋃

m∈M Wm and a ternary relation I ⊆
(G × M × W) between G,M and W where

(g,m,w1) ∈ I and (g,m,w2) ∈ I ⇒ w1 = w2 ∈ Wm.

The relation (g,m,w) ∈ I is also written as m(g) = w and stands for “the
attribute m has the value w for the object g”. By Wm we denote the potential
set of values of an attribute m, while m(G) is the actual set of values occurring
in the context.

A conceptual scale for a subset of attributes of K is given by:

Definition 2 (conceptual scale): Let K = (G,M,W, I) be a many-valued
context and N ⊆ M . Then we call a formal context SN := (GN ,MN , IN) con-
ceptual scale if {(m(g))m∈N | g ∈ G} ⊆ GN ⊆ ×m∈N Wm. We say that SN

scales the attribute set N . A family of conceptual scales (SNj) scales K if every
conceptual scale SNj scales the attribute set Nj ⊆ M .
The conceptual scale and the corresponding line diagram appear as on entity to
the user [2]. Formally we must differentiate between such a conceptual scale and
its graphical representation, the line diagram. This difference is further explained
in [2] using a mapping λ, that maps every conceptual scale to a corresponding
line diagram. The diagram map λ is defined in [2] as well. We will use the diagram
map λ to proceed with the conceptual schema:

Definition 3 (conceptual schema): Let (SNj)j∈J be a family of concep-
tual scales and let (λj)j∈J be a family of diagram maps where dom(λj) =

304 Jon Ducrou, Bastian Wormuth, and Peter Eklund

B(SNj)∪ ≺j. Then we call the vector S := (SNj , λj)j∈J conceptual schema.
We say that a conceptual schema S and a many-valued context K are consis-
tent if (SNj)j∈J scales K.

The zooming realized in D-SIFT is slightly different from zooming imple-
mented in Toscana Systems where the user bounds the object set through the
selection of a concept as the point at which to zoom. In Toscana Systems, the
selection of a concept chooses the contingent or the full extent of the concept.
The current version of D-SIFT works differently: the zooming filter is defined by
the selection of attributes (resp. attribute values in the many-valued case) from a
list and these attributes are taken as mandatory for the set of displayed objects.
The various diagrams that can be created by the combinations of constraints
and selections of attributes can be captured by so called states introduced in [2].
The formal definitions from [2] can be used to develop D-SIFTs zooming process:

Definition 4 (state, initial state): Let S := (SNj , λj)j∈J be a concep-
tual schema consistent with a many-valued context K := (G,M,W, I). Then a
state is a triple s := (σ, F1, F2), where F1 ⊆ F2 ⊆ G and σ := (ji)n

i=1 with
ji ∈ J for i ∈ {1, ..., n} and i �= k ⇒ ji �= jk. F1 is called exact zooming filter
and F2 is called full zooming filter . An initial state is a state where F1 = F2 = G.

The core difference in the application of the structure of the Conceptual Data
System to D-SIFT is in the understanding of states. States in Toscana Systems
are based on conceptual scales, normally having several attributes (or values
of many-valued attributes). The states in D-SIFT are based on scales normally
containing a single attribute. The combination of several states is still made pos-
sible. However this represents a key difference from the processing of states in
D-SIFT compared to Toscana Systems. In Toscana Systems the user works with
existing predefined diagrams, a user of D-SIFT is changing the current diagram
in order to suit expectations and constraints. The original conceptual schema of
D-SIFT therefore consists of a set of scales which are all single-attribute scales.
The displayed diagram is thus based on one or more scales, not just the graphical
representation of a single conceptual scale. We therefore make use of conceptual
scales and states as defined in [2] and define a display state for D-SIFT as follows:

Definition 5 (display state): Let S := (SNj , λj)j∈J be a conceptual schema
consistent with a many-valued context K := (G,M,W, I). Then a display state
is a tuple d := (O,F) with O ⊆ G,F ⊆ M and Z ′ ∩ F = ∅. F are the at-
tributes selected for filtering and O = Z ′ where Z are the attributes selected
as full zooming filter. These appear as label of the top element of the diagram
representing the concept lattice B(O,Z ∪ F,W, I).

The display state integrates D-SIFT into the formalisation of Conceptual
Information System as used and known by today.

D-SIFT: A Dynamic Simple Intuitive FCA Tool 305

Further Research

The final version of the user interface for the selection of mandatory attributes is
planned to be similar to Toscana and ToscanaJ where by clicking a concept
thereby selects the concept’s intent as a restriction on the objects. This represents
a minor implementation extension to the existing D-SIFT.

Furthermore, we are investigating the possibility of using the human input
coded in conceptual scales from already existing Toscana Systems to support the
user search and exploration. After parsing the .CSX file of a Toscana System,
D-SIFT could “offer” groups of attributes as in Toscana Systems. Then the
interaction can start from a given diagram, extending and changing it using the
existing dynamic creation features of D-SIFT.

The last issue of further research addresses the use of the multi-context as
introduced in [10, 11]. On the basis of several contexts sharing sets of attributes
or objects, the user would be enabled to “jump” from the perspective of one
formal context to the corresponding perspective in another context by the use
of coherence mappings.

Conclusion

This paper has presented the architecture of the D-SIFT browser and illus-
trates the resulting D-SIFT-systems on two case scenarios against a database
of cellular phones. The two examples demonstrate the generality of system in-
tegration outcomes from D-SIFT. The Conceptual Information Systems which
result from applying the D-SIFT architecture present a new workflow for build-
ing and interacting with Formal Concept Analysis-based information systems.
The workflow more closely aligns with dynamic schema interaction used in con-
ceptual modeling.

Acknowledgement This research results from a collaboration between the au-
thors supported by an ARC International Linkage Grant and the DFG.

References

[1] Peter Becker, Richard J. Cole: Querying and analysing document collections with
Formal Concept Analysis. In: Proceedings of the 8th Australasian Document
Computing Symposium, Canberra (2003)

[2] Hereth Correira, J., Kaiser, T.B.: A Mathematical Model for TOSCANA-Systems:
Conceptual Data Systems. In Eklund, P., ed.: Concept Lattices, Heidelberg,
Berlin, New York, Springer (2004)

[3] Becker, P.: Multi-dimensional Representations of Conceptual Hierarchies. In
Stumme, G., Mineau, G., eds.: Proceedings of the 9th International Conference
on Conceptual Structures, Laval (2001)

306 Jon Ducrou, Bastian Wormuth, and Peter Eklund

[4] Kaiser, T.: Conceptual Data Systems - Providing a Mathematical Basis for
TOSCANA-Systems (2003) Diploma thesis, University of Technology Darmstadt.

[5] Wormuth, B.: A Conceptual Information System for Topic Maps (2004) Diploma
thesis, University of Technology Darmstadt.

[6] Wille, R.: Conceptual landscapes of knowledge: A pragmatic paradigm for know-
ledge processing. In Gaul, W., Locarek-Junge, H., eds.: Classification in the In-
formation Age, Springer (1999) 344–356

[7] Becker, P., Hereth, J., Stumme, G.: ToscanaJ - an open source tool for qualitative
data analysis. In: Advances in Formal Concept Analysis for Knowledge Discovery
in Databases. Proc. Workshop FCAKDD of the 15th European Conference on
Artificial Intelligence (ECAI 2002). Lyon, France. (2002)

[8] Wille, R.: Introduction to Formal Concept Analysis. In Negrini, G., ed.: Modelli
e modellazione, Models and Modelling, Roma, Consiglio Nazionale delle Ricerche,
Instituto di Studi sulle Ricerca e Documentazione Scientifica (1997)

[9] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

[10] Dörflein, S.K., Wille, R.: Coherence Networks of Concept Lattices: The Basic
Theorem. Number 3403 in LNCS, Heidelberg - Berlin - New York, Springer
(2005) to appear in the proceedings of the ICFCA05.

[11] Wille, R.: Conceptual Structures of Multicontexts. In Eklund, P.W., Ellis, G.,
Mann, G., eds.: Conceptual Structures: Knowledge Representation as Interlingua.
Number 1115 in LNAI, Heidelberg - Berlin - New York, Springer (1996) 23–29

[12] Wille, R., Zickwolff, M.: Grundlagen einer Triadischen Begriffsanalyse. In
Stumme, G., Wille, R., eds.: Begriffliche Wissensverarbeitung: Methoden und An-
wendungen, Heidelberg - Berlin - New York, Springer (2000) 125–150

[13] Rock, T., Wille, R.: Ein TOSCANA—Erkundungsystem zur Literatursuche. In
Stumme, G., Wille, R., eds.: Begriffliche Wissensverabeitung: Merthoden und An-
wendungen, Berlin-Heidelberg, Springer (2000) 239–253

[14] Dieberger, A., Dourish, P., Höök, K., Resnick, P., Wexelblat, A.: Social navigation:
Techniques for building more usable systems. ACM Transactions on Human-
Computer Interaction 7 (2004) 26–58

[15] Horvotz, E., Kadie, C., Paek, T., Hovel, D.: Models of attention in computing
and communication: From principles to applications. CACM 46 (2003) 52–59

[16] Carpineto, C., Romano, G.: Concept Data Processing: Theory and Practice. Wiley
(2004)

[17] Carpineto, C., Romano, G.: Order-theoretical ranking. Journal of the American
Society for Information Sciences (JASIS) 7 (2000) 587–601

[18] Cole, R., Eklund, P., Stumme, G.: Document retrieval for email search and dis-
covery using formal concept analysis. Journal of Experimental and Theoretical
Artificial Intelligence 17 (2003) 257–280

[19] Cole, R., Eklund, P.: Browsing semi-structured web texts using formal concept
analysis. In: Proceedings 9th International Conference on Conceptual Structures.
Volume 2120 of LNAI., Berlin, Springer (2001) 319–332

[20] Eklund, P., Ducrou, J., Brawn, P.: Concept lattices for information visualization:
Can novices read line diagrams. In Eklund, P., ed.: Proceedings of the 2nd Inter-
national Conference on Formal Concept Analysis - ICFCA’04, Springer (2004)

[21] Colomb, R.: Information Spaces: the Architecture of Cyberspace. Springer (2002)

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 307-322, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Analyzing Conflicts with Concept-Based Learning

Boris A. Galitsky1, Sergei O. Kuznetsov2 and Mikhail V. Samokhin2

1 School of Computer Science and Information Systems
Birkbeck College, University of London
Malet Street, London WC1E 7HX, UK

galitsky@dcs.bbk.ac.uk
2 All-Russian Institute for Scientific and Technical Information (VINITI),

Usievicha 20, Moscow 125190, Russia
serge@viniti.ru, samohin_m@mtu-net.ru

Abstract. A machine learning technique for handling scenarios of interaction
between conflicting agents is suggested. Scenarios are represented by directed
graphs with labeled vertices (for mental actions) and arcs (for temporal and
causal relationships between these actions and their parameters). The relation
between mental actions and their descriptions gives rise to a concept lattice.
Classification of an undetermined scenario is realized by comparing partial
matchings of its graph with graphs of positive and negative examples. Devel-
oped scenario representation and comparative analysis techniques are applied to
the classification of textual customer complaints.

1 Introduction: Reasoning with Conflict Scenarios

Scenarios of interaction between agents are an important subject of study in Artificial
Intelligence. An extensive body of literature addresses the problem of logical simula-
tion of agents’ behavior, taking into account their beliefs, desires and intentions [1].
A substantial advancement has been achieved in building the scenarios of multiagent
interaction, given properties of agent including their attitudes. Current approaches to
the multiagent systems are either based on logical deduction [2,16] or simulation
[4,14]; means of automated comparative analysis are still lacking [9].

In the former case, the sequence of mental states of agents is deduced from their
initial mental states and initial attitudes. Deductive reasoning about actions and the
logic with agents’ attitudes as modalities are the most popular means to yield se-
quences of mental states of agents [20].

In the latter case, the system imitates the decision-making of agents, choosing the
best action for each agent at each step, taking into account its current intentions, be-
liefs and desires, as well as those of others. Having the preference relation on the set
of resultant states, each agent selects an action that is expected to lead to the most
desired state [4].

However, a general framework to reuse the experience accumulated in previous
scenarios of multiagent interaction has not been developed. For effective building and

308 Boris A. Galitsky, Sergei O. Kuznetsov, and Mikhail V. Samokhin

predicting of interaction between agents, it is helpful to augment reasoning and/or
simulation with machine learning [9,15,18,19]. It would reduce the number of possi-
ble agents’ actions at each step, taking into account how these agents acted in previ-
ous cases.

Recently, the issue of providing BDI (Belief-Desire-Intention) agents [1] with
machine learning capabilities attracted interest; an application domain such as agents
for intelligent information access was considered in [8]. Nevertheless, a BDI-based
machine learning framework for operating with scenarios of inter-human interactions
was not developed yet. A number of case-based reasoning approaches have been
suggested to treat the scenarios of interaction between BDI agents [15,18,19]; how-
ever, description of agents’ attitude is reduced to their beliefs, desires and intentions
in these studies. Indeed, behavior of real-world conflicting agents is described in a
richer language using a wide number of mental entities including pretending, deceiv-
ing, offending, forgiving, trust, etc.

In this paper we build the representation machinery for conflict scenarios and
propose a simple machine learning technique for classifying scenarios of multiagent
conflict. This technique can be implemented in a stand-alone mode or used in combi-
nation with deductive reasoning or simulation.

Multiagent conflict is a special case of scenarios where the agents have inconsis-
tent goals and a negotiation procedure is required to achieve a compromise [14]. In
this paper we discover that following the logical structure of how negotiations are
represented in text, it is possible to judge about consistency of this scenario [6].

Scenarios suggest the usage of complex data structure. In this paper we employ
labeled directed acyclic graphs with arcs for describing interaction of two parties in a
conflict, thus being within the standard concept graph representation [17]. A learning
model needs to be focused on a specific graph representation for these conflicts. The
learning strategies used here are based on ideas similar to that of Nearest Neighbors
(see, e.g., [13]), case-based [10,12] and concept-based learning [7,11] or JSM-method
[3]. Having defined scenarios and the operation of finding common subscenarios, we
use the Nearest Neighbors and concept-based learning approach to relate a scenario to
the class of valid or invalid scenarios.

The paper is organized as follows. The introduction of the domain of conflict sce-
narios is followed by a formal treatment of mental actions and defining a conflict
scenario as a graph with vertices labeled by mental actions. Having defined the simi-
larity operation on graphs (finding maximal common subgraphs), we present the
procedure of relating a scenario to a class. The paper concludes with the description
of the application domain of understanding customer complaints and the preliminary
evaluation of the complaint data set.

2 The Domain of Conflict Scenarios

In this section we present our model of a conflict scenario oriented to the use in a
machine learning setting. Here we develop a knowledge representation methodology
based on approximation of a natural language description of a conflict [5].

Analyzing Conflicts with Concept-Based Learning 309

When modeling scenarios of inter-human conflict, it is worth distinguishing men-
tal and non-mental states and actions. The former include knowing, pretending
(states) and informing or asking (actions); the latter are related, for example, to loca-
tion, energy and account balance (physical states), as well as moving, heating and
withdrawal (physical actions). It has been shown that an adequate description of
mental world can be performed using mental entities and merging all other physical
action into a constant predicate for an arbitrary physical action and its resultant physi-
cal state [5]. Furthermore, we express a totality of sequential mental states for a sce-
nario via a set of mental actions that would unambiguously lead to these mental
states. Hence we approximate an inter-human interaction scenario as a sequence of
mental actions, ordered in time, with a causal relation between certain mental actions.
Our approximation follows the style of situation calculus, scenarios are simplified to
allow for effective matching by means of graphs.

Only mental actions remain as a most important component to express similarities
between scenarios. Each vertex corresponds to a mental action, which is performed
by either proponent, or opponent, the latter are called agents (here we consider two-
agent systems, however, the model is easily extended to involve multiple agents). An
arc (oriented edge) denotes a sequence of two actions.

In our model mental actions have two parameters: agent name and subject (in-
formation transmitted, a cause addressed, a reason explained, an object described,
etc.). Representing scenarios as graphs, we take into account both parameters. Arc
types bear information whether the subject stays the same. Thick arcs link vertices
that correspond to mental actions with the same subject, thin arcs link vertices that
correspond to mental actions with different subject.

The curve arcs denote a causal link between the arguments of mental actions, e.g.,
service is not as advertised there are particular failures in a service contract, ask

> confirm.

Let us consider an example of a scenario and its graph (Figure 1).

I explained that my cheque I wrote after I made a deposit bounced.
A customer service representative accepted that it usually takes some time to

process the deposit.
I reminded that I was unfairly charged an overdraft fee a month ago in a similar

situation.
They denied that it was unfair because the overdraft fee was disclosed in my ac-

count information.
I disagreed with their fee and wanted it deposited back to my account.
 They explained that nothing can be done at this point and that I need to look

into the account rules closer.

Note that first two sentences (and the respective subgraph comprising two verti-
ces) are about the current transaction, three sentences after (and the respective sub-
graph comprising three vertices) address the unfair charge, and the last sentence is
probably related to both issues above. Hence the vertices of two respective subgraphs
are linked with thick arcs (explain-accept) and (remind-deny-disagree).

310 Boris A. Galitsky, Sergei O. Kuznetsov, and Mikhail V. Samokhin

In formal conflict scenarios extracted from text there can be multiple mental ac-
tions per step, for example I disagreed … and suggested…. The former mental action
describes how an agent receives a message (accept, agree, reject, etc.) from an oppo-
nent, and the latter one describes the attitude of this agent initiating a request (sug-
gest, explain, etc.), or reaction to the opponent’s action. This division into passive
(response) mode and active (request) mode is represented in the second attribute of
mental actions specified in the second column of Table 2. Sometimes, either of the
above actions is omitted in textual description of conflicts. Frequently, a mental ac-
tion, which is assumed but not mentioned explicitly, can be deduced. In this paper for
the sake of simplicity we will consider single action per step, performing the com-
parative analysis of scenarios.

There is a commonsense causal link between being charged an unfair fee and in-
tention to have this amount of money back which is expressed by the arc between
remind and disagree. Semantically, arcs with causal labels between vertices for men-
tal actions express the causal links between the arguments of mental actions rather
than between the mental actions themselves.

In our further analysis we will show how to relate this scenario (denoted as U) to
the class of negative (unjustified) complaints.

 explain

 remind

accept

 deny

explain disagree

Fig. 1. The graph for approximated scenario

3 Semantics of Mental Actions

As to the choice of mental actions to adequately represent multiagent conflicts, we
have selected the most frequently used from our structured database of complaints
(Table 1).

To express the similarity between mental actions, we introduce five attributes
each of which reflects a particular semantic parameter for mental activity (Table 2):

 Positive/ negative attitude expresses whether a mental action is a coopera-
tive (friendly, helpful) move (1), uncooperative (unfriendly, unhelpful)
move (-1), neither or both (hard to tell, 0).

 Request / respond mode specifies whether a mental action is expected to
be followed by a reaction (1), constitutes a response (follows) a previous
request, neither or both (hard to tell, 0).

Analyzing Conflicts with Concept-Based Learning 311

 Info supply / no info supply tells if a mental action brings in an additional
data about the conflict (1), does not bring any information (-1), 0; does
not occur here.

 High / low confidence specifies the confidence of the preceding mental
state so that a particular mental action is chosen, high knowl-
edge/confidence (1), lack of knowledge/confidence (-1), neither or both is
possible (0).

Intense / relaxed mode says about the potential emotional load: high (1), low (-1),
neutral (0) emotional loads are possible.

Table 1. The set of mental actions from a typical complaint

 Customer
describes actions of himself

Customer
describes actions of the Company

Agree, explain, suggest,
bring company's attention,
remind, allow, try, request,
understand, inform, confirm
ask, check, ignore, convince
disagree, appeal, deny, threaten

Agree, explain, suggest, remind, allow, try,
request, understand, inform, confirm, ask,
check, ignore, convince, disagree, appeal,
deny, threaten, bring to customer’s atten-
tion, accept complaint, accept /deny re-
sponsibilities, encourage, cheat

Table 2. Many-valued context of mental actions

Attributes Mental
action Positive/

negative
attitude

Request /
respond

mode

Info supply
/ no info
supply

High / low
confidence

Intense /
relaxed
mode

agree 1 -1 -1 1 -1
accept 1 -1 -1 1 1
explain 0 -1 1 1 -1
suggest 1 0 1 -1 -1
bring_attent 1 1 1 1 1
remind -1 0 1 1 1
allow 1 -1 -1 -1 -1
try 1 0 -1 -1 -1
request 0 1 -1 1 1
understand 0 -1 -1 1 -1
inform 0 0 1 1 -1
confirm 0 -1 1 1 1
ask 0 1 -1 -1 -1
check -1 1 -1 -1 1
ignore -1 -1 -1 -1 1
convince 0 1 1 1 -1
disagree -1 -1 -1 1 -1
appeal -1 1 1 1 1
deny -1 -1 -1 1 1
threaten -1 1 -1 1 1

Note that out of the set of meanings for each mental action (entity, speech act), we
merge its subset into a single meaning, taking into account its relations to the mean-

312 Boris A. Galitsky, Sergei O. Kuznetsov, and Mikhail V. Samokhin

ings of other mental actions [5]. Our approach follows along the lines of the theory of
speech acts [23, 25] in its ability to handle performatives [22]. The theory of perfor-
matives is proposed as a test case for the rationality-based theory of mental actions
such as threatening, warning, or promising that are carried out simply by saying the
appropriate words. It is shown how “I request you..." can be a request, and "I lie to
you that …" can be self-defeating. The analysis [22] supports and extends the sys-
tematic account [24] of the roles of the speaker's communicative intention and the
hearer's inference in literal, nonliteral and indirect uses of sentences to perform
speech acts. Table 2 is obtained as a reduction of speech act’s attributes to the case of
multiagent conflicts.

An alternative way to express the set of selected meanings for each mental action
uses an expression in the want-know-believe basis (Figure 2), presented in [1,20],
extending the BDI model [4,5]. Note that clauses may be embedded as arguments for
mental actions as meta-predicates. We refer the reader to [5] for further details on
defining mental actions and mental states in the above basis. For example, various
meanings of mental action inform are expressed as follows:
inform(Who, Whom, What) :- want(Who, know(Whom, What)),

believe(Who, not know(Whom, What)),
believe(Who, want(Whom, know(Whom, What))).
 % The most general definition

inform(Who, Whom, What) :- believe(Who, know(Whom, What)),
want(Who, believe(Whom, know(Who,What))).
%to inform Whom that not only Whom but Who knows What

inform(Who, Whom, What) :- ask(Whom, Who, What),
want(Who, know(Whom, What)).

% informing as answering
inform(Who, Whom, What) :- ask(SomeOne, Who, believe(Whom, What)),

want(Who, know(Whom, What).% following SomeOne’s request for informing

disagree(A,B,W) :- inform(A,B,W), not believe(B,W), inform(B,A, not W).
agree(A,B, W) :- inform(A,B, W), believe(B, W), inform(B,A, W).
explain(A,B, W) :- believe(A, (W :- V)), not know(B, W), inform(A,B,V),

inform(A,B,(W :- V)), believe(B,W).
confirm(A,B, W) :- inform(A,B,W), know(A, believe(B, W)).
bring_attention(A,B, W) :- want(A, believe(B, know(A, W))).
remind(A,B, W):- believe(A, believe(B, W)),

inform(A,B,W), want(A, know(B, know(A, W))).
understand(A,W) :- inform(B,A,W), believe(B, not believe(A, (W :- V))),
want(B, believe(A, (W :- V))), inform(B, A,(W :- V)), believe(A,(W :- V),

believe(A, W).
acceptResp(A, W) :- want(B, not W), believe(B, (W:-do(A,W1))),
 want(A, know(B, believe(A, (W:-do(A,W1))))), inform(A,B, (W:-do(A,W1))).

Fig. 2. The clauses for the selected mental entities from Table 2

Analyzing Conflicts with Concept-Based Learning 313

To represent the hierarchy of mental actions by a concept lattice, we scale nomi-
nally the first and second attributes (i.e., the attribute values -1, 0, and 1 are consid-
ered as completely dissimilar). The third, fourth, and fifth attributes are already two-
valued. Thus, the scaled context has seven attributes and the resulting concept lattice
is presented in Figure 3. ConExp [21] software was used to construct and visualize
the concept lattice [8] of mental actions and their attributes.

The concept lattice illustrates the semantics of mental actions; it shows how the
choice of natural language semantics for mental entities covers the totality of mean-
ings in the knowledge domain of interaction between agents.

Fig. 3. The concept lattice for mental actions

4 Defining Scenarios as Graphs

We proceed with the description of our scenario dataset. This dataset contains two
sets of complaint scenarios: showing a good attitude of a complainant (consistent plot
with proper argumentation, a valid complaint) on the left, and a bad attitude of a
complainant (inconsistent plot with certain flaws, implausible or irrational scenarios,
an invalid complaint) on the right (Figure 4).

Each scenario includes 2-6 interaction steps, each consisting of mental actions
with the alternating first attribute {request – respond - additional request or other
follow up}. A step comprises one or more consequent actions with the same subject.
Within a step, vertices for mental actions with common argument are linked with
thick arcs.

314 Boris A. Galitsky, Sergei O. Kuznetsov, and Mikhail V. Samokhin

For example, suggest from scenario V2 (Figure 4) is linked by a thin arc to mental
action ignore, whose argument is not logically linked to the argument of suggest (the
subject of suggestion). The first step of V2 includes ignore-deny-ignore-threaten;
these mental actions have the same subject (it is not specified in the graph of conflict
scenario). The vertices of these mental actions with the same argument are linked by
the thick arcs. For example, it could be ignored refund because of a wrong mailing
address, deny the reason that the refund has been ignored [because of a wrong mail-
ing address], ignore the denial […concerning a wrong mailing address], and threat-
ening for that ignorant behavior […concerning a wrong mailing address]. We have
wrong mailing address as the common subject S of mental actions ignore-deny-
ignore-threaten which we approximate as

ignore(A1, S) & deny(A2,S) & ignore(A1,S) & threaten(A2, S), keeping in mind the
scenario graph . In such approximation we write deny(A2, S) for the fact that A2
denied the reason that the refund has been ignored because of S. Indeed, ignore(A1,
S) & deny(A2,S) & ignore(A1,S) & threaten(A2, S). Without a scenario graph, the best
representation of the above in our language would be

ignore(A1, S) & deny(A2, ignore(A1, S)) & ignore(A1, deny(A2, ignore(A1, S))) &
threaten(A2, ignore(A1, deny(A2, ignore(A1, S)))).

Let us enumerate the constraints for the scenario graph:
1) All vertices are fully ordered by the temporal sequence (earlier-later);
2) Each vertex has a special label relating it either to the proponent (drawn on the

right side in Figure 4) or to the opponent (drawn on the left side);
3) Vertices denote actions either of the proponent or of the opponent;
4) The arcs of the graph are oriented from earlier vertices to later ones;
5) Thin and thick arcs point from a vertex to the subsequent one in the temporal

sequence (from the proponent to the opponent or vice versa);
6) Curly arcs, staying for causal links, can jump over several vertices.
Similarity between scenarios is defined by means of maximal common subsce-

narios. Since we describe scenarios by means of labeled graphs, first we consider
formal definitions of labeled graphs and domination relation on them (see, e.g., [7]).

Given ordered set G of graphs (V,E) with vertex- and edge-labels from the sets
(,) and (,). A labeled graph from G is a quadruple of the form ((V,l),(E,b)),
where V is a set of vertices, E is a set of edges, l: V is a function assigning
labels to vertices, and b: E is a function assigning labels to edges. We do not
distinguish isomorphic graphs with identical labelings.

The order is defined as follows: For two graphs 1:= ((V1,l1),(E1,b1)) and 2:=
((V2,l2),(E2,b2)) from G we say that 1 dominates 2 or 2 1 (or 2 is a subgraph
of 1) if there exists a one-to-one mapping : V2 V1 such that it

 respects edges: (v,w) E2 ((v), (w)) E1,
 fits under labels: l2(v) l1((v)), (v,w) E2 b2(v,w) b1((v), (w)).

Note that this definition allows generalization (“weakening”) of labels of
matched vertices when passing from the “larger” graph G1 to “smaller” graph G2.

Now, generalization Z of a pair of scenario graphs X and Y (or their similarity),
denoted by X Y = Z, is the set of all inclusion-maximal common subgraphs of X
and Y, each of them satisfying the following additional conditions:

Analyzing Conflicts with Concept-Based Learning 315

 To be matched, two vertices from graphs X and Y must denote mental ac-
tions of the same agent;

 Each common subgraph from Z contains at least one thick arc.
This definition is easily extended to finding generalizations of several graphs

(e.g., see [7, 11]). The subsumption order on pairs of graph sets X and Y is natu-
rally defined as X Y := X Y = X.

After scaling the many-valued context of mental actions, descriptions of mental
action are given by 9-tuples of attributes, ordered in the usual way. Thus, vertex la-
bels of generalizations of scenario graphs are given by intents of the scaled context of
mental actions (see Figure 3).

 explain

 remind

accept

 disagree

ignore
explain

 threaten

 suggest

 confirm
 explain

disagree

 threaten
 suggest

deny

ignore

 ignore

accept threaten

explain
 suggest

deny

deny

accept

suggest

 remind

accept

 agree

accept
explain

 suggest

disagree
 explain

deny

ask

 remind

ignore

 allow

 deny
threaten

bring_attten

accept

deny

ignore

agreethreaten

ask

request

ignore

 agree

 remind
threaten

ask

remind

appeal

deny

accept

accept

Valid complaint scenarios Invalid complaint scenarios

V1

V4

V3

V2

I3

I2

I1

deny

accept

accept

disagree

V5

I4

I5
ignore

Fig. 4. The training set of scenarios

If the conditions above cannot be met then the common subgraph does not exist.

316 Boris A. Galitsky, Sergei O. Kuznetsov, and Mikhail V. Samokhin

5 Relating a Scenario to a Class

Here we propose two schemes for classifying scenarios, given examples from positive
and negative classes (see an example of a training sample in Figure 4).

 explain

 remind

accept

 deny

explain

disagree

ask explain

remind

appeal disagree

deny accept

accept explain

I5 U

ignore deny

U

0 0 0 0 0 0 0

remind

0 1 0 0 0 1 0

0 0 0 1 0 1 1

0 0 0 1 0 1 0

I5 U calculated

0 1 0 1 0 0 1

Assigned: I

ask explain

 remind

ignore accept

allow deny

deny explain
threaten disagree

V4 U

0 0 0 0 0 0 0

 remind

0 0 0 1 0 0 1

0 0 0 1 0 0 0

0 0 0 1 0 1 0
0 1 0 0 0 1 0

V4 U calculated

Fig. 5. A scenario with unassigned complaint status and the procedure of relating this scenario
to a class

5.1 Nearest-Neighbor Classification

The following conditions hold when a scenario graph U is assigned to a class (we
consider positive classification, i.e., to valid complaints, the classification to invalid
complaints is made similarly):

1) U is similar to (has a nonempty common scenario subgraph of) a positive
example R+.

2) For any negative example R-, if U is similar to R- (i.e., U R-) then U R-

 U R+. This condition introduces the measure of similarity and says that to be
assigned to a class, the similarity between the unknown graph U and the closest sce-
nario from the positive class should be higher than the similarity between U and each
negative example (i.e., representative of the class of invalid complaints).
Condition 2 implies that there is a positive example R+ such that for no R- one has
U R+ R-, i.e., there is no counterexample to this generalization of positive exam-
ples.

Let us now proceed to the example of a particular U in Figure 5 on the top. The
task is to determine whether U belongs to the class of valid complaints (on the left of

Analyzing Conflicts with Concept-Based Learning 317

Figure 4) or to the classes of invalid complaints (on the right); these classes are mutu-
ally exclusive.

We observe that V4 is the graph of the highest similarity with U among all graphs
from the set {V1, …V5} and find the common subscenario U V4. Its only thick arc
is derived from the thick arc between vertices with labels remind and deny of U and
the thick arc between vertices with labels remind and allow of V4. The first vertex of
this thick arc of U V4 is remind remind = remind, the second is allow deny = <0
0 0 1 0 0 0> (U V4 is calculated at the left bottom). Other arcs of U V4 are as
follows: that from the vertex with the label remind to the vertex with the label <0 0 0
1 0 0 0>; the arc from the vertex with the label <0 0 0 1 0 0 1> to the vertex with the
label remind; the arc from the vertex with the label <0 0 0 1 0 0 0> the vertex with the
label <0 1 0 0 0 1 0>. These arcs are thin, unless both respective arcs of U V4 are
thick (the latter is not the case here). Naturally, common subscenario may contain
multiple steps, each of them may result in the satisfaction of conditions 1) - 2) for the
class assignment above.

Similarly, we build the common subscenario U I5; I5 delivers the largest sub-
graph (two thick arcs) in comparison with I1, I2, I3, I4. Moreover, U V4 U I5,
this inclusion is highlighted by the ovals around the steps. Condition 2 is satisfied.
Therefore, U is an invalid complaint as having the highest similarity to invalid com-
plaint I5.

In [7, 11] we considered a learning model from [3] formulated in FCA terms. As
applied to scenarios, this model is described as follows. Given similarity (meet) op-
eration on pairs of scenarios that defines a semilattice, sets of positive and negative
examples, a (+)- hypothesis is defined as similarity of several positive examples
which does not cover any negative example (for the lack of space we refer to [7, 11]
for exact definitions). (-)-hypotheses are defined similarly. Now an undetermined
scenario is classified positively if it contains (in terms of) a positive hypothesis and
does not contain any negative hypothesis.

Finally, we discuss briefly the complexity of the approach. Generally, even test-
ing relation is an NP-complete problem. However, our scenario graphs are usually
not large, the number of vertices not exceeding 20-30. In the simplest case where the
vertex labels are incomparable, the large number of vertex labels reduces practical
complexity, since a vertex can be matched only to a vertex with the same label. As for
computing similarity operation , the realization of which involves several testing of

, with our modest computation resources (PC with 1.7 GHz and 1GB RAM) and
training sample with 40 examples, it was feasible to compute classifications in 3-4
hours using a lower part of the concept lattice of vertex labels (labels with common
generalization being too general were considered dissimilar).

6 Evaluations

In this section we present the results of preliminary evaluation of our classification
model. Firstly, we evaluate the accuracy of our nearest-neighbors technique given the
above dataset Figure 4. For each of ten scenarios, we set its class as unknown and
verify if it can be related to its class properly, building common subscenarios with

318 Boris A. Galitsky, Sergei O. Kuznetsov, and Mikhail V. Samokhin

four representatives of its class and five foreign scenarios. Only scenarios I2 and V3
can be neither assigned to the proper class nor to a foreign class; the rest of scenarios
were properly assigned.

Our further evaluation involved an improvement of existing software for process-
ing customer complaints, called ComplaintEngine, available for download at
http://www.dcs.bbk.ac.uk/~galitsky/ComplaintEngineSuite.html. Five attributes of mental
actions, selected for the model presented in this paper, were indeed selected to im-
prove the accuracy of scenario recognition, given the particular set of complaints
from our database of formalized complaints. Our database primarily originates from
the data on financial sector, obtained from the website of publicly available textual
complaints PlanetFeedback.com.

Currently, ComplaintEngine uses anti-unification procedure to find a similarity
between scenarios. Machine learning of ComplaintEngine uses the JSM-type plausi-
ble reasoning [3] augmented with situation calculus, reasoning about mental states
and other reasoning domains. ComplaintEngine applies domain-independent anti-
unification to formulas that include enumeration of mental actions in time.

As expected, graph representation of scenarios and employed nearest-neighbors
technique allowed noticeable improvement of complaint recognition accuracy. Judg-
ing on the restricted dataset of 80 banking complaints (40 complaints make the train-
ing set and 40 complaints have to be classified), the performance of ComplaintEngine
was improved by 6% to achieve the resultant recognition accuracy of 89%. Relating a
scenario to a class, ComplaintEngine is capable of explaining its decision by enu-
meration of similar and dissimilar scenarios, as well as particular mental actions
which led to its decision.

Since such accuracy was achieved by manual adjustment of the model of multi-
agent scenario, we expect it to be much lower for other complaint domains. However,
we believe that the role of improved machine learning technique for functioning in a
new complaint domain will be substantial.

We would like to briefly familiarize the reader with the functionality of Com-
plaint Engine [6]. The user interface to specify a complaint scenario is shown at Fig-
ure 6a. Figures 6b and 6c depict the fragments of this form where complainant selects
his mental actions and mental actions of his opponent (a company) respectively. Men-
tal actions are selected from the list of twenty or more, depending on the industry
sector of a complaint. The parameters of mental actions are specified as text in the
Interactive Form; however they are not present in the formal graph-based scenario
representation.

Having performed the justification of complaint validity, ComplaintEngine sets
the list box for complaint status at “unjustified”. ComplaintEngine provides the ex-
planation of its decision, highlighting the cases which are similar to U (unjustified),
and which are different from U (justified). Moreover, ComplaintEngine indicates the
mental actions (steps) that are common for U and other unjustified complaints to
further back up its decision.

A similar form to Figure 6 is used for a complainant to file a complaint, and for a
company to store complaints, analyze them, determine validity, explain how the deci-
sion has been made, and finally advise on a strategy for complaint resolution (see the
demo at www.dcs.bbk.ac.uk/~galitsky/CLAIMS/ComplaintEngineSuite.zip).

Analyzing Conflicts with Concept-Based Learning 319

Fig.6a. The screen-shot of the Interactive Complaint Form where the complaint scenario U
from Figure 4 is specified.

Fig. 6b: The left pane of the interactive complaint form. Here a complainant specifies her
mental actions and their parameters.

320 Boris A. Galitsky, Sergei O. Kuznetsov, and Mikhail V. Samokhin

A complainant has a choice to use the above form or to input complaint as a text
so that the linguistic processor processes the complaint automatically and fills the
form for her. Using the form encourages complainants to enforce a logical structure
on a complaint and to provide a sound argumentation. After a complaint is partially or
fully specified, the user evaluates its consistency. ComplaintEngine indicates whether
the current complaint (its mental component) is consistent or not, it may issue a warn-
ing and an advice concerning improvement of the logical structure of this complaint.

Fig. 6c: The right pane of the interactive complaint form. Here a complainant specifies the
mental actions and their parameters of his opponent (a company).

When the complainant is satisfied with the response of ComplaintEngine, he sub-
mits the completed form. The other option is if a user observes that it is not possible
to file a reasonable complaint, it may be dismissed at this early stage by the com-
plainant.

7 Conclusions

In this paper we proposed a Nearest Neighbors-based approach to relate a formalized
conflict scenario to the class of valid and the class of invalid complaint scenarios. The
representation language is that of labeled directed acyclic graphs with generalization

Analyzing Conflicts with Concept-Based Learning 321

operator on them. We considered the concept lattice of mental actions and showed
how the procedure of relating a complaint to a class can be implemented.

This is an initial attempt to build a machine learning technique for formal scenar-
ios as graphs. The further steps of the research along the line of machine learning for
multiagent scenarios will be as follows:

 Developing a more precise representation languages for scenarios of multi-
agent interactions; adding more features to scenario representation in addi-
tion to temporal and causal links;

 In terms of applications, proceeding beyond the domain of customer com-
plaints;

 Performing comparison with other classification techniques.
Building a framework for comparative analysis of formal scenarios, one or an-

other way to express the similarity between the main entities has to be employed. In
our earlier studies we approximated the meanings of mental entities using their defini-
tions via the basis of want-know-believe. However, building the concept lattice for
mental actions was found to be more suitable on the way to define a concept lattice
for scenarios themselves.

Also, here we suggested a novel approach to building a semantic network be-
tween linguistic entities in the basis of selected attributes. The choice of attributes in
this study is motivated by the task of scenario comparison; these attributes may vary
from domain to domain. Twenty selected mental entities are roughly at the same level
of generality – there are “horizontal” semantic relations between them.

We believe the current work is one of the first targeting machine learning in such
domain as multiagent interactions described in natural language. A number of studies
have shown how to enable BDI-agents with learning in a particular domain (e.g.
information retrieval). In BDI settings the description of agents’ attitudes is quite
limited: only their beliefs, desires and intentions are involved. Moreover, just the
automated (software) agents are addressed. In this paper we significantly extended
the expressiveness of representation language for agents’ attitudes, using twenty
mental actions linked by a concept lattice. The suggested machinery can be applied to
an arbitrary domain including inter-human conflicts, obviously characterized in natu-
ral language.

The preliminary evaluation of our model shows it is an adequate technique to han-
dle such complex objects (both in terms of knowledge representation and reasoning)
as mental actions of scenarios of multiagent interactions. Nearest Neighbors approach
was found suitable to relate an inter-human conflict scenario to a class. Evaluation
using our limited dataset, as well as the dataset of formalized real-world complaints
showed a satisfactory performance.

Acknowledgements The second and third authors were supported by the Russian
Foundation for Humanities, project no. 05-03-03019a.

322 Boris A. Galitsky, Sergei O. Kuznetsov, and Mikhail V. Samokhin

References

1. Bratman, M.E.: Intention, plans and practical reason. Harvard University Press (1987)
2. Fagin,R., Halpern, J.Y., Moses,Y., Vardi,M.Y. : Reasoning about knowledge MIT Press,

Cambridge, MA, London, England (1995)
3. Finn, V.K. : Plausible Reasoning in Systems of JSM-type, Itogi Nauki I Techniki, Seriya

Iformatika, 15, 54-101, 1991 [in Russian].
4. Galitsky, B. : A Library of Behaviors: Implementing Commonsense Reasoning about Mental

World. 8th Intl Conf on Knowledge-Based Intelligent Info Syst. (2004)
5. Galitsky, B.: Natural Language Question Answering System: Technique of Semantic Head-

ers. Advanced Knowledge International, Adelaide, Australia (2003)
6. Galitsky, B. and Tumarkina, I.: Justification of Customer Complaints using Emotional States

and Mental Actions. FLAIRS Miami, FL. (2004)
7. Ganter, B. and Kuznetsov, S.O.: Pattern Structures and Their Projections, Proc. 9th Int.

Conf. on Conceptual Structures, ICCS'01, G. Stumme and H. Delugach, Eds., Lecture
Notes in Artificial Intelligence, vol. 2120 (2001) 129-142

8. Ganter, B. and Wille R.: Formal Concept Analysis. Mathematical Foundations, Springer
(1999)

9. Guerra-Hernandez, A.1, Fallah-Seghrouchni,A. E. and Soldano, H.: Learning in BDI Multi-
agent Systems CLIMA IV - Computational Logic in Multi-Agent Systems Fort Lauderdale,
FL, USA (2004)

10. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann (1993)
11. Kuznetsov S.O.: Learning of Simple Conceptual Graphs from Positive and Negative Ex-

amples. In: J. Zytkow, J. Rauch (eds.), Proc. Principles of Data Mining and Knowledge Dis-
covery, Third European Conference, PKDD'99, Lecture Notes in Artificial Intelligence, vol.
1704 (1999) 384-392

12. Laza, R. and Corchado, J. M.: CBR-BDI Agents in Planning. Symposium on Informatics
and Telecommunications (SIT'02), Sevilla, Spain, September 25-27, pp. 181-192 (2002).

13. Mitchell, T.: Machine Learning, McGraw-Hill (1997)
14. Muller, H.J. Dieng, R. (eds.): Computational Conflicts: Conflict Modeling for Distributed

Intelligent Systems. Springer-Verlag New York (2000)
15. Olivia,C., Chang, C.F., Enguix, C.F. and Ghose A.K.: Case-Based BDI Agents: an Effec-

tive Approach for Intelligent Search on the World Wide Web. Intelligent Agents in Cyber-
space. AAAI Spring Symposium (1999)

16. Shanahan, M.: Solving the frame problem. MIT Press (1997)
17. Sowa, J.: Conceptual Graphs, Conceptual Structures: Information Processing in Mind and

Machine, Addison-Wesley, Reading, MA (1984)
18. Stone, P., Veloso, M.: Multiagent Systems: A Survey from a Machine Learning Perspec-

tive. Autonomous Robotics, 8(3) (2000) 345-383
19. Weiss, G., Sen, S.: Adaptation and Learning in Multiagent Systems. Lecture Notes in Arti-

ficial Intelligence, Vol. 1042. Springer-Verlag, Berlin Heidelberg New York (1996)
20. Wooldridge, M.: Reasoning about Rational Agents. The MIT Press Cambridge MA (2000)
21. Yevtushenko, S.A.: http://www.sf.net/projects/conexp. Last accessed April 7 2005.
22. Cohen, P.R, Levesque, H.J.: Performatives in a Rationally Based Speech Act Theory.

Proceedings of the 28th conference on Association for Computational Linguistics (1990)
79-88

23. Searle, J.: Speech Acts: An Essay in the Philosophy of Language, Cambridge, Eng.- Cam-
bridge University Press (1969)

24. Bach, K. and Harnish, R.M. Linguistic Commuication and Speech Acts, Cambridge,
Mass.: MIT Press (1979)

25. Searle, J.: Expression and Meaning: Studies in the Theory of Speech Acts.Cambridge
University Press. (1979)

Querying a Bioinformatic Data Sources Registry

with Concept Lattices

Nizar Messai, Marie-Dominique Devignes, Amedeo Napoli, and
Malika Smäıl-Tabbone

UMR 7503 LORIA, BP 239, 54506 Vandœuvre-lès-Nancy, FRANCE
{messai,devignes,napoli,smail}@loria.fr

http://www.loria.fr/equipes/orpailleur

Abstract Bioinformatic data sources available on the web are multi-
ple and heterogenous. The lack of documentation and the difficulty of
interaction with these data banks require users competence in both in-
formatics and biological fields for an optimal use of sources contents
that remain rather under exploited. In this paper we present an ap-
proach based on formal concept analysis to classify and search relevant
bioinformatic data sources for a given user query. It consists in building
the concept lattice from the binary relation between bioinformatic data
sources and their associated metadata. The concept built from a given
user query is then merged into the concept lattice. The result is given
by the extraction of the set of sources belonging to the extents of the
query concept subsumers in the resulting concept lattice. The sources
ranking is given by the concept specificity order in the concept lattice.
An improvement of the approach consists in automatic refinement of the
query thanks to domain ontologies. Two forms of refinement are possible
by generalisation and by specialisation.

1 Introduction

Bioinformatics is facing the great challenge of enabling biologists to effectively
and efficiently access to data stored in distributed data sources. The large num-
ber of sources, their heterogeneity and the complexity of the biological objects
they refer to, make it difficult to adequately relate the sources with a user query.
The query itself often needs to be processed and distributed over several data
sources. Different approaches are being experienced through data warehouses
(e.g. GUS [6]), federated databases (e.g. SEMEDA [14]) or mediators (e.g. TAM-
BIS [11]), all aiming at organizing access to several data sources in order to satisfy
user queries. Systems such as TAMBIS or SEMEDA are capable of taking into
account semantic processing of user query. However, most available systems only
deal with a limited number of data sources that do not satisfy a large propor-
tion of user queries. The work presented here aims at modeling knowledge about
bioinformatic data sources in order to propose to users, given a query, the best-
suited available bioinformatic data sources. The problem here is not the querying
of the data sources themselves but rather the identification and selection among

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 323–336, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 Nizar Messai et al.

all existing data sources of the most appropriate ones given the query. In this
paper we propose a solution to a particular information retrieval (IR) problem
where data sources instead of documents are searched and indexation is based
on metadata reflecting information about sources rather than on data extracted
from documents. Formal concept analysis (FCA) is used here for improving the
retrieval of relevant data sources thanks to a dynamic and flexible classification
of existing sources. In addition domain ontologies have been taken into account
for processing the query in a semantic manner.

We will first review in section 2 related works that combine FCA and IR, as
well as ontology usage in similar problems. Section 3 presents the BioRegistry
project as a new repository for metadata about bioinformatic data sources. The
formalisation of our problem using FCA is detailed in section 4 and the querying
aspects are developed in section 5 including an original query refinement method.
Finally some perspectives of this research work are discussed in section 6.

2 Related Work

2.1 Concept Lattices for Information Retrieval (IR)

The application of concept lattices in information retrieval was originally present
at the beginning of FCA [24]. Indeed, an obvious analogy exists between object-
attribute and document-term tables. Information retrieval was then mentioned
as one application field for concept lattices usage [12]. The formal concepts in
the lattice are seen as classes of relevant documents that match a given user
query with the subsumption relation (i.e. the partial ordering relation within the
concept lattice) between concepts allowing moving from one query to another
more general or more specific. A lattice-based information retrieval approach
is proposed in [4]. In both propositions [12] and [4], lattice-based information
retrieval shows performances that are better than boolean information retrieval.
One limitation is the complexity of the lattice (regarding the size and the needed
computation) for large contexts. But in the real applications it is estimated
that this maximum complexity is not reached [12]. However some works such as
multi-level strategies developed in ZooM [19] and iceberg lattices [22] propose
solutions for such complex applications either by expanding or refining a subpart
of a lattice (ZooM) or by decreasing the overall size of the lattice by limiting the
exploration depth of the set of concepts (icebergs).

2.2 Concept Lattice Construction

Several works deal with the problem of generating the set of concepts and the
concept lattice of a given formal context. A detailed comparison between perfor-
mances of algorithms for generating concept lattices and their diagram graphs
can be found in [15]. Some of the proposed algorithms allow an incremental
construction of concept lattice for a given formal context such as proposed
in [13, 5, 23]. This aspect is particulary beneficial for the information retrieval

Querying a Bioinformatic Data Sources Registry with Concept Lattices 325

applications in general and for our bioinformatic problem in particular for two
reasons. First, user queries need to be merged into the set of concepts in or-
der to retrieve relevant documents (or bioinformatic data sources) included in
these concepts as in [12, 4]. Second, incremental lattice construction allows the
insertion of new concepts, that in our case takes into account the availability of
new bioinformatic data sources on the web. This kind of insertion is essential
for keeping the BioRegistry repository in accordance with the web content as
explained in the following.

2.3 Improvement of FCA-based IR Performance Using Ontologies

Query refinement is an IR mechanism aiming at improving retrieval performance
by adding to user’s query new terms related to the query terms [2]. Propositions
combining ontologies and FCA in the purpose of improving retrieval performance
are found in [3, 20, 21]. In the two first works, a thesaurus is included to enhance
the retrieval process by enriching the indexation in the lattice. In the last work,
domain ontologies are used to build refined lattices according to user preferences
thus avoiding complete lattice construction. Both approaches work directly on
the lattice either by adding terms or by considering only parts of it.

In our work, domain ontologies are taken into account at early stage of the
information retrieval process, i.e. during the BioRegistry construction (see be-
low). This leads us to propose a mechanism for IR improvement based on query
rather than lattice modification.

3 The BioRegistry Project

3.1 Bioinformatic Data Sources

Hundreds of biological data sources are known today [8]. Most efforts so far have
been devoted to unifying the access to these sources, facilitating query process-
ing and distribution over relevant sources, integrating answers, etc. These tasks
involve designing appropriated workflows and require seamless interoperation
of resources. Integrated systems are available that rely on data warehouses or
mediation architectures. Today solutions are also envisaged in the context of
semantic web, involving composition of web services [1, 26, 17].

The maximal efficiency of these solutions is reached when the whole knowl-
edge available about all existing data sources can be exploited. For example the
apparently simple query: ”What are the genes from human chromosome X that
are preferentially expressed in brain?” deals with both so-called mapping data
and expression data which may or may not be contained in a single source at
a given time. Probably more than one data source can be found for each part
of the query. The user may select one of these sources because of given quality
criteria (e.g. manual revision of the data or update frequency) or availability
information (e.g. access constraints).

326 Nizar Messai et al.

The largest existing catalog for bioinformatic data sources is certainly
DBCAT1 [7]. However, this flat file repository contains a rather small meta-
data set and offers limited query capabilities because most fields domains are
open (free text). Registries are being developed for bioinformatic web services
such as in the BioMoby2 and MyGrid3 projects [16]. Today the proportion of bi-
ological information accessible through web services is far too limited and does
not properly answer users needs. However this situation may change and the
need for modeling and organizing knowledge about web services in order to give
access to relevant services for a given query will become as pressing as today
for biological data sources. In order to build a specific environment for bioinfor-
matic data source classification and searching and to test our propositions, we
have decided to build our own registry called BioRegistry, in which the various
metadata attached to biological data sources are organized in a dynamic, flexible
and structured manner.

3.2 The BioRegistry Model

A hierarchical model has been designed to organize four categories of metadata
attached to a data source: source identification, topics covered by the source, data
and data source quality, availability. At present, all these metadata are manually
extracted from the documentation associated to the data sources [18]. Topic in-
formation is divided in two parts: the subjects covered by the data sources and
the organisms concerned. In both domains, existing controlled vocabularies, on-
tologies are used to valuate metadata fields by choosing the most specific terms
and therefore minimizes the redundancy. The BioRegistry model thus includes
a sub-hierarchy for describing and referencing the ontologies. To illustrate this
point, figure 1 shows the ontology used to represent the phylogeny of model
organisms in the purpose of indexing bioinformatic data sources. This ontology
has been extracted from the NCBI taxonomy4 that is used to index the Genbank
sequences entries. Model organisms are lying at the leaves of the ontology and
only the structuring nodes have been retained. Assuming that each node repre-
sents a concept defined by common properties shared by the corresponding group
of organisms, the relation between nodes can be considered as a specialization
(a partially ordering) relation. The MeSH thesaurus5 has been used to valuate
the subjects metadata field. The BioRegistry has been implemented as an XML
schema compatible with semantic web languages such as OWL. Instances of the
BioRegistry model organizing metadata relative to certain bioinformatic data
sources can be visualized at the BioRegistry home page6.

1 http://www.infobiogen.fr/services/dbcat/
2 http://mobycentral.cbr.nrc.ca/cgi-bin/gbrowse moby
3 http://mobycentral.cbr.nrc.ca/cgi-bin/gbrowse moby
4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy
5 http://www.nlm.nih.gov/mesh/meshhome.html
6 http://bioinfo.loria.fr/Members/devignes/Bioregistry/presentationBioregistry/view

Querying a Bioinformatic Data Sources Registry with Concept Lattices 327

Fig. 1. Ontology of living organisms (defined for the BioRegistry)

3.3 BioRegistry Exploitation and FCA

First exploitation of the BioRegistry is form-based querying, allowing structured
information retrieval of the metadata. This should allow the biologist to formu-
late a multi-criteria query combining various metadata categories and to recover
a sorted list of data sources matching the query. For example the query cited in
section 3.1 would be composed of the following criteria: subjects concerned =
mapping or expression, organism concerned = human, manual revision = yes,
update frequency = monthly, and access constraints = free.

However, this approach requires the user to formulate a query which may re-
veal inefficient without an overall knowledge on the data sources described in the
BioRegistry. To overcome this limit, we decided to apply FCA to the BioRegistry
content. Indeed this type of formalisation could enable flexible classification of
data sources on the basis of metadata sharing as well as querying of the reg-
istry. The resulting classification of the sources present in the BioRegistry in the
form of a concept lattice enables the user to discover relevant sources simply by
browsing the lattice itself. Given a query, it is also possible to recover from the
concept lattice data sources sharing all or a subset of metadata with the query.
One advantage over classical information retrieval is that in the BioRegistry,
the set of data sources is far smaller (about one thousand) than most sets of
documents, thus constraining search space and query processing under certain
limits. This can be considered as a condition for scalability.

Domain ontologies, used to valuate the BioRegistry metadata, are also in-
tended to help the user to select query terms. In addition, they will be exploited
as a mean for query refinement in order to improve the recall (see sections 5.2,5.3,
5.4 and 5.5).

328 Nizar Messai et al.

4 Concept Lattices for Classifying BioRegistry Data
Sources

4.1 Construction of BioRegistry Concept Lattice

In this section, we show how the FCA framework applies to the formalisation of
BioRegistry content. More detailed FCA related definitions can be found in [10].

In the following, the formalisation of the BioRegistry is given by a formal
context Kbio = (G,M, I) where G is a set of bioinformatic data sources (e.g.
Swissprot, RefSeq,...), M is a set of metadata (e.g. manual revision, human
organism,...) and I is a binary relation between G and M called the incidence
of Kbio and verifying: I ⊆ G × M and (g,m) ∈ I (or gIm) where g, m are such
that g ∈ G and m ∈ M means that the data source g has the metadata m. An
example of formal context is given in table 1 with bioinformatic data sources and
metadata full names in table 2 (symbols and abbreviations are used for a better
visibility in the lattice). Consider A ∈ G a set of data sources, then the set of

Table 1. Example of BioRegistry formal context Kbio.

Sources\Metadata NS PS AS AO An Ve Hu Mo MR

S1 0 1 0 1 0 0 0 0 1

S2 1 1 1 1 0 0 0 0 1

S3 1 0 0 0 0 0 1 0 0

S4 0 1 0 1 0 0 0 0 1

S5 1 1 1 0 0 0 1 0 0

S6 1 0 0 0 1 0 0 0 0

S7 0 1 0 0 0 0 0 1 0

S8 0 1 0 0 0 1 0 0 0

Table 2. Complete names of bioinformatic data sources and their metadata.

Source name Symbol

Swissprot S1

RefSeq S2

TIGR-HGI S3

GPCRDB S4

HUGE S5

ENSEMBL S6

Mouse Genome DB S7

Vega Genome Browser S8

Metadata (attributes) Abbreviation Category

Nucleic Sequences NS Subject

Proteic Sequences PS Subject

Any Sequence AS Subject

Any Organism AO Organism

Animals An Organism

Vertebrate Ve Organism

Human Hu Organism

Mouse Mo Organism

Manual Revision MR Quality

metadata common to all the sources in A is A′ = {m ∈ M | ∀g ∈ A, gIm}.
Dually for a set B ∈ M of metadata, the set of data sources sharing all the
metadata in B is B′ = {g ∈ G | ∀m ∈ B, gIm}.

Querying a Bioinformatic Data Sources Registry with Concept Lattices 329

A formal concept in the BioRegistry formalisation Kbio is a data source set
sharing a metadata set. It is formally presented by a pair (A,B) where A ⊆ G,
B ⊆ M , A′ = B, and B′ = A; A and B are called the extent and the intent
of the concept, respectively. We denote by C the set of all formal concepts of
Kbio. Consider C1 = (A1, B1) and C2 = (A2, B2) in C. C1 is subsumed by C2

if A1 ⊆ A2 or dually B2 ⊆ B1 (denoted by C1 � C2). (C,�) is a complete
lattice [25] called the concept lattice corresponding to the context Kbio. In the
following, (C,�) will be denoted by L(C). Figure 2 shows the concept lattice L(C)
corresponding to the BioRegistry formal context example Kbio given in table 1.

Fig. 2. The concept lattice L(C) corresponding to Kbio

One important characteristic of the formal context Kbio is that the set M
of metadata is carefully delineated during the BioRegistry construction so that
its cardinality remains small. This particularity led us to choose the Godin al-
gorithm [13] to generate the corresponding concept lattice since the context is
small and sparse [15]. In addition, as mentioned in section 2.2 this algorithm
allows the addition of new concepts to an existing lattice. This aspect is useful
for the querying method described in section 5.

4.2 Flexible BioRegistry Data Sources Classification

Because various sets of data sources and/or various sets of metadata can eas-
ily be extracted from the BioRegistry (as a structured document), numerous
possibilities can be offered to customize the views on the overall organization
of bioinformatic data sources. For example, a user interested in the sharing of
subjects across the data sources (see section 3.2 for a definition of subject in the

330 Nizar Messai et al.

BioRegistry) may define a modified formal context where the attribute set is only
composed of subject metadata. The object set of this modified formal context
would be constituted by all the data sources being indexed with these metadata.
Alternatively, a user may wish to visualize the classification of a subset of data
sources dealing for instance with human data. A modified formal context may
be constructed where the object set is a subset of the data sources retrieved
from the BioRegistry on the basis of the metadata organism (see section 3.2)
valued as human. The attribute set of this modified formal context would then
be composed by the set of all metadata associated to the selected subset of data
sources.

This flexibility in customizing the views over the BioRegistry content is for
the moment very different from the solutions [19, 22] discussed above (sec-
tion 2.1). It simply relies on a new automatic lattice construction every time
that a new formal context can be created as an answer to a user need.

5 Querying BioRegistry Concept Lattices

5.1 Relevant Bioinformatic Data Sources Retrieval

Once the concept lattice L(C) is generated begins the retrieval of relevant sources.
In the same way as in [12] and [4], we define a query as a formal concept Q =
(QA, QB) where QA = {Query}, i.e. a name for the extent to be formed (it
can also be seen as a name for denoting an empty extent or a virtual class to
be instantiated) and QB is the set of metadata to be used during the search.
Actually, using the name Query is an artifact for allowing the extent of the
lattice by classifying the query Q = (QA, QB). As an example consider a query
that searches for data sources with the metadata Nucleic Sequences, Human and
Manual Revision. Using the abbreviations given in table 2, the query is given by
Q = ({Query}, {NS,Hu,MR}).

Once Q is given, it has to be classified in the concept lattice L(C) using the
incremental classification algorithm of Godin et al. [13]. The resulting concept
lattice is noted (C ⊕ Q,�) where C ⊕ Q denotes the new set of concepts once
the query has been added. In the following the concept lattice (C ⊕Q,�) will be
denoted by L(C⊕Q). For the given example the modified concept lattice L(C⊕Q)
is shown on figure 3. Dashed circles point out new or modified concepts due to
the insertion of the query. Only these concepts share properties with the query
and could thus be interesting for the user.

The query concept is denoted by Q either in L(C) or in L(C ⊕ Q). If there
exists in the lattice L(C) a concept of the form (A,QB∪B), then the classification
of Q in L(C) will produce a subsumer concept of the form ({Query,A}, QB) that
will be the new query concept to be considered. For the sake of simplicity, we
continue to denote by Q the query concept in L(C ⊕ Q) whatever the case.

Definition 1. A data source is relevant for a given query if and only if it shares
at least one metadata mentioned in the query. The degree of relevance is given
by the number of metadata shared with the query and by the stage during which
the data source is added to the result.

Querying a Bioinformatic Data Sources Registry with Concept Lattices 331

Fig. 3. The concept lattice L(C ⊕ Q)

This definition of relevance is the basis of the retrieval process in the lattice
and differs from the neighborhood notion used in [4]. The latter can lead to
retrieved documents lacking any query term which is acceptable in document
retrieval but not suitable to our needs. The above definition of relevance is
sufficient to explain the retrieval algorithm detailed hereafter.

Considering the above definition, all the relevant sources are in the extents
of Q and its subsumers in the concept lattice (indicated by dashed circles other
than the top concept in figure 3) since the intent of each one of these concepts
is a subset of QB (the intent of the query concept). In the following we will
denote by Rsources the set of relevant data sources for the considered query. It is
important to mention here that all the sources in Rsources do not have the same
relevance. In fact, they are ranked according to the number of shared metadata
with the query and according to the stage during which they have been added
to Rsources.

Intuitively, the relevant data source retrieval algorithm consists first in clas-
sifying the query concept in the lattice, operation that instantiates the extension
{Query} (actually, Query could be considered as a variable to be instantiated).
Then, the set of data sources that are inherited from the subsumers of the query
concept Q in the lattice are gathered in the result Rsources. The rank of the re-
turned data sources may be memorized according to the distance of the sources
to the query concept. Consider C1 the direct (most specific) subsumers of Q in
the concept lattice. The set of data sources in the extents of the concepts in C1

and not already in the result are added to the result. The next step consists in
considering the direct subsumers of concepts in C1 (subsumers of distance two
of Q) and adding new emerging data sources to the result set Rsources. Then we

332 Nizar Messai et al.

continue in the same way for C2, C3 etc until we reach an empty set Cn. In each
step, the data sources in the extent of concept with an empty intent are ignored
since they may not share metadata with the query.

In figure 3, the numbers near the concepts show the iterations of the explained
algorithm. In the first iteration, Q is considered. In this case there is no data
source in the extent of the query Q. In the second iteration the data sources S3,
S5 and S2 are added to the result. In the third iteration the data sources S6, S1

and S4 are added to the result.
Finally the set Rsources includes the data sources ranked as follows:
1. S3 (TIGR-HGI) and S5 (HUGE) share Nucleic Sequences and Human

with Q
1. S2 (RefSeq) shares Nucleic Sequences and Manual Revision with Q
2. S6 (ENSEMBL) shares Nucleic Sequences with Q
2. S1 (Swissprot) and S4 (GPCRDB) share Manual Revision with Q
Additional ranking criteria can be defined according to given preferences (e.g.

user preferences).

5.2 Ontology-Based Query Refinement

The query concept may not be filled with any result. For example in the BioReg-
istry formal context presented in table 1 a user searching data sources containing
data relative to the organism Chicken will not get any answer. However, there
may be data sources relevant to the query described by metadata that do not
directly map the query metadata. To help further the user we propose a query
refinement procedure based on domain ontologies.

Contrasting with the propositions [3, 20, 21] mentioned in section 2.3, we
modify the query instead of the lattice. In fact, we preserve the whole lattice
structure and we modify the query by inserting metadata related to metadata
of the query in a given ontology. This strategy, which can be automated, avoids
introducing redundancy in the lattice.

Added metadata are either more specific or more general than those initially
in the query. This leads to two types of query refinement: refinement by gen-
eralisation and refinement by specialisation. It is important to recall here that
we are not facing any synonymy problem between metadata in the query and
terms in the ontology since metadata valuation in the BioRegistry involves terms
extracted from domain ontologies.

The generalisation refinement w.r.t. a metadata adds more general meta-
data represented by its ancestors in the ontology. In the example cited above
(metadata Chicken), considering the ontology shown in figure 1, the metadata
that can be added to the query are Vertebrates, Animals, Eucaryotes, Cellular
Organisms, and Any Organism. However some of these metadata (Eucaryotes
and Cellular Organisms) are not in the formal context Kbio given in the table 1.
This means that these metadata are not shared by any source in this context so
adding them to the query will not lead to any result enrichment. Only new meta-
data already present in Kbio are considered during the generalisation refinement
process.

Querying a Bioinformatic Data Sources Registry with Concept Lattices 333

In a dual way the specialisation refinement w.r.t. a metadata adds semanti-
cally more specific metadata represented by its descendants in the ontology. In
the given example the metadata Chicken has no descendant and thus could not
be specialised. A better example would be a query composed by the metadata
Eucaryotes which does not retrieve any answer since this metadata is absent
from the formal context Kbio. Specialisation refinement leads to inspect all de-
scendants of Eucaryotes in the ontology and select only those that appear in the
formal context (Animals, Vertebrate, Human, and Mouse) to add them to the
query.

It is possible to combine both types of query refinement. This means, for
a given query metadata, adding both its ancestors and its descendants in the
corresponding domain ontology. In all cases of query refinement the number
of added metadata can be controlled by considering only the nearest ancestors
to the considered metadata in the ontology (generalisation refinement) or its
nearest descendants (specialisation refinement).

Once the ontology-based query refinement done, the refined query has to be
inserted into the original lattice L(C) and the algorithm detailed above can be
applied to the new resulting lattice L(C ⊕ Q). The next section presents the
ontology-based query refinement.

5.3 The Generalisation Query Refinement

Consider the query with the metadata Chicken represented by the formal concept
Q = ({Query}, {Ch}). The result for this query is empty since the metadata it
contains is not in the context. Applying the generalisation query refinement, we
obtain the following result as response to the refined query:

1. S6 (ENSEMBL) shares Animals with the refined query
1. S8 (Vega Genome Browser) shares Vertebrate with the refined query
1. S1 (Swissprot), S2 (RefSeq) and S4 (GPCRDB) share Any Organism with

the refined query
Each source of the result has a part satisfying the query and a part that

does not (e.g. S8 is concerned with Chicken but with Mouse and Human as
well). Furthermore the shorter the distance between the query metadata and
the added metadata the more relevant the resulting sources (S8 is preferable
to S6). This aspect motivates the possibility of controlling the added metadata
during the generalisation refinement process mentioned above. Hence to avoid
introducing less relevant (or irrelevant) sources in the result we have to consider
only the nearest ancestors of the considered metadata in the domain ontology.

5.4 The Specialisation Query Refinement

Consider the query with the metadata Eucaryotes represented by the formal
concept Q = ({Query}, {Eu}). The result for this query is empty since the
metadata it contains is not in the context. Applying the specialisation query
refinement, we obtain the following result for the refined query:

334 Nizar Messai et al.

1. S6 (ENSEMBL) shares Animals with the refined query
1. S8 (Vega Genome Browser) shares Vertebrate with the refined query
1. S5 (ENSEMBL) shares Human with the refined query
1. S7 (Mouse Genome DB) shares Mouse with the refined query
In this case each source of the result gives a partial answer to the query

and a composition of these data sources could provide a complete answer to
the query if each descendant (of the query metadata) indexes one data source.
Similarly as in the generalisation refinement the distance between the original
metadata and the added ones explains the difference of sources relevance. In
fact sources dealing with a far descendant of the query metadata give precise
information that is not always needed by the user. The level of specialisation
can be controlled by considering the nearest descendants of the metadata in the
domain ontology that constitute the best coverage of the query.

5.5 Choice Between Generalisation and Specialisation Query
Refinement

When the considered metadata is a leaf or is the root of the domain ontology
there is no problem of choice since in both case only one type of refinement is
possible (generalisation in the first case and specialisation in the second). But
when the metadata is neither a leaf nor the root the two types of refinement are
possible. The choice can be done with relation to the user preferences. In fact
if the user accepts to get data sources a part of which corresponds to his need
then the generalisation refinement is adopted. If he accepts to get data sources
that correspond to a part of his need the specialisation refinement is used. In
both cases it is useful to have a post ranking of the new selected data sources
reflecting the similarity between their indexing metadata and the query one [9].

6 Conclusion and Future Work

In this paper, we have presented an approach combining formal concept analy-
sis and domain ontologies for an information retrieval problem in bioinformatics.
The BioRegistry as a structured repository of metadata relative to bioinformatic
data sources (including data quality information) constitutes a well-suited ap-
plication domain for the FCA theory allowing scalability and flexibility. The
approach is intended for the problem of relevant bioinformatic data sources se-
lection for a further interrogation. Indeed concept lattices appear as a mean
to provide customised views about bioinformatic data sources and to organize
knowledge about these sources. This in turn can help the user in the process
of data sources retrieval to answer his query. Furthermore ontology-based query
refinement mechanisms have been proposed to improve this retrieval process.

An implementation of our proposition is currently underway. Preliminary
testing have shown the usefulness of a post-processing mechanism to improve
the ranking of retrieved data sources.

Querying a Bioinformatic Data Sources Registry with Concept Lattices 335

Acknowledgments

We would like to thank Shazia Osman for her contribution to the conception
of the BioRegistry model, its construction and indexation of the data sources it
contains. This work was supported by the ”PRST Intelligence Logicielle” from
the Région Lorraine.

References

[1] D. Buttler, M. Coleman, T. Critchlow, R. Fileto, W. Han, C. Pu, D. Rocco, and
L. Xiong. Querying Multiple Bioinformatics Information Sources: Can Semantic
Web Research Help? SIGMOD Record, 31(4):59–64, December 2002.

[2] D. Carmel, E. Farchi, Y. Petruschka, and A. Soffer. Automatic query refinement
using lexical affinities with maximal information gain. In SIGIR ’02: Proceed-
ings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 283–290. ACM Press, August 2002.

[3] C. Carpineto and G. Romano. A lattice conceptual clustering system and its
application to browsing retrieval. Machine Learning, 24(2):95–122, August 1996.

[4] C. Carpineto and G. Romano. Order-theoretical ranking. Journal of the American
Society for Information Science, 51(7):587–601, May 2000.

[5] C. Carpineto and G. Romano. Concept Data Analysis: Theory and Applications.
John Wiley & Sons, 2004.

[6] S. B. Davidson, J. Crabtree, B. P. Brunk, J. Schug, V. Tannen, G. C. Overton,
and C. J. Stoeckert. K2/Kleisli and GUS : experiments in integrated access to
genomic data sources. IBM systems journal, 40(2):512–531, 2001.

[7] C. Discala, X. Benigni, E. Barillot, and G. Vaysseix. DBCAT: a catalog of 500
biological databases. Nucleic Acids Research, 28(1):8–9, January 2000.

[8] M. Y. Galperin. The Molecular Biology Database Collection: 2004 update. Nucleic
Acids Research, 32:D4–D22, 2004.

[9] P. Ganesan, H. Garcia-Molina, and J. Widom. Exploiting hierarchical domain
structure to compute similarity. ACM Transactions on Information Systems
(TOIS), 21(1):64–93, January 2003.

[10] B. Ganter and R. Wille. Formal Concept Analysis. Mathematical Foundations,
Springer-Verlag, 1999.

[11] C. A. Goble, R. Stevens, G. Ng, S. Bechhofer, N. W. Paton, P. G. Baker, M. Peim,
and A. Brass. Transparent Access to Multiple Bioinformatics Information Sources.
IBM Systems Journal, 40(2):532–551, 2001.

[12] R. Godin, G. W. Mineau, and R. Missaoui. Méthodes de classification conceptuelle
basées sur les treillis de Galois et applications. Revue d’intelligence artificielle,
9(2):105–137, 1995.

[13] R. Godin, R. Missaoui, and H. Alaoui. Incremental Concept Formation Algo-
rithms Based on Galois (Concept) Lattices. Computational Intelligence, 11:246–
267, 1995.

[14] J. Kohler, S. Philippi, and M. Lange. SEMEDA : ontology based semantic in-
tegration of biological databases. Bioinformatics, 19(18):2420–2427, December
2003.

[15] S. O. Kuznetsov and S. A. Obiedkov. Comparing Performance of Algorithms for
Generating Concept Lattices. Journal of Experimental & Theoretical Artificial
Intelligence, 14:189–216, 2002.

336 Nizar Messai et al.

[16] P. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble,
and L. Stein. Applying semantic web services to Bioinformatics: Experiences
gained, lessons learnt. In F. v. H. Sheila A. McIlraith, Dimitris Plexousakis, editor,
The Semantic Web ISWC 2004: Third International Semantic Web Conference,
Hiroshima, Japan, November 7-11, 2004. Proceedings, volume 3298, pages 350–
364. Springer-Verlag GmbH, 2004.

[17] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver, Matthew,
Pocock, A. Wipat, and P. Li. Taverna : a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20:3045–3054, 2004.

[18] S. Osman. Réalisation d’un annuaire de sources de données génomiques en vue
de la collecte et de l’intégration de données sur le web. Rapport de master profes-
sionnel sciences et techniques mention informatique, spécialité bio-informatique,
Université Bordeaux I, Université Victor Segalen, Bordeaux II, Septembre 2004.

[19] N. Pernelle, M.-C. Rousset, H. Soldano, and V. Ventos. ZooM: a nested Ga-
lois lattices-based system for conceptual clustering. Journal of Experimental and
Theoretical Artifial Intelligence (JETAI), 14(2):157–187, September 2002.

[20] U. Priss. Lattice-based Information Retrieval. Knowledge Organization,
27(3):132–142, 2000.

[21] B. Safar, H. Kefi, and C. Reynaud. OntoRefiner, a user query refinement interface
usable for Semantic Web Portals. In Proceedings of Application of Semantic Web
technologies to Web Communities, Workshop ECAI’04, pages 65–79, Valencia,
Spain, August 2004.

[22] G. Stumme, R. Taouil, Y. Bastide, and L. Lakhal. Conceptual Clustering with Ice-
berg Concept Lattices. In Proceeding GI-Fachgruppentreffen Maschinelles Lernen
(FGML’01), Universitat Dortmund 763, Oktober 2001.

[23] D. van der Merwe, S. A. Obiedkov, and D. G. Kourie. AddIntent: A New Incre-
mental Algorithm for Constructing Concept Lattices. In P. W. Eklund, editor,
ICFCA Concept Lattices, Second International Conference on Formal Concept
Analysis, ICFCA 2004, Sydney, Australia, February 23-26, 2004, Proceedings,
volume 2961, pages 372–385. Springer, 2004.

[24] R. Wille. Restructuring lattice theory: an approach based on hierarchies of con-
cepts. Ordered sets, pages 445–470, 1982.

[25] R. Wille. Line diagrams of hierarchical concept systems. International Classifi-
cation, 2:77–86, 1984.

[26] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A suite of
DAML+OIL Ontologies to Describe Bioinformatics Web Services and Data. In-
ternational Journal of Cooperative Information Systems, 12(2):197–224, March
2003.

How Formal Concept Lattices Solve a Problem

of Ancient Linguistics�

Wiebke Petersen

Institute of Language and Information
Department of Computational Linguistics

University of Düsseldorf
petersew@uni-duesseldorf.de

Abstract. In his grammar of ancient Sanskrit, Pān. ini represents the
phonological classes as intervals of a list. This representation method
and especially the actual list constructed by Pān. ini, which is called the
Śivasūtras, earns universal admiration. The legend says that god Śiva
revealed the Śivasūtras to Pān. ini in order to let him start developing his
grammar of Sanskrit. A question still discussed is whether it is possible
to shorten the Śivasūtras. In the course of this paper, I am going to
prove that this question can be reduced to a question about the graph-
theoretical form of a particular formal concept lattice. Furthermore, I
show how the Śivasūtras can be reconstructed from Pān. ini’s grammar.

1 Introduction

1.1 Pān. ini’s Grammar of Sanskrit

Pān. ini’s grammar of Sanskrit (see [1], commented edition) is not only one of
the oldest recorded grammars (according to [2], it dates from around 350 BC),
but also one of the most complete grammars of any language ever written. It
earns universal admiration among linguists: “The descriptive grammar of San-
skrit, which Pān. ini brought to its perfection, is one of the greatest monuments
of human intelligence and an indispensable model for the description of lan-
guages”, ([3]). Pān. ini developed a number of ingenious techniques to represent
his grammar system in a very compact and concise way, including the introduc-
tion of a semi-formalized meta-language and an intricate system of conventions
governing rule applications (e.g. [4], [5]). Since the grammar was designed for
oral tradition, its compactness was particularly desirable, and the linear form of
the whole grammar was a prerequisite.

The science of Sanskrit developed as a tool used for the preservation and
propagation of the Vedas, the religious scriptures of ancient Hindus. The various
Vedic texts were produced in different regions of India, beginning about 1500
BC (see [6]). In the course of time, a gap developed between the language of

� Thanks to James Kilbury for providing me with the subject of this paper as a nice
riddle.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 337–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

338 Wiebke Petersen

the ancient scriptures and the colloquial use of Sanskrit. This gap affected both
the phonetic form of the orally preserved texts and the comprehension of them.
The late Vedic texts tell an anecdote to illustrate the importance of correct
pronunciation and stressing (Śatapatha-Brāhman.a 1.6.3.8): The demon Tvas.t.r.
longed for a son who would kill the war god Indra. But instead of begging
for an indra-śatrú (‘Indra-killer’), he asked for an ı́ndra-śatru and got a son
who was killed by Indra. Hence, a guidance for the correct recitation of the
religious texts became necessary. Pān. ini’s grammar comprises both the Vedic
Sanskrit and bhās.ā, the language spoken by the priestly class of his time, to which
we refer as classical Sanskrit nowadays. Pān. ini’s grammar and its canonization
laid the foundations for the development of Sanskrit into a lingua franca of
adminsitration and science.

Sanskrit is an inflected language with a rich morphology and sandhi.1 The
mastery of the sandhi rules is particularly important since two methods of recit-
ing are used in rituals: the standard method of reciting whole continuous sūtras
and the padapāt.ha – ‘word for word’-recitation – of the Veda. For the latter,
the sūtras must be analyzed and decomposed into single words and all sandhi-
processes must be canceled. This explains why the phonology of Sanskrit stands
in the center of interest.

Pān. ini’s grammar consists of four components: As.t.ādhyāȳı, Śivasūtras , Dhātu-
pāt.ha, and Gan. apāt.ha. The As.t.ādhyāȳı is the central component consisting of
about 4.000 rules, which make references to classes defined on the elements of the
other three components. The Śivasūtras (see Fig. 1) are the smallest component
and consist of only 14 sūtras, which comprise a list of the phonological segments
of Sanskrit and meta-linguistically used stop markers. According to this list, the
natural phonological classes of Sanskrit are defined by a representation method
specified in the As.t.ādhyāȳı. The As.t.ādhyāȳı refer to the phonological classes
defined by the Śivasūtras in 100s of rules.

a.i.un. ||r. .l.k ||e.oṅ ||ai.auc ||hayavarat. ||lan. ||ñamaṅan. anam ||jhabhañ ||
ghad. hadhas. ||jabagad. adaś ||khaphachat.hathacat.atav ||kapay ||́sas.asar ||hal ||

Fig. 1. Pān. ini’s Śivasūtras

Figure 1 shows the Śivasūtras in a linear sequence of sūtras, as constructed
by Pān. ini for oral tradition. Nowadays, it is common to present them in the
tabular form of Tab. 1 to support readability. Each sūtra consists of a sequence

1 Sandhi refers to the systematic phonological modifications morphemes and words
undergo if they are combined. An example of a sandhi phenomenon in English is the
variation of the indefinite determiner (a/an), which depends on the first sound of
the following word.

How Formal Concept Lattices Solve a Problem of Ancient Linguistics 339

Table 1. Pān. ini’s Śivasūtras in tabular form

1. a i u N.
2. r. l. K

3. e o Ṅ
4. ai au C
5. h y v r T.
6. l N.
7. ñ m ṅ n. n M

8. jh bh Ñ
9. gh d.h dh S.

10. j b g d. d Ś
11. kh ph ch t.h th

c t. t V
12. k p Y
13. ś s. s R
14. h L

of phonological segments, denoted in the table by lower case letters, followed by
one stop marker (called anubandha), identified by using capitals. The anubandhas
are taken from the set of consonants of Sanskrit. As a result, some consonants
occur twice in the list: once as an anubandha and once as a phonological segment.
Furthermore, there is one phonological segment, namely h, and one anubandha,
N. , occurring twice in the same role.

Pān. ini represents the phonological classes of Sanskrit as intervals of the list
given by the Śivasūtras . Thereby, each class is encoded as a continuous sequence
by giving its start segment and the marker element immediately following the
last segment of the sequence. Two questions, which are discussed to this day, are
whether it is possible to optimize the Śivasūtras with respect to the length and
how Pān. ini was able to construct the Śivasūtras . About the latter, the legend
says that god Śiva revealed the Śivasūtras to Pān. ini in order to let him start
developing his grammar of Sanskrit. In the course of this paper, I am going to
prove that the question of optimality can be reduced to a question about the
graph-theoretical form of a special formal concept lattice. Furthermore, I prove
that the Śivasūtras can be reconstructed from the As.t.ādhyāȳı without making
a claim on additional aids. Hence, the hypothesis that the Śivasūtras must be
necessarily older than the As.t.ādhyāȳı proves untenable (e.g. [7]).

We will use a simple phonological rule of Sanskrit as an example to show how
the Śivasūtras interact with the As.t.ādhyāȳı. Phonological rules are operational
rules of the form, “A is replaced by B if preceded by C and succeeded by D,”
or in modern notation:2

A → B/C D . (1)

As mentioned before, Pān. ini’s grammar is designed for oral tradition and hence,
non-linguistically signs like ‘→’ cannot be used in rule representations. Pān. ini

2 Alternatively, such a rule can be denoted as a context-sensitive rule: CAD → CBD.

340 Wiebke Petersen

denotes operational rules by using grammatical case markers to prescribe the
role an expression plays in a rule. The functions of such meta-linguistically used
case suffixes are laid down in individual sūtras of the As.t.ādhyāȳı; e.g., the in-
terpretation of the genitive suffix is laid down in sūtra 1.1.49:

1.1.49 s.as. th̄ı stāneyogā ()3 “The function of the genitive case in
a sūtra is that of the phrase ‘in the place of’ when no special rules qualify
the sense of the genitive” ([8]).

The four components of (1) are marked by case markers as follows: A is marked
by the genitive, B by the nominative, C by the ablative, and D by the locative
suffix.

Sūtra 6.1.77. of the As.t.ādhyāȳı serves us as an example for the interaction
of the Śivasūtras with the As.t.ādhyāȳı; it encodes the phonological rule of San-
skrit that the vowels of the class 〈i, u, r., l.〉 are replaced by their non-syllabic
(consonantal) counterparts 〈y, v, r, l〉 if they are followed by a vowel:

6.1.77. iko yan. aci ()

Cancelling all sandhi processes results in the padapāt.ha or ‘word-for-word’-form
ikah. yan. aci, which is morphologically analyzed as:

[ik]genitive [yan.]nominative [ac]locative .

Like the grammatical case markers, the technical expressions ik, yan. and ac
belong to Pān. ini’s meta-language, too; they are called pratyāhāras and denote
phonological classes. A pratyāhāra consists of a phonological segment followed
by an anubandha. The vowel ‘a’ in the expression yan. fulfills two tasks: first,
it serves as a linking vowel which turns the pratyāhāra into a pronounceable
syllable, and second, it prevents the consonant ‘y’ from being mistaken for the
anubandha ‘Y’. Using the convention of distinguishing the anubandhas by capi-
tals, we can write the pratyāhāras of sūtra 6.1.77 as iK, yN. and aC. Pratyāhāras
denote intervals of the Śivasūtras , their interpretation is defined by sūtra 1.1.71
of the As.t.ādhyāȳı: A pratyāhāra consisting of a phonological marker a and an
anubandha M denotes the continuous sequence of phonological segments in the
Śivasūtras which starts with a and ends with the phonological segment which
is the direct predecessor of the anubandha M. Table 2 shows the interpretation
of the pratyāhāras which are involved in sūtra 6.1.77. Note that although N.
denotes two distinct anubandhas , the meaning of the pratyāhāra yN. is unam-
biguous since only one of the anubandhas is a successor of y.

Now we are able to state the phonological rule encoded in sūtra 6.1.77 in a
modern form:

iK → [yN.]/ [aC] .

It states that the elements of the class iK= {i,u,r.,l.} are replaced by their coun-
terparts of the class yN. = {y, v, r, l} if they occur right in front of a member of the

3 The sūtras are given in Latin transliteration and Devanāgarī.

How Formal Concept Lattices Solve a Problem of Ancient Linguistics 341

Table 2. Interpretation of the pratyāhāras of sūtra 6.1.77. (iK= {i, u, r., l.}, yN. =
{y, v, r, l}, aC= {a, i, u, r., l., e, o, ai, au})

iK

1. a i u N.

2. r. l. K

3. e o Ṅ

4. ai au yN. C

5. h y v r T.

6. l N.
7. ñ m ṅ n. n M

8. jh bh Ñ
9. gh d.h dh S.

10. j b g d. d Ś
11. kh ph ch t.h th

c t. t V
12. k p Y
13. ś s. s R
14. h L

aC

1. a i u N.
2. r. l. K

3. e o Ṅ

4. ai au C
5. h y v r T.
6. l N.
7. ñ m ṅ n. n M

8. jh bh Ñ
9. gh d.h dh S.

10. j b g d. d Ś
11. kh ph ch t.h th

c t. t V
12. k p Y
13. ś s. s R
14. h L

class aC= {a,i,u,r.,l.,e,o,ai,au}. Other sūtras ensure that the correct ‘counterpart’
is selected.

There are 100s of sūtras in the As.t.ādhyāȳı using pratyāhāras for the deno-
tation of phonological classes, but altogether not more than 41 different pratyā-
hāras are actually used for this purpose. We will refer to those 41 phonological
classes of Sanskrit identified by Pān. ini in the As.t.ādhyāȳı as Pān. ini’s phonological
classes.

Phonological segments form a natural phonological class if they behave simi-
larly in similar phonological contexts. This analougous behavior can be expressed
in generalized rules as we have seen in sūtra 6.1.77. The phonological classes of
a grammar are mutually related: classes can be subclasses of other classes, two
or more classes can have common elements, etc. These connections are naturally
represented in a hierarchy. The pratyāhāra representation encodes such connec-
tions in a linear form. An aim of this paper is to determine the conditions under
which a set of sets in fact has a Śivasūtra-style linear representation.

1.2 The Economy Problem of the Śivasūtras

Pān. ini does not discuss the criteria on which he constructed the Śivasūtras ;
but, by looking at the intricate methods he used in the As.t.ādhyāȳı to make
it as compact as possible, it becomes clear that he aimed at an economical
representation.

Since the Śivasūtras denote a list of phonological segments and anubandhas ,
two interesting sublists can be regarded: the list of sounds and the anubandha
list. Hence, the Śivasūtras can be optimized in three respects, concerning the
length of the lists:

1. The length of the whole list is minimal.
2. The length of the sublist of the anubandhas is minimal and the length of the

whole list is as short as possible.
3. The length of the sublist of the sounds is minimal and the length of the

whole list is as short as possible.

342 Wiebke Petersen

It should be noted that none of these minimality criteria implies one of the others.
Looking at the Śivasūtras , the double occurrence of the sound h is especially
astonishing. This is why the third minimality criterion is in the focus of attention
in research on the economy of Pān. ini’s Śivasūtras . For example, [9] and [10] argue
that Pān. ini’s Śivasūtras are optimal with respect to the third criterion, using
linguistic principles and arguments referring to the construction principles of the
other parts of the grammar.

By looking at the phonological segments as attributes and at the phonological
classes as objects, a formal context can be associated with the Śivasūtras .4 I am
going to prove that Pān. ini’s Śivasūtras respect the third minimality criterion and
that this property depends solely on two facts: first, the corresponding formal
concept lattice is planar and second, there exists a plane drawing of the Hasse
diagram of the lattice in which each attribute concept lies at the boundary of the
infinite face if one removes the top node of the lattice and all edges connecting
it with co-atoms of the lattice (see Fig. 8).

The rest of this paper is organized as follows: This introductory section will
be completed by some preliminary definitions formalizing the third minimality
criterion and two short subsections about Formal Concept Analysis and the
theory of planar graphs. Section 2 shows that Pān. ini was forced to duplicate
at least one of the phonological segments and presents a sufficient condition
for the existence of a Śivasūtra-style representation. Finally, Sect. 3 explains,
how an optimal Śivasūtra-style representation can be constructed if it exists.
Furthermore, it is proven that solely the duplication of the h enabled Pān. ini to
construct the Śivasūtras such that they fulfill the third minimality criterion.

1.3 Preliminary Definitions

The following definitions formalize the main concepts of the preceding sections:
Definition 1 derives the notion of an S-alphabet from the linear form of the
Śivasūtras . Definition 2 and Def. 3 generalize Pān. ini’s method of using pra-
tyāhāras to represent phonological classes. The phenomenon of the duplicated
phonological segment h in Pān. ini’s Śivasūtras is covered by the notion of an
enlarged S-alphabet. Finally, Def. 4 formalizes the third minimality criterion.

Definition 1. A well-formed Śivasūtra-alphabet (short S-alphabet) is a triple
(A, Σ,<) consisting of two disjoint finite sets A and Σ, and a total order < on
A ∪ Σ. A is called the alphabet and Σ the marker set.

Definition 2. A subset T of the alphabet A is S-encodable in (A,Σ, <) if and
only if there exists a ∈ A and M ∈ Σ, such that T = {b ∈ A|a ≤ b < M}. aM
is called the pratyāhāra or S-encoding of T in (A, Σ,<).

In the following, we call a pair (A, Φ) consisting of a finite set A and a set Φ of
subsets of A (i.e., Φ ⊆ P(A)) a system of sets.

4 Formal contexts and formal concept lattices are defined in Sec. 1.4.

How Formal Concept Lattices Solve a Problem of Ancient Linguistics 343

Definition 3. An S-alphabet (A′, Σ,<) corresponds to a system of sets (A, Φ)
if and only if A = A′ and each element of Φ is S-encodable in (A′, Σ,<). An S-
alphabet which corresponds to (A, Φ) is called an S-alphabet of (A,Φ). A system
of sets for which a corresponding S-alphabet exists is said to be S-encodable.

For example, take the set of subsets

Φ = {{d, e}, {b, c, d, f, g, h, i}, {a, b}, {f, i}, {c, d, e, f, g, h, i}, {g, h}} (2)

of the alphabet A = {a, b, c, d, e, f, g, h, i}; it is S-encodable and

a bM1 c g hM2 f iM3 dM4 eM5 (3)

is one of the corresponding S-alphabets. The S-encodings of Φ are: dM5, bM4,
aM1, fM3, cM5, and gM2.

In order to formalize the third minimality criterion and to deal with the
double occurrence of h in the Śivasūtras , we need the concept of enlarging an
S-alphabet: Â is said to be an enlarged alphabet of A if there exists a surjective
map ϑ : Â → A. ϑ extends naturally to sets: ϑ : P(Â) → P(A). It is clear that
for every system of sets (A, Φ) we can find an enlarged alphabet Â and a set of
subsets Φ̂ with Φ = {ϑ(ϕ′) : ϕ′ ∈ Φ̂} such that (Â, Φ̂) is S-encodable. To achieve
such an S-encodable system of sets (Â, Φ̂) we enlarge A so that the sets of Φ̂
are pairwise disjoint. Then we arrange the sets of Φ̂ in an arbitrary sequence
and separate them by markers. The induced S-alphabet (Â, Σ̂, <̂) corresponds
obviously to (Â, Φ̂).

An S-alphabet of (Â, Φ̂) will sometimes be called an enlarged S-alphabet of
(A,Φ). Since we always find a finite, enlarged S-alphabet of (A, Φ), a minimally
enlarged S-alphabet exists.

Definition 4. An enlarged S-alphabet (Â, Σ̂, <̂) of (A, Φ) is said to be optimal
if and only if it fulfills the following conditions: First, there exists no other en-
larged S-alphabet (Ã, Σ̃, <̃) of (A, Φ), the alphabet Ã of which has fewer elements
than Â and furthermore, as a secondary condition, no other enlarged S-alphabet
(Ã, Σ̃, <̃) of (A, Φ) exists with |Ã| = |Â| and |Σ̃| < |Σ̂|.

1.4 Formal Concept Analysis

Formal Concept Analysis (see [11]) starts with the definition of a formal context
K as a triple (G,M, I) consisting of a set of objects G, a set of attributes M ,
and a binary incidence relation I ⊆ G × M . For any subset of objects A ⊆ G,
their set of common attributes is defined as A′ := {m ∈ M |∀g ∈ A : (g,m) ∈ I}.
Analogously, the set of common objects for B ⊆ M is B′ := {g ∈ G|∀m ∈ B :
(g,m) ∈ I}. A formal concept is a pair (A,B) with the properties A = B′ and
B = A′, where A is called the extent and B the intent of the concept. The
set of all formal concepts of a context is partially ordered by the subconcept-
superconcept-relation: (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2. The set of
formal concepts together with this partial order forms a complete lattice, called

344 Wiebke Petersen

the formal concept lattice. As usual, we denote the set of all formal concepts of
a formal context (G,M, I) by B(G,M, I) and the corresponding concept lattice
by B(G,M, I). The attribute concept μ(m) associated with an attribute m is the
greatest concept whose intent contains m, and analogously, the object concept
γ(g) of an object g is the smallest concept whose extent contains g.

Formal Concept Analysis has been applied to a number of linguistic problems
before. A survey of these linguistic applications can be found in [12]. What is
remarkable about the application discussed in the present paper is that the at-
tention is focused on the graph-theoretical form rather than the order-theoretical
form of the formal concept lattices as it is generally the case.

1.5 Criterion of Kuratowski on Planar Graphs

If a graph can be drawn in the Euclidean plane, such that neither a vertex nor
a point of an edge lies in the inner part of another edge (i.e., no crossing edges
exist), then it is said to be planar.5 A lattice is said to be a planar lattice if its
Hasse-diagram augmented by an extra edge from the top to the bottom node is
a planar graph. One of the most important criteria for the planarity of graphs is
the criterion of Kuratowski, which is based on the notion of minors of a graph.
A graph M is said to be a minor of a graph G if it can be arrived from G by
first removing a number of vertices and edges from G and then contracting some
of the remaining edges.

Proposition 1 (Criterion of Kuratowski). A graph G is planar if and only
if G contains neither a K5 nor a K3,3 as a minor (see Fig. 2).

Fig. 2. The complete graph K5 with 5 vertices (left) and the complete bipartite graph
K3,3 with 2 · 3 vertices (right)

2 Planar Formal Concept Lattices and S-encodability

2.1 Are Pān. ini’s Phonological Classes of Sanskrit S-encodable?

To each system of sets (A, Φ) we define the corresponding context (Φ,A,+).
The Hasse-diagram of B(Φ,A,+) gives us a first hint on whether (A, Φ) is S-
encodable:
5 Formal definitions of planar graphs and planarity can be found in most textbooks

on graph theory (e.g. [13]).

How Formal Concept Lattices Solve a Problem of Ancient Linguistics 345

Proposition 2. If (A, Φ) is S-encodable, then the corresponding formal concept
lattice B(Φ,A,+) is planar.

Proof. Let (A, Σ,<) be an S-alphabet of (A, Φ). The proof is based on the
construction of a plane drawing of the Hasse-diagram of B(A, Φ,∈) with stair-
shaped edges.6 For each formal concept (A,B) of (A, Φ,∈), its coordinates in
R2 are given as follows: The smallest object of A w.r.t. (A, Σ,<) determines the
x-coordinate of the vertex;7 its y-coordinate is given by the length of the longest
descending chain between (A,B) and (∅′′, ∅′) in B(A, Φ,∈).

The edges of the constructed Hasse-diagram are stair-shaped polygonal arcs:
Let (A,B) and (Ā, B̄) be two formal concepts of (A, Φ,∈) with (A,B) ≺ (Ā, B̄).
If min(A) = min(Ā), then the edge between (A,B) and (Ā, B̄) is a straight
line; else the vertices (A,B) and (Ā, B̄) are connected by the polygonal arc (see
Fig. 3)

((Ā, B̄)x, (Ā, B̄)y), ((Ā, B̄)x, (Ā, B̄)y − 1

2
),

((A,B)x − 1

2
, (Ā, B̄)y − 1

2
), ((A, B)x − 1

2
, (A,B)y), ((A, B)x, (A,B)y) .

The only exception to this edge-construction rule is that every edge between
a concept (A,B) and (∅′′, ∅′) is just a straight line. The construction of the edges
guarantees that no vertex of the Hasse-diagram lies in the inner part of an edge.

(A, B)

(Ā, B̄)

Fig. 3. Stair-shaped edge of the Hasse-diagram

With a simple but detailed case distinction it can be proven that every conflict
which occurs between two edges (i.e. every crossing of two edges) can be solved
by slightly transforming one of the edges in such a way that the distance between
the transformed and the original edge does not exceed 1

4 . ��

Figure 4 shows the resulting plane Hasse-diagram of B(A, Φ,∈) with Φ and
A taken from example (2); the vertices are placed w.r.t. the S-alphabet given
in (3).

It follows as a corollary that a system of sets is not S-encodable whenever
the corresponding formal concept lattice is not planar.

Together with Kuratowski’s criterion this proves that Pān. ini’s phonological
classes are not S-encodable since Fig. 5 shows a section of the concept lattice
6 Rotating the constructed Hasse-diagram by 180◦ yields in a plane Hasse-diagram of
B(Φ,A,�).

7 If the smallest element of A is the n-th smallest element of A in (A, Σ, <), then the
x-coordinate is n. If A = ∅, then the x-coordinate is 0.

346 Wiebke Petersen

0

1

2

3

4

a b c g h f i d e

{d}{f, i}{g, h}{b}

{d, e}{c, d, f, g, h, i}{a, b}

{c, d, e, f, g, h, i}
{b, c, d, f, g, h, i}

{a, b, c, d, e, f, g, h, i}

Fig. 4. Stair-shaped plane Hasse-diagram of the concept lattice of (A, Φ,∈) with Φ
and A taken from (2); the vertices are placed w.r.t. the S-alphabet in (3).

corresponding to the phonological classes, which has K5 as a minor. Hence,
Pān. ini was forced to duplicate at least one of the phonological segments. But it
remains to prove that h is the best candidate for the duplication; this discussion
will be postponed.

Proposition 3. Pān. ini’s phonological classes of Sanskrit are not S-encodable.

2.2 Excursus: A Sufficient Condition of S-encodability

The condition for S-encodable systems of sets given in Prop. 2 is necessary but
not sufficient, however. Figure 6 (left) shows an example of a system of sets
which is not S-encodable, although its corresponding concept lattice is planar.
We need a stronger condition to fully identify those systems of sets which are
S-encodable.

Proposition 4. Let (A, Φ) be a system of sets and Φ̄ = Φ∪ {{a} : a ∈ A}. The
following statements are equivalent:

1. (A, Φ) is S-encodable.
2. B(Φ̄,A,+) is planar.

Proof. By adding a new singleton {a}, a ∈ A, to Φ, the S-encodability is pre-
served (at most one new marker immediately following a has to be inserted in
an S-alphabet of (A, Φ)). Hence, (A, Φ) is S-encodable if and only if (A, Φ̄) is
S-encodable. Together with Prop. 2, this proves that statement 1. implies state-
ment 2.

Given a plane drawing of B(Φ̄,A,+), all singletons of Φ̄ are co-atoms of the
lattice and the x-coordinates of their corresponding attribute concepts induce
a total order on A. Inserting a marker behind each element of A yields an S-
alphabet encoding of (A, Φ̄). ��

How Formal Concept Lattices Solve a Problem of Ancient Linguistics 347

Fig. 5. The figure shows a section of the concept lattice corresponding to Pān. ini’s
phonological classes which has K5 as a minor. The minor K5 can be derived by deleting
all but the highlighted edges and contracting the edges marked by crosses. The figure
shows that the class memberships of the phonological segments h, v and l (denoted by
l2) are independent of each other.

Fig. 6. Left: formal concept lattice of (Φ,A,�) with Φ = {{d, e}, {a, b}, {b, c, d},
{b, c, d, f}, {a, b, c, d, e, f}}; middle: formal concept lattice of (Φ̄,A,�) which has K3,3

as a minor (see right figure)

It follows as a corollary, that a system of sets (A, Φ) is S-encodable whenever
a plane Hasse-diagram of B(Φ,A,+) exists in which each attribute concept lies
at the boundary of the infinite face if one removes the vertex (∅′, ∅′′) from the
Hasse-diagram. This boundary graph is called the S-graph of (A, Φ) and it is
fixed up to isomorphism. The left part of Fig. 7 shows a plane drawing of the
formal concept lattice corresponding to (2) in which the S-graph is highlighted.

348 Wiebke Petersen

Looking back at the example given in Fig. 6, it is clear that by moving from
Φ to Φ̄ the concept lattice loses the quality of being planar; B(Φ̄,A,+) has the
bipartite graph K3,3 as a minor (figure on the right side). Hence, (A, Φ) cannot
be S-encodable; this can be also derived from the fact that the attribute concept
μ(f) does not lay in the S-graph of the Hasse diagram of B(Φ,A,+) (left figure).

3 Constructing Śivasūtra-Style Representations

3.1 The S-graph Determines the S-alphabet

If (A, Φ) is a system of sets which is S-encodable, then an S-alphabet (A, Σ,<) of
(A, Φ) can be found as follows: Take the labeled S-graph of (A, Φ) and a path in
it, that starts and ends at the vertex corresponding to (A′,A′′). The path must
meet the following conditions: First, the path passes each attribute concept at
least once; second, none of the edges occurring more than once in the path is
part of a cycle in the S-graph. By looking at the S-graph as a subgraph of the
directed Hasse-diagram, the edges of the path can be directed.

The S-alphabet, seen as a sequence of markers and elements of A, can be
constructed from the empty sequence by traversing the path from the beginning
to the end: If an attribute concept μ(a) is reached, then add a to the sequence.
If an edge is passed whose direction contradicts the traversal direction, a new,
previously unused, marker element is added to the sequence, unless the last
added element is already a marker. Finally, after the end of the path is reached,
revise the sequence as follows: If an element of A appears more than once in
the sequence, delete all but the first occurrences. The definition of the S-graph
guarantees that, if the path passes an attribute concept μ(a) more than once, the
path goes upwards immediately after it reaches μ(a) for the first time. Hence,
eliminating all but the first occurrence of a reduces the number of markers in
the resulting S-alphabet.

Applied to our small example (2), we may choose the path illustrated in
Fig. 7, which fulfills the required conditions. Traversing the path, we pass first
μ(a) and μ(b) without using an edge against its destined direction. Now we move
downwards and violate the direction of the edge, and therefore we have to add
a marker to our sequence, so that it starts with a bM1. Now moving upwards
we collect the c and the g, but since μ(g) = μ(h) we also have to collect the h.
After this we move downwards again, and that is why we add a new marker. We
again reach μ(c) and add c a second time to our sequence. So far our sequence
is a bM1 c g hM2 c, and if we continue we end up with the S-alphabet depicted
in (3).

Note that this procedure does not yield a unique S-alphabet since we have
several decisions to make: (a) If two attribute concepts are identical the order
of the attributes in the S-alphabet is arbitrary; (b) from μ(c) we can either go
to μ(g) or μ(i); (c) the path can be traversed clockwise or anti-clockwise.

Whenever a run violates the direction of an edge immediately after passing
an attribute concept, a new marker has to be added to the S-alphabet. Hence,

How Formal Concept Lattices Solve a Problem of Ancient Linguistics 349

Fig. 7. Left: plane Hasse-diagram of the formal concept lattice corresponding to (2)
with highlighted S-graph; right: possible path in the S-graph from which the S-alphabet
a bM1 c g h M2 f i M3 d M4 eM5 can be achieved

every optimal S-alphabet of (A, Φ) can be constructed by finding a run through
the S-graph which minimizes the number of such marker-insertion situations.

3.2 Pān. ini’s Śivasūtras Are Optimal

Figure 8 shows a plane Hasse-diagram of the concept lattice of (Φ̂, Â,+), where
A is the alphabet of phonological segments of Sanskrit, Φ is the set of Pān. ini’s
phonological classes, and A and Φ are enlarged by duplicating the segment h
according to Pān. ini (the duplication of h is denoted by h).8 The black and the
striped rectangles next to some of the vertices mark the places where markers
have to be added, depending on the traversal direction (black: anti-clockwise [14
markers], striped: clockwise [17 markers]). It is obvious that no S-encoding can
have less than 14 markers and the optimal S-alphabets are the various combina-
torial variants of

〈a,i,u,M1, r.,l.,M2, {〈{e,o}, M3〉, 〈{ai,au}, M4〉},h,y,v,r,M5,l,M6,

ñ,m,{n̄,n. ,n}, M7, jh,bh,M8, {gh,d.h,dh}, M9, j,{b,g,d. ,d}, M10,

{kh,ph}, {ch,t.h,th}, {c,t.,t}, M11, {k,p}, M12, {ś,s.,s}, M13,h,M14〉 .

among which Pān. ini’s Śivasūtras can be found. [9] argues in detail that the
order chosen by Pān. ini out of the set of possibilities is unique if one requires a
subsidiary principle of restrictiveness.

So far we have argued that Pān. ini was forced to enlarge the alphabet of
phonological segments, but it remains to show why duplicating the h is the best
choice. If h is entirely removed from the 41 phonological classes, then the optimal
S-alphabet has only one marker less, namely 13.

In Pān. ini’s phonological classes the phonological segments h, v, and l oc-
cur independently of each other. The Hasse-diagram of a concept lattice of a
formal context which contains three independent attributes has K5 as a minor
and is therefore not planar (see Fig. 5). Triples of three independent attributes
are called K5-triples. Hence, to get a planar concept lattice it is necessary to
duplicate at least one element of each K5-triple.
8 Drawings done by ‘Concept Explorer’ (http://www.sourceforge.net/projects/conexp).

350 Wiebke Petersen

F
ig

.
8
.

P
la

n
e

H
a
ss

e
d
ia

g
ra

m
o
f

th
e

co
n
ce

p
t

la
tt

ic
e

o
f

P
ā
n .
in

i’
s

p
h
o
n
o
lo

g
ic

a
l

cl
a
ss

es
o
f

S
a
n
sk

ri
t.

T
h
e

d
en

o
ta

ti
o
n
s

in
th

e
fi
g
u
re

a
re

a
s

fo
ll
ow

s:
h

is
th

e
d
u
p
li
ca

te
o
f
h

a
n
d

r1
:r .

,
l1

:l .
,
r2

:r
,
l2

:l
,
n
1
:ñ

,
n
2
:ṅ

,
n
3
:n .

,
n
4
:n

,
d
h
1
:d .

h
,
d
h
2
:d

h
,
d
1
:d .

,
d
2
:d

,
th

1
:t .

h
,
th

2
:t
h
,
t1

:t .
,
t2

:t
,
s1

:́s
,

s2
:s .

,
s3

:s
.

T
h
e

w
h
it
e

b
ox

es
m

a
rk

th
e

p
h
o
n
o
lo

g
ic

a
l

cl
a
ss

es
.

T
h
e

sm
a
ll

fi
g
u
re

o
n

to
p

sh
ow

s
th

e
p
a
th

in
th

e
S
-g

ra
p
h

w
e

h
av

e
to

ch
o
o
se

in
o
rd

er
to

co
n
st

ru
ct

P
ā
n .
in

i’
s

Ś
iv

a
sū

tr
a
s
.

How Formal Concept Lattices Solve a Problem of Ancient Linguistics 351

Looking at Pān. ini’s phonological classes, we find 249 K5-triples; each of them
contains h, and no other element is contained in each of them. Hence, to avoid
the duplication of h it would be necessary to duplicate more than one element.
For this reason, there is no other choice then duplicating h in order to get an
optimal S-alphabet corresponding to Pān. ini’s phonological classes.

This answers the question whether Pān. ini’s Śivasūtras are optimal in the
sense that there exists no other sequence of the phonological segments inter-
rupted by less stop markers.

Proposition 5. Pān. ini’s Śivasūtras form an optimal S-alphabet.

4 Outlook

Pān. ini’s method of linearly encoding a subset of a power set could also be in-
teresting from the viewpoint of other coding and sorting problems. However, it
should be noted that the property of S-encodability with no or only moderate
enlargement of the alphabet set is rare, at least among the phonological systems
of natural languages (see [14]). Hence, linguists should investigate how Pān. ini’s
phonological analysis of Sanskrit differs from phonological classifications of other
languages. Furthermore, it would be interesting to give an alternative mathe-
matical description of S-encodable systems of sets and enlarged S-alphabets for
testing and using the property.

References

1. Katre, S.M.: As.t.ādhyāȳı of Pān. ini. University of Texas Press, Austin (1987)
2. Kiparsky, P.: Paninian linguistics. In Asher, R.E., ed.: The Encyclopedia of Lan-

guage and Linguistics. Volume 6. Pergamon Press, Oxford (1994)
3. Bloomfield, L.: Review of Liebich, Konkordanz Panini-Candra. Language 5 (1929)

267–276
4. Kiparsky, P.: On the architecture of Pān. ini’s grammar. Lecture notes (2002)
5. Ostler, N.: Sanskrit studies as a foundation for computational linguistics. In:

Proceedings of the LESAL Workshop, Mumbai (2001)
6. Deshpande, M.M.: Ancient Indian phonetics. In Koerner, E.F.K., Asher, R.E., eds.:

Concise history of the language sciences: From the Sumerians to the cognitivists.
Elsevier, Oxford, New York, Tokyo (1995) 72–77

7. Faddegon, B.: The mnemotechnics of Pān. ini’s grammar I: The Śiva-Sūtra (1929).
In Staal, F., ed.: A Reader on the Sanskrit Grammarians. Motilal Banarsidass
(1985) 275–285

8. Vasu, S.C., ed.: The As.t.ādhyāȳı of Pān. ini, Allahabad (1891) (2 volumes). Reprint:
Delhi (1962)

9. Kiparsky, P.: Economy and the construction of the Sivasutras. In Deshpande,
M.M., Bhate, S., eds.: Paninian Studies. Ann Arbor, Michigan (1991)

10. Staal, F.J.: A method of linguistic description. Language 38 (1962) 1–10
11. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.

Springer, Berlin (1999)

352 Wiebke Petersen

12. Priss, U.: Linguistic applications of Formal Concept Analysis. (In: Proceedings of
ICFCA 2003)

13. Diestel, R.: Graph Theory. Springer, New York (1997)
14. Petersen, W.: A mathematical analysis of Pān. ini’s Śivasūtras. Journal of Logic,

Language and Information 13 (2004) 471–489

A New Method to Interrogate and Check

UML Class Diagrams

Thomas Raimbault, David Genest, and Stéphane Loiseau

Université d’Angers, Laboratoire d’Etude et de Recherche d’Angers (LERIA),
2 boulevard Lavoisier 49000 ANGERS Cedex 01 - France

{thomas.raimbault, david.genest, stephane.loiseau}@info.univ-angers.fr

Abstract. We present a new method for graphically interrogating and
checking UML class diagrams. We employ the model of conceptual graphs
(CGs) as representation, calculation and visualisation model. The key
idea of our work is to translate UML class diagrams into the formalism
of CGs. First, UML notations are encoded into UML Ontology that is a
support of CG. Second, using the UML Ontology, a UML class diagram
can be translated into a CG, called CG class diagram. Third, CG class
diagrams can be interrogated via the elementary operation of CG, named
projection. Fourth, constraints and rules provides a way to model specifi-
cations for checking CG class diagrams. We use two approaches to check
a class diagram: object-oriented specifications and field specifications.

1 Introduction

Unified Modeling Language (UML) [BJR98] is the graphic modeling language,
which becomes the industrial de-facto reference notation to express object-orien-
ted systems. UML defines different diagram types representing different aspects
and views of a system, especially the class diagram. The class diagram is consid-
ered in this paper, because it is the core of object modeling. However, UML is
just a language: it does not specify any means to interrogate or check diagrams.
To obtain a reliable modeling of a system, the designer needs on the one hand
to look at his design objectively. So, he has to interrogate the diagrams. On the
other hand, the diagrams must be checked: the designer has to specify his own
checking specifications and understand the results provided by checks.

In spite of there are commercial tools today like Rational Software Rose
[IBM04] or Borland Together [Bor04] for designing UML diagrams, they work
as follows. First, the process of asking query on class diagrams are limited to
pre-formatted queries. Second, the suggested checks are only standard: they
implicitly check object-oriented concepts. The goal of our work is to offer to
the designer a more complete method for interrogating and checking UML class
diagrams. We employ the model of conceptual graphs (CGs) as representation,
calculation and visualisation model.

The CG model is introduced by [Sow84]. A formulation of simple CGs is pro-
posed by [CM92, MC96]. Thereafter, many extensions of this basic model were
proposed. We use in this article the model of typed nested CGs [CM97, CMS98],

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 353–366, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

354 Thomas Raimbault, David Genest, and Stéphane Loiseau

with coreference links [CM04], rules [Sal98, BM02] and constraints [BGM99a]
[BM02]: the Appendix recalls the fundamental definitions. The CG model pre-
sents many interests. The CG is a formal and visual knowledge representation
model. It provides reasoning operations, which are sound and complete with
respect to deduction in first order logic (see [Sow84, CM92] for simple graphs,
[CMS98] for nested graphs, and [Sow84, Wer95, KS97] for more general graphs
equivalent to first order logic). Throughout this article, we will employ the term
“conceptual graph” for “typed nested conceptual graph”.

To answer the requirements of quality and of human-system interaction in
modeling, our contribution is a graphic method: first a translation of UML class
diagrams into CGs is provided. Second, a new method to interrogate and to check
class diagrams is presented. Figure 1 presents a global schema of our approach.
The key idea of our work is to translate UML class diagrams into the formalism
of CGs, where UML notations are encoded into UML Ontology that is a support
of CG. Thus, a given class diagram is automatically translated into a CG, called
CG class diagram, that is defined on UML Ontology. As a result we can reuse the
reasoning power of the CG model, with graphic operators, rules and constraints.
Our first fundamental contribution is a graphic method to check the validity of
class diagrams. We use two approaches to check a class diagram. We propose on
the one hand object-oriented specifications. These specifications are used to carry
out checks on class diagrams, which have to be in keeping with object-oriented
concepts. For example, “there should not be any inheritance cycle in a class di-
agram”. Compared to the existing UML tools, our method works similarly but
with this time an explicit language to represent the specifications. The checking
specifications are not in “black boxes”. One the other hand, we offer the oppor-
tunity for the user to create or to adapt, by the intuitive and drawing aspect of
our method, particular specifications in the area of corporate knowledge. In ad-
dition to the object-oriented specifications, these particular specifications, that
we call field specifications, are applied to make class diagrams in keeping with
the firm’s needs. For instance, “each class of a class diagram have to be associed
with another class”. Both categories of specifications are given as positive or
negative constraints in the CG model. Our second fundamental contribution is
the possibility to visually interrogate the syntactic contents of class diagrams.
For example, “Does the FourWheelDrive class inherit from the Car class?”. The
user can draw a query as he wants it: a query is simply expressed as a class
diagram in the formalism of CGs, called CG query.

This paper is organized as follows. Section 2 presents the UML Ontology
that defines and organizes UML notations. Section 3 presents any propositions
to translate a UML class diagram into a CG class diagram. Section 4 indicates
how to interrogate a CG class diagram with CG queries. Section 5 presents two
kind of specifications: object-oriented specifications and field specifications, which
must be satisfy when a CG class diagram is checked.

A New Method to Interrogate and Check UML Class Diagrams 355

Fig. 1. Global presentation of our approach

2 UML Notations Modeled into UML Ontology

A short description of UML class diagram and its components is recalled in
Section 2.1. Section 2.2 defines and organizes the UML notations into the set of
concepts types, relation types and nested types of our UML Ontology.

2.1 A Short UML Class Diagram Description

Class diagram shows statical structure of a system, i.e. the system elements, their
internal features and their relationships to other system elements. The system
elements are modeled as classes in the class diagram. Two kinds of statical
relations exist between classes: generalization and associations.

We present with an example, in Figure 2, the main elements of a UML class
diagram. The Car class is drawn as a solid-outline rectangle. It contains the
name of the class in the top compartment, the attributes band and makingDate
in the middle compartment, and the moveOff operation in the bottom compart-
ment. This operation has two parameters, one is an instance of Driver class and
the other is a data type int, and returns a bool. The generalization relation is
represented by an arrowed line drawn from the specialised class to the general
class. Then, the 2CV class has for generalization the FrontWheelDrive class, and
the Car class has for subclasses the classes FourWheelDrive, FrontWheelDrive
and 2CV. An association between the classes Driver and Car is defined by the
Rental association class and by the properties present at the ends of the associa-
tion, like the multiplicity ‘0..N’. The association class is shown as a class symbol
linked by a dashed line to a line symbol of association. More details on UML
class diagrams are available in [BJR98, IBM04].

2.2 UML Ontology

We define and organize the ontology of object-oriented models into a structure
that we call UML Ontology. The UML Ontology is based on [BJR98].

356 Thomas Raimbault, David Genest, and Stéphane Loiseau

Fig. 2. UML class diagram

Definition 1 (UML Ontology). UML Ontology is a support of CG, where
UML notations are defined and organized into the set of concepts types (Fig-
ure 3), the set of relation types (Figure 4) and the set of nested types (Figure 5).

Figure 3 presents the UML concepts that are ordered on a hierarchical set.
Figure 4 shows the different associations that are possible between classes or
between data. Figure 5 gives the different localizations where UML notations
are placed to describe more specifically a concept.

3 CG Class Diagrams

We indicate now how to translate a UML class diagram into an equivalent CG
class diagram.

Definition 2 (CG class diagram). A CG class diagram is a CG, which is for
one thing correctly formed on the UML Ontology, respecting the propositions in
Sections 3.1 and 3.2; for another is in local normal form.

Each class, attribute, operation and property (Section 3.1) is modeled by
an own concept node with an appropriate type. The various elements, which
describe the same concept node, are nested within this last. A nesting of a
concept node constitutes an internal level of reading of the node. Note that a
concept node can have defferent typed nestings.

Each relationship (Section 3.2) between classes is modeled by a binary-arity
(resp. ternary-arity) relation node of ‘generalization’ (resp. ‘association’) type.
This relation node links two concept nodes of ‘class’ type (resp. two concept
nodes of ‘class’ type and one concept node of ‘associationClass’ type).

3.1 Internal Feature of Classes

The following propositions indicate how to translate a class, their properties and
their members 1 in the formalism of CGs.
1 Attribute and operation of a class are called members of this class.

A New Method to Interrogate and Check UML Class Diagrams 357

Fig. 3. Hierarchy of concept types

Fig. 4. Hierarchy of relation types

Fig. 5. Hierarchy of nesting types

358 Thomas Raimbault, David Genest, and Stéphane Loiseau

Proposition 1 (Class in a CG class diagram). A class is an individual
concept node c of class type whose individual marker is the name of the class.

A member of a class is represented by a concept node. The members of a
class are nesteded into a typed nesting membersDescription of c.

A property of a class (resp. member) corresponds to a concept node from
the general concept type visibility and classProperty (resp. attributeProperty
or operationProperty). The properties are nested within c into a typed nesting
propertiesDescription.

Fig. 6. Concept node of class type and its nestings

Proposition 2 (Attribute in a CG class diagram). An attribute of a class
is an individual concept node a whose the associed type can be of two kinds:
either attributeInstance if the attribute is the instance of a class or attribute-
OfDataType if the attribute comes from a data-type. The individual marker is
the name of the attribute, which is prefixed by ‘attr ’.

The type of an attribute is an individual concept node in the form of [class:
className] if the attribute is modeled by a concept node of a kind-of instance
type. If not its form is [dataType: typeName].

The multiplicity of an attribute is an individual concept node whose the as-
socied type is multiplicity and the individual marker is the multiplicity value.

Both attribute’s type and its multiplicity are nested within a into a typed
nesting attributeDescription.

Proposition 3 (Operation and parameter in a CG class diagram). An
operation of a class is an individual concept node whose the associed type is
operation. The individual marker is formed with the signature 2 of the operation.
It is built in the following way: a prefix ‘op ’, followed name of the operation,
the character ‘ ’, and the types of each parameter separated by ‘ ’.
2 The signature of an operation is a set that gathers the name and the parameter

types of the operation. The return parameter type is not use.

A New Method to Interrogate and Check UML Class Diagrams 359

Just as an attribute, a parameter is a concept node in the form of [class:
className] or [dataType: typeName], which is nested within the concept node
representing the operation into a typed nesting of operationDescription.

The direction of a parameter is a concept node d, which is nested within the
concept node representing the parameter into a typed nesting dataDescription.
The type of d comes from the general concept type direction.

The parameters of an operation are associated to the same relation node
(parameterX), where X indicates the number of parameters, respecting the order
between parameters. The return parameter is associated with the unary relation
node (return).

Figure 6 shows the Car class, described in Figure 2. It is represented by a con-
cept node of ‘class’ type with an individual marker equals to ‘Car’. This node has
two nestings: one of ‘propertiesDescription’ type and the other of ‘membersDe-
scription’ type. The types of concept nodes that are nested into the first nesting
correspond to the properties of the class. Thus, the Car class is public and non
abstract for example. The concept nodes into the second nesting represent the
members of the class. In the same way, the brand attribute is represented by
a concept node of ‘attributeInstance’ type with an individual marker equals to
‘attr brand’. This node has two nestings. The first one of ‘descriptionProperties’
type includes the attribute’s properties. The second one of ‘descriptionAttribute’
type includes the type of data and the multiplicity of the attribute. Then, the
brand attribute is an instance of ‘String’ class with a multiplicity equals to ‘1’.
The moveOff operation has two parameters: first, driver as an instance of Driver
class and second, a data without name of int data-type. Indeed, the individual
concept node ‘param driver’ of ‘instance’ type is linked on the first edge to a re-
lation node of ‘parameter2’ type, and the generic concept node of int data-type
on the second edge to this binary relation node. The operation returns a data of
bool data-type.

The choice to prefix the names of attributes by ‘attr ’ and those of operations
by ‘op ’ makes it possible to model for example an attribute and an operation,
of the same class, which have the same name. The choice to use the signature of
an operation and not only the name of the operation makes it possible to model
the overload of operations.

3.2 Relationships Between Classes

There are two kinds of relationships between classes: generalization and asso-
ciation. The following definitions indicate how to translate generalization and
association in the formalism of CGs.

Proposition 4 (Generalization in a CG class diagram). A relation of
generalization between two classes is modeled by a relation node of generalization
type. The first neighbor if this relation node is the more specific class, and the
second neighbor is the more general class.

An association specifies a relation between several classes. Association is an
abstraction which represents connections that exist between the classes of a given
system.

360 Thomas Raimbault, David Genest, and Stéphane Loiseau

We made the choice to always represent an association in its most complete
form, i.e. by using an association class and informing how each class of an as-
sociation takes part in it. Thus, an association consists of a central element: an
association class. The classes that take part in association are called class ends.

Proposition 5 (Association in a CG class diagram). An association class
is modeled by a concept node of associationClass type.

A relation node of association type is first of all linked to the concept node of
associationClass type, then at the concept node that correspond to a class end,
and finally at a concept node of associationEnd type.

The properties that characterize the way in which the class end takes part
in an association are represented by a concept node of multiplicity type and the
concept nodes from the general concept type associationProperty.

The Figure 7 shows the relationships between classes of the UML class di-
agram in Figure 2, which is translated in a CG class diagram. For readability
purpose in this figure, properties’ classes and their members are suggested by
‘. . . ’ within concept nodes. Generalization between the classes Car and Four-
WheelDrive for exemple is represented by a relation node of ‘generalization’ type.
It is read in the following way: “the FourWheelDrive class has for generalization
the Car class”. Association between the classes Driver and Car is centralized
by a concept node of ‘associationClass’ type. Concept nodes of ‘association’ type
links the association class, the class ends and some details about these latest.

Fig. 7. Generalization and association links

4 Interrogate CG Class Diagrams

It is possible to make reasoning on a CG class diagram with projection. A form
of reasoning is to interrogate a class diagram. For example, it can be interesting
to know “the public operations of a given class”, or to search “the subclasses of
a given class”.

Before interrogating a class diagram, we have to express the transitivity of
generalization between classes. The application of rules makes possible this ac-
tion. The closure of a CG class diagram has to be obtained before interrogating
it.

Section 4.1 states what is a rule in the CG model, and presents two rules that
represent transitivity of generalization. Section 4.2 presents how to interrogate
CG class diagrams.

A New Method to Interrogate and Check UML Class Diagrams 361

4.1 Rules and CGs

A rule [Sal98, BM02] allows one to add new knowledge. It is in the form of “if G1

then G2”, where G1 and G2 are CGs. Thus, it is composed of a hypothesis and a
conclusion, and is used in the following way: given a graph, if the hypothesis of
the rule matches the graph, then the information contained in the conclusion is
added to the graph. We follow here the notations of [BM02]: the representation
of a rule is a bi-colored graph, which is extended to typed nested CGs.

Definition 3 (Rule and closure of CG [Sal98, BM02]). A rule is a bi-
colored CG, located by ⇒ ,where the hypothesis is formed of the set of the nodes
on white bottom, and the conclusion of the set of the nodes on black bottom.

A rule R is said to be applicable to a CG G if there is a projection, named
Π, from the hypothesis of R into G. In this case, the result of the application of
R to G following Π is the simple graph GR obtained from G and the conclusion
of R by restricting the label of each frontier node c in the conclusion to the label
of its image Π(c) in G, then joining c to Π(c).

A CG G is said to be closed such a set of rules R if all information that can
be added by a rule is already present in G.

The Figure 8 shows two rules R1 and R2, which explicitely express the tran-
sitivity of generalization link. The hypothesis of R1, on white bottom, is a class
that has for generalization another class. The conclusion of R1, on black bottom,
is the second class has for subclass the second class. In other words, R1 expresses
that “If X class has for generalization Y, then Y has for subclass X ”. The rule
R2 expresses that “If X class has for subclass Y and Y has for subclass Z, then
X has for subclass Z”.

The application of the two rules in Figure 8 to the class diagram Figure 2 in
the formalism of CGs has for result the CG in Figure 9.

Fig. 8. Two rules to express the transitivity of generalization link

4.2 Interrogate CG Class Diagrams

With the UML Ontology, it is possible to interrogate a class diagram. A query is
simply expressed as a class diagram in the formalism of CGs, called CG query.
The idea is to find if the query could be matched on a subpart of the class
diagram. In that case, the answer(s) of the query is (are) the generic concept
node(s) of the query that correspond to its (their) matching(s) on the CG class
diagram.

362 Thomas Raimbault, David Genest, and Stéphane Loiseau

Fig. 9. Closure of CG with the rule of transitivity

Definition 4 (CG query). Having the UML Ontology and a CG class diagram,
a query on this class diagram is a CG that is defined on this same ontology, called
CG query.

Definition 5 (Result of a CG query). The result of a CG query on a CG
class diagram is the set of projections from the CG query to the CG class dia-
gram.

Suppose that we would like to interrogate the class diagram on Figure 2
with the following terms: “Does the Car class have any subclasses that are
public?”. The query is represented by the CG on the left on Figure 10. Indeed,
this CG shows the Car class that represented by a concept node of ‘class’ type
with an individual marker equals to ‘Car’. This class has as a subclass a still
unknown class. The latest is thus represented by a concept node of ‘class’ type
without individual marker (i.e. a generic concept node). This query admits three
results. Therefore results are: “Yes, the Car class has tree subclasses; and these
subclasses are FourWheelDrive, FrontWheelDrive and 2CV ”.

Fig. 10. Query and its results

5 Check CG Class Diagrams

There are two categories of checkings, which are expressed by object-oriented
specifications and field specifications. First specifications are used to carry out

A New Method to Interrogate and Check UML Class Diagrams 363

checks on class diagrams that have to be in keeping with object-oriented con-
cepts. The second specifications express needs of a specific project according to
corporate objectives. Both object-oriented specifications and field specifications
are represented by constraints of CGs.

Definition 6 (Validity of a CG class diagram). A CG class diagram is
valid iff it satisfies both object-oriented specifications and field specifications.

Definition 7 (Object-oriented and field specifications). Object-oriented
specification and field specification are negative or positive constraints of CGs.

Section 5.1 states what is a constraint. Section 5.2 and 5.3 present respectively
any samples of object-oriented specifications and field specifications.

5.1 Constraints and CGs

We use two types of constraints: positive constraint and negative constraint, with
the notations of [BGM99b, BM02] that are extended to typed nested CGs.

Definition 8 (Constraints of typed nested CGs). A positive or negative
constraint is a bi-colored typed nested CG. The condition of a constraint is drawn
on white bottom, and the obligation for a positive constraint or the prohibition
for a negative constraint on black bottom. Positive and negative constraints are
respectively located by + and − .

Definition 9 (Constraint satisfaction [BGM99b, BM02]). A concepual
graph G satisfies a positive constraint C, if any projection of the condition of C
to G can be extended to a projection of C to G. A concepual graph G satisfies
a negative constraint C, if any projection of the condition of C to G can not be
extended to a projection of the prohibition of C to G.

5.2 Object-Oriented Specifications

To be in keeping with object-oriented concepts, a class diagram has to satisfy
any appropriate specifications. These specifications, called object-oriented speci-
fications, are given in the formalism of CG as positive and negative constraints.

Figure 11 shows one negative constraint C1 and one positive constraint C2.
C1 expresses the following prohibition: “an A class cannot be a subclass of a
B class, which is a subclass of A”. Then, this constraint checks that there is
no inheritance cycle. The condition of C2 is a class with an abstract operation,
and this class has for subclass another class that is non-abstract. The obligation
of C2 is if the subclass has an operation o that as the same identifier of the
first class’ operation, then o must be not abstract. Thus, this positive constraint
specifies that if a X class has abstract operations, a Y subclass of X can be not
abstract only if the abstract oprerations of X are redefined as not abstract in Y.
The coreference link between the two generic concept nodes of ‘operation’ type
indicates that they are the same individual.

364 Thomas Raimbault, David Genest, and Stéphane Loiseau

Fig. 11. Object-oriented specifications

5.3 Field Specifications

The field specifications can model any requirement in addition to object-oriented
specifications that the user need according to corporate objectives on a specific
project. These specifications are given in the formalism of CG as positive and
negative constraints.

For instance, the positive constraint C3 in Figure 12 specifies that any class
has to be associed at another class. Note that all association relationships use
an association class in this paper. The positive constraint C4 represents the fact
that a class cannot be abstract.

Fig. 12. Field specifications

6 Conclusion

A prototype was developed to translate a UML class diagram in XMI format
[OMG02, Gen04b] into a CG class diagram in BCGCT format [Hae95]. In ad-
dition, rules and constraints were written with BCGCT format to check class
diagrams and to satisfy the object-oriented concepts. Query and check on CG
class diagrams were tested whith a tool that we have developped, basing on the
CoGITaNT platform [Gen04a]. The results of interrogating and checking, with
examples of class diagrams, are satisfactory. They provide the desired require-
ments in a quasi-instantaneous way.

Currently, an interface is under development to formulate queries and checks
in the UML formalism, to which one adds a minimum of notations. Thus, al-
though the CG model is the external format of our method of interrogating and
checking UML diagrams, it can be transparent for the user if he wants.

We wish to extend our graphic method of translating, of interrogating and of
checking to all type of UML diagrams. This extension will firstly offer a unique
and visual formalism to express at the same time various UML diagrams, queries
and checks. Secondly, queries and checks will be used between several UML
diagrams.

A New Method to Interrogate and Check UML Class Diagrams 365

References

[BGM99a] J.F. Baget, D. Genest, and M.L. Mugnier. Knowledge acquisition with a
pure graph-based knowledge representation model. In Proc. of KAW’99,
volume 2, pages 7.1.1–7.1.20, 1999.

[BGM99b] J.F. Baget, D. Genest, and M.L. Mugnier. A pure graph-based solution
to the SCG-1 initiative. In Proc. of ICCS’99, volume 1640 of LNAI, pages
355–376. Springer, 1999.

[BJR98] G. Booch, C. Jacobson, and J. Rumbaugh. The Unified Modeling Language
- a reference manual. Addison Wesley, 1998.

[BM02] J.F. Baget and M.L. Mugnier. Extensions of Simple Conceptual Graphs:
the Complexity of Rules and Constraints. JAIR, 16(12):425–465, 2002.

[Bor04] Borland. Together software, 2004. http://www.borland.com/together/.
[CM92] M. Chein and M.L. Mugnier. Conceptual Graphs: Fundamental Notions.

Revue d’intelligence artificielle, 6(4):365–406, 1992.
[CM97] M. Chein and M.L. Mugnier. Positive nested conceptual graphs. In ICCS’97

[ICC97], pages 95–109.
[CM04] M. Chein and M.L. Mugnier. Concept types and coreference in simple

conceptual graphs. In Proc. of ICCS’04, volume 3127 of LNAI, pages 303–
318. Springer, 2004.

[CMS98] M. Chein, M.L. Mugnier, and G. Simonet. Nested graphs: A graph-based
knowledge representation model with FOL semantics. In Proc. of KR’98,
pages 524–534. Morgan Kaufmann Publishers, 1998.

[Gen04a] D. Genest. CoGITaNT 5.1.5, 2004. http://cogitant.sourceforge.net.
[Gen04b] Gentleware. Poseidon SE, 2004. http://www.gentleware.com/.
[Hae95] O. Haemmerlé. La plate-forme CoGITo : manuel d’utilisation. Technical

Report 95012, LIRMM, 1995.
[IBM04] IBM. Rational rose, 2004. http://www-306.ibm.com/software/rational/.
[ICC97] ICCS’97, volume 1257 of LNAI. Springer, 1997.
[KS97] G. Kerdiles and É. Salvat. A sound and complete CG proof procedure

combining projection with analytic tableaux. In ICCS’97 [ICC97], pages
371–385.

[MC96] M.L. Mugnier and M. Chein. Représenter des connaissances et raisonner
avec des graphes. Revue d’intelligence artificielle, 10(1):7–56, 1996.

[OMG02] OMG. XML Metadata Interchange (XMI) Specification, 2002.
http://www.omg.org/technology/documents/formal/xmi.htm.

[Sal98] É. Salvat. Theorem proving using graph operations in the conceptual graph
formalism. In Proc. of ECAI’98, 1998.

[Sow84] J.F. Sowa. Conceptual Structures: Information Processing in Mind and
Machine. Addison Wesley, 1984.

[Wer95] M. Wermelinger. Conceptual graphs and first-order logic. In Proc. of
ICCS’95, volume 964 of LNAI, pages 323–337. Springer, 1995.

7 Appendix

Definition 10 (Support of TNCGs [CMS98]). A support of typed nested
conceptual graph (TNCGs) is a 6-tuple S = (TC , TR, TU , σ, I, τ). TC is a partial
ordered set of concept types, whose greatest element is � (the universal type). TR

is a partial ordered set of relation types, with a partition: TR = TRi1 ∪ . . .∪ TRip

366 Thomas Raimbault, David Genest, and Stéphane Loiseau

where TRij is a set of ij-ary relations, ij > 0; thus, two comparable relation
types must have the same arity n, and their greatest element is �n. TU is a
partial ordered set of nested types, whose greatest element is Description. In
addition there is an empty description, noted ∗∗. The partial orders on TC, TR

and TU correspond to a kind-of relation between types. σ is a mapping, which
associates a signature with each relation type; the signature of a relation specifies
the arity and greatest possible concept type for each argument. For any relation
type r ∈ TRij , σ(r) ∈ (TC)ij . I is a set of individual markers. In addition there is
a generic marker, noted ∗, as non-specified individual. I ∈ {∗} is provided with
an order, such that ∗ is the greatest marker, and individual markers are pairwise
non-comparable. τ is a mapping from I to TC.

Definition 11 (Typed Nested Conceptual Graph [CM97, CMS98]). A
TNCG related to a support S, is a labelled bipartite graph G = (R,C,U, lab).
R and C are the node sets, respectively relation and concept node set. U is
the set of edges. Edges incident on a relation node are totally ordered, they
are numbered from 1 to the degree of the relation node. The i-th neighbor of a
relation r is denoted by Gi(r). Each node has a label given by the mapping lab
such that ∀r ∈ R, lab(r) ∈ TR and ∀c ∈ C, lab(c) = (type(c), ref(c), Desc(c))
with type(c) ∈ TC, ref(c) = ∗ or ref(c) ∈ I, Desc(c) = ∗∗ or Desc(c) is sets
of (nested type,a TNG). A concept node c such as ref(c) ∈ I is said to be an
individual concept node, if not (i.e. ref(c) = ∗) it is said to be a generic concept
node. Moreover, lab respects the constraints fixed by the applications σ and τ :
∀r ∈ R, type(Gi(r)) ≤ σi(type(r)), and ∀c ∈ C if ref(c) ∈ I (i.e. ref(c) �= ∗)
then τ(ref(c)) ≤ type(c).

Definition 12 (Projection of TNCGs [CM97, CMS98]). A projection
form a TNCG H = (RH , CH , UH , labH) to a TNCG G = (RG, CG, UG, labG)
is a couple of applications Π = (f, g), with f : RH → RG, g : CH → CG, which:

1. preserves the edges and the classification of the edges: for all edge rc of UH,
f(r)g(c) is an edge of UG. Plus, if c = Hi(r) then g(c) = Gi(f(r)).

2. may decrease labels: ∀r ∈ RH , labG(f(r)) ≤ labH(r); and ∀c ∈ CH , given
labH(c) = (t,m, d) and labG(g(c)) = (t′,m′, d′), labG(g(c)) satisfies:
– (t’,m’) ≤ (t,m)
– If d is a graph, then d′ is a graph such as a projection from d to d′ exists.

If d = ∗∗, there is no constraint on d′ that is a graph or equal to ∗∗.

Definition 13 (Coreference link [CM04]). A coreference link between two
generic concept nodes represents the same individual in different nestings of a
nested CG. A coreference link is symbolized by a dotted link connecting the two
concept nodes representing the same individual.

Definition 14 (Local normal form [CM04]). A TNCG is in local normal
form if there is no two concept nodes that have the same individual marker within
a same nesting.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 367-380, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Language Technologies Meet Ontology Acquisition

Galia Angelova

Institute for Parallel Processing, Bulgarian Academy of Sciences
25A, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria

galia@lml.bas.bg

Abstract. This paper overviews and analyses the on-going research attempts to
apply language technologies to automatic ontology acquisition. At first glance
there are many successful approaches in this very hot field. However, most of
them aim at the extraction of named entities as well as draft taxonomies and
partonomies. Only few attempts exist for enriching ontologies by applying
word-sense disambiguation. There are principle obstacles to extract
automatically coherent conceptualisations from raw texts: it is impossible to
identify exactly the types and their instances as well as the word meanings
which denote types. It is also impossible to validate a text-based conceptual
model against the real world. Thus we can expect only partial success in the
semi-automatic acquisition in specific (limited) domains, by workbenches
supporting the human knowledge engineer in the final ontological choices.

Keywords: natural language processing, information extraction, automatic
knowledge acquisition from text

1 Introduction

Recent developments in artificial intelligence, knowledge representation, WWW, and
information-processing applications resulted in the advent of the Semantic Web [1].
Its ultimate aim is to make the web resources more meaningful to computers by
augmenting the presentation markup with semantic markup, i.e. meta-data annotations
that describe the content. It is widely expected that the innovation will be provided by
agents and applications dealing with ontology acquisition, merging and alignment,
annotation of www-pages towards the underlying ontologies as well as intelligent,
semantic-based text search and intuitive visualisation. However, the current progress
in all these directions is not very encouraging despite the impressive number of
running activities. Isolated results and tools are available for e.g. automatic and semi-
automatic annotation of web pages, for knowledge-based information retrieval, for
partial ontology learning and so on but it is still difficult to grasp a coherent picture of
how the Semantic Web will drastically change the information age by offering quite
new kinds of services. Another discouraging obstacle is that the ontologies for the
Semantic Web are not clearly seen at the horizon. And, after five years of investments
and active investigation, the vision of the “universal” Semantic Web becomes a
“futuristic” target. Instead, the goals shift to realistic developments and notions like
“intelligent semantic-based Web applications”, “ontology-based tools”, “application
ontologies”, “light-weight ontologies”, “bridging corporative views via negotiation”,

368 Galia Angelova

“mediation between entities in order to integrate them”, “use cases which
demonstrate the viability of the approach”1 and so on.

In this way the development of the Semantic Web and the ontology-driven
applications is currently slowed down due to principal problems, among them the
knowledge acquisition bottleneck. Therefore, language technologies for free text
processing are extensively applied to create or grow ontologies “in a period as limited
as possible with a quality as high as possible” (citation from [2], a nice summary of
the dominating project-oriented perspective). We can certainly remind that the idea of
automatic knowledge acquisition from text is an older dream. However, the present
achievements rely on (i) advanced language processing tools and (ii) very large
linguistics resources – two artifacts that were not available twenty or thirty years ago.
That is why the activities in this sphere deserve careful observation and analysis, as
they are attempts to process all kinds of raw texts and really massive amounts of data.

This article analyses the on-going work in automatic knowledge acquisition by
choosing several representative papers (instead of listing hundreds of titles), which
contain research and application innovation from a language technology perspective.
In addition, they try to map the results (extracted language units) to ontological
elements and structures. We consider the latter mapping a decisive step in the
automatic knowledge acquisition. Due to this reason we skip here many papers which
deal with natural language understanding and word-sense disambiguation from the
computational linguistics perspective, as they are focused on extraction of text
semantics rather than on world knowledge. Section 2 overviews the progress in
Named Entity Recognition (NER) – which is in fact a collection of NE instances in
texts with annotations of their types. Section 3 presents approaches for learning of
concept types from texts, by clustering of natural language terms into semantic sets
standing for domain concepts. Section 4 summarises the achievements in detection of
conceptual relationships and automatic constructions of taxonomies and enlargement
of ontologies. Section 5 discusses kinds of ontological constructions which are not
targets of automatic knowledge acquisition today.

2 Acquisition of Instances (Named Entities)

The tasks of identification, extraction and classification of named entities from texts
have attracted special attention in the 80-ies (last century) in the emerging arear of
Information Extraction (IE) and Message Understanding [3]. Indeed, all named
entities – proper names, names of organizations, companies, locations, even dates –
bear much information about the text content, genre, sometimes author etc. NER is
usually approached by grammar-based text analysis. Often the extracted text items are
mapped to very large lexicons of names which are created in advance. The collection
of such multilingual lexicons is an important IE activity. The IE systems are
compared at special competitions according to several parameters, among them the
NER success rate. NER is evaluated via the percentage of correctly recognized named
entities which is a measure for the grammar coverage as well as an indirect hint for

1 Citations from the Semantic Web session at the event “Information Society Technologies

2004” (IST-04), organised by the European Commission, The Hague, 15-17 November 2004.

Language Technologies Meet Ontology Acquisition 369

Entity Algorithm
 Abstract Application
 Happening Application_Domain
 Object Event
 Agent Conference
 Organisation Tutorial
 Person Workshop
 BusinessObject Formal_Language
 InformationResource Method
 Location Organisation
 AstronomicalObject Association
 Facility Department
 GlobalRegion Enterprise
 LandRegion Institute
 NonGeographicalLocation Research_Funding_Institution
 PoliticalRegion University
 PopulatedPlace Person
 StreetAddress Project
 WaterRegion Publication
 Product Book
 Statement InProceedings
 Vehicle Report
 Tool
 Topic

Fig.1. Left: KIM Ontology. Right: a sample ontology in OntoMat Annotizer

the amount of the available lexical resources of names. The most advanced IE
systems today recognize some kinds of named entities in unknown texts with more
than 90% accuracy. For instance, KIM [4] recognizes English person names and
locations in inter-domain web content with 89.09% and 91.23% accuracy
correspondingly2. KIM’s current lexicon of names (resource of instances) contains
more than 200,000 items. Each location has several aliases (English, French, Spanish
and sometimes the local transcription). The IE systems need such data, because
locations are difficult to recognize otherwise. KIM tries to extract more information
than the isolated instances; it searches for patterns defining attributes and relations of
the featured entity, like: subRegionOf property for Location-s, hasPosition for
Persons, locatedIn for Organizations, etc. The automatic extraction of such features
is much less successful than the recognition of single, isolated named entities.

The essence of named entities extraction is to recognize them as instances
according to some ontology of concepts. Figure 1 presents the KIM ontology, which
is used for automatic classification of names. This ontology consists of 250 classes
and has about 100 relations. Ontologies are also applied for manual annotation – i.e.
classification - of named entities. A sample ontology in OntoMat Annotizer [5] is
given at Figure 1 too. The two ontologies clearly illustrate that there are many kinds

2 More precisely, IE applies the classical recall R (the ratio of correctly extracted entities
against all the available entities present in the texts) and precision P (the ratio of correctly
extracted entities against all the extracted entities). What we called accuracy above is the
harmonic mean of R and P – known as F-measure, where F = (2*P*R)/(P+R).

370 Galia Angelova

of named entities in the texts and obviously, their automatic recognition and
classification require substantial efforts. The NER result - extracted “drafts of named
entities” - needs further manual validation and human correction, in case we want to
build correct lists of concept instances with some associated attributes.

In the context of NER, let us comment on several issues which are relevant to our
discussion regarding automatic ontology acquisition.

First, we emphasize that the extracted named units are symbol strings that are
“mechanistically” collected from different texts. For instance, the NER module might
extract Sofia as a person name (most probably female) and as a city name (hopefully a
city located in Bulgaria). But it is unlikely to extract information that there was a
Byzantine princess Sofia who lived in the city of Sofia, at present in Bulgaria. This
fact is too complex to be extracted at the NER stage. Usually only titles and
professional positions are recognized successfully “around” the person names (e.g.
President Bush). In addition, the task of NER cannot infer that many women are
named Sofia or Sophia and often the two names are language-dependent variants. So
the result of NER is a list of isolated items tagged via ontology types.

Second, the NER task does not distinguish well between different variants of the
same name. For instance, “The Bulgarian Academy of Sciences” is organization name
which can appear in the text as “The Academy of Sciences” or simply “The Academy”
in some unambiguous contexts (while the academy often refers to the main building
of the organization). In addition NER does not resolve the references in the text as
this requires deep natural language understanding. However, the recognition of
referential citations is important prerequisite for successful acquisitions of facts.
Consider the following discourse, which consists of sentence 1 and sentence 2:

Sofia was a Byzantine princess. She lived in the city of Serdica, known today as Sofia.

The resolution of the pronominal anaphor “she” in sentence 2 to “Sofia” in sentence 1
is a necessary condition for extraction of the historical fact we want to encode. Now
we make the following important observation: even the simplest facts regarding
instances might be communicated by complex language structures in free texts. One
may assume that the recognition of named entities is simpler – which is true in a sense
– but the extraction of related facts may require implementation of the full potential of
natural language processing and natural language understanding, which looks
impossible today. The variety of natural language expressions is so high that
important facts cannot be encoded without ambiguity even in controlled languages (at
least there are still no experimental evidences for optimism beyond the naturally
restricted languages of some very specific technical domains, e.g. aircraft industry).

So at this point of our discussion we already realise why we lack successful
applications which acquire knowledge about arbitrary entities from free texts. Today
propositions are acquired only from suitably formulated text statements. Due to the
“natural understanding bottleneck”, the automatic ontology construction is (still) not
an alternative which may replace the precise manual definition and construction. The
present approaches are focused on the acquisition of domain concepts as well as
relevant statements that are easy to identify and extract. Another important activity is
the integration of concepts into ontologies.

Language Technologies Meet Ontology Acquisition 371

3 Acquisition of Concepts from Texts

The main machine learning approach, applied to extract concepts (semi-)
automatically from texts, is clustering of co-occurrences of words. The idea is that
similar words appear as collocations with the same verbs. Moreover, words are
similar to the extent they appear in similar contexts (this is the so called distributional
hypothesis). No annotation of the input text is needed beforehand. Usually the first
step is to perform lexical and morphological analysis of the input. Then complex
terms of several tokens are grouped as single units and afterwards (partial) syntactic
analysis is performed to extract main sentence phrases or to fully parse each sentence.
Below we briefly summarize some relevant activities and their results, keeping our
focus to the language technologies involved in the process.

The paper [6] presents techniques applied in the ontology learning environment

Text-To-Onto, such as ontology learning from free text, from dictionaries, or from
legacy ontologies. A convincing example illustrates the benefit of processing a
domain thesaurus, where the concepts are described together with their definitions
and hierarchy. The environment Text-To-Onto was applied to a machine-readable
dictionary of an insurance company which contained entries like the following one:

Automatic Debit Transfer: Electronic service arising from a debit
authorization of the Yellow Account holder for a recipient to debit bills
that fall due direct from the account.

Several heuristics are applied to this morphologically analysed definition. One simple
heuristic relates the definition term automatic debit transfer to the first noun phrase
occurring in the definition - electronic service. Their corresponding concepts are
linked in a draft hierarchy:

AUTOMATIC DEBIT TRANSFER IS-A ELECTRONIC SERVICE.

Applying this heuristic iteratively, one may propose large parts of the target ontology.
The process of ontology learning is semi-automatic with human intervention, as the
obtained hierarchy is further refined by a human engineer using the ontology
engineering workbench OntoEdit. In this way, specific language resources like
thesauri are very useful for the concept acquisition phase. However, often dictionaries
with definitions are not available and then the acquisition starts from free texts.

The papers [2,7] present systematic attempts to build an ontology from scratch.

The research is done within the project OntoBasis, which deals with elaboration and
adaptation of text analysis tools for the construction of specific domain ontologies.
Here we use a very simple example to illustrate the approach. The tools extract
automatically binary relations (lexons) by mining the Verb-Object dependency,
applying selectional restrictions and functional relations. In fact they extract pairs

[Main Verb - Nominal String],
where the Nominal String is a string of adjectives and nouns. Then the nominal
strings are clustered according to the cooccuring verbs. A sample cluster from a
Hepatitis corpus is:

372 Galia Angelova

{ liver transplantation, transplantation, orthotopic liver transplantation }.

The suggested concept is described in the corresponding medical text by three
nominal strings.
In addition to the mining of the verb-object pairs, pattern matching is done for triples

[Nominal string - Preposition - Nominal string].
The resulting phrases look as follows:

blood_vessel_growth on ribonucleolytic_activity,
amino_acid_residue in polymerase,
primer from amino_acid_sequence.

These triples are organised in classes of prepositional structures and compared to the
clusters obtained after mining the verb-object pairs. In case of similarity, clusters are
augmented to the following extracts:

[Nominal String Preposition AugmentedCluster].
The obtained “correct” structures look as follows:

[dose, injection, vaccination] of
[hepatitis B vaccine, HBV vaccine, vaccine]

[use] of [face mask, mask, glove, protective eyewear]
[vaccination, vaccine] against [disease, virus, virus type]

Other resulting constructs are:

[level, expression] of …
[effect] on …
[increase] in …

Obviously, these lists need further human intervention for refinement and
organization into ontology.

This unsupervised approach for ontology initiation looks promising, as it requires
no preliminary tagging of the training data and relies on relatively simple language
technologies and tools which are more or less available for many natural languages.
However, it is not very successful. It was evaluated against UMLS (the Unified Medical
Language System) by comparison of the extracted nominal strings to the UMLS labels.
The recall (percentage of correctly recognized nominal strings against all relevant
nominal strings) and the precision (percentage of correctly recognized nominal strings
against all recognized nominal strings) were computed according to the quantity of
UMLS pairs found in the clusters. The reported results for the Hepatitis corpus are
less than 33% recall and less than 17% precision, for clustering of 100-500 words [7].
Adding prepositional information to the clusters increases the recall but the precision
remains very low. The authors consider the approach useful for a preliminary step but
only for a limited amount of words. The resulting structures obviously need human
intervention for further refinement and structuring. It also becomes evident - because
of the relatively low recall - that there are many UMLS concepts whose names are not
formed by nominal strings or prepositional structures from the kind which is treated in
[2, 7]. Please note that this well-documented work deals with ontology initiation using
a minimum of preliminary available tools and resources; that is why we consider it
very important and present it here in more details.

Language Technologies Meet Ontology Acquisition 373

ASIUM, a more sophisticated system for concept acquisition, is presented in [8].
ASIUM learns knowledge from syntactically parsed text, so the input for the learning
algorithm – conceptual clustering method - is fully analysed text. No concepts are
given in advance. From the parsed input, ASIUM learns verb frames like:

<verb> <preposition | syntactic role: concept>.
A sample is given below:

<to drop> <object: Explosive> <in: Public_Place>

(the pairs object:Explosive and in:Public_Place are subcategories, object
is a syntactic role and in is a preposition but Explosive and Public_Place are
concepts used as restrictions of selection). The method learns by grouping similar
subcategories into clusters. The resulting concepts are labeled by a human expert.

ASIUM relies on a language technology which is relatively sophisticated – a full
syntactical analyser of French. The parser outputs also roles in the verb frames which
look like the subcategorization frames but with concepts replaced by nouns:

<verb> <preposition | role: head noun>.

By grouping head nouns and semantic roles, ASIUM generalises the initial syntactic
frames and covers by induction examples that did not occur as such in text. As shown
in [8], ASIUM is a rather powerful concept acquisition system. Starting with the
syntactic frames:

<to travel> <subject:[father,neighbour,friend]> <by:[car,train]>
<to drive> <subject:[friend,colleague]><object:[car,motorcycle]>

ASIUM will learn two concepts:

Human: father; neighbor; friend; colleague.
Motorized Vehicle: car; train; motorcycle.

and two subcategorization frames:
<to travel> <subject: Human> <by:Motorized Vehicle>

<to drive> <subject: Human> <object: Motorized Vehicle>
As the authors explain in [8], human experts control the link between the new
concepts and the verbs because the threshold, fixed preliminary by the expert, does
not avoid over-generalisation.

ASIUM inspired further research work for learning concepts from parsed texts.
For instance [9] expands the ontology of the CIRCM-TUTOR system using a similar
approach. It is difficult to compare directly all such systems for concepts acquisition,
as they employ different modules for syntactic analysis and start from different inputs.
But it is evident that (i) the deeper linguistic analysis has a positive effect to concept
acquisition and (ii) the resulting concepts (clusters) always need to be revised by a
human expert who also assigns them labels.

4 Learning Taxonomies and Enriching Ontologies

Here we briefly overview three approaches. One of them is based on deep linguistic
information and very complex word sense processing. Its result is enriching WordNet
with new domain concepts. The second one combines patterns from different sources
to build taxonomic relations. The third one processes the output of a parser and

374 Galia Angelova

organises the words/concepts in a hierarchy, following the Formal Concept Analysis.
In this section it becomes evident that the task of taxonomic structuring always
exploits information from deeper text analysis, which provides additional evidence
concerning the meaning of the words and concepts met in the texts.

The tool OntoLearn [10] extracts domain ontologies from documents shared
among the members of virtual organizations. Its first step is to extract and filter the
domain terminology from the available documents. Because of their low ambiguity
and high specificity, these words or phrases are very good candidates to label domain
concepts, as they denote important domain concepts and relations. There are well-
known methods for extracting stable collocations from text. OntoLearn uses rule-
based tools developed earlier by the team and extracts domain terms, which are
further evaluated by two specific measures: domain relevance (how often the term
appears in the domain corpus, compared to a larger collection of corpora) and domain
consensus (which measures the distributed use of a term in a domain corpus).
Combining both measures, OntoLearn computes the weight of each term. Accepted
terms have weight over a threshold which is set experimentally. In this way, accepted
terms for tourism are travel information, shopping street, airline ticket, booking form,
etc. while for finance accepted terms are vice president, net income, executive officer,
composite trading and so on.

After selecting the domain terminology, OntoLearn builds subtrees of terms
(concept labels) according to simple string inclusion. For instance, an initial hierarchy
of terms in the travel domain may look like the one shown at Fig. 2. Without semantic

Fig. 2. A lexicalized tree in the domain of tourism [10]

interpretation, Fig.2 contains erroneous classifications, e.g. bus service is not
classified as public transport service. The main innovation of OntoLearn is that it
performs semantic interpretation of the complex terms by constructing it
compositionally. OntoLearn uses the general WordNet senses and appropriate
conceptual relations that hold among the concept components. The semantic resources
are processed by the so-called structural semantic interconnection algorithm, a novel
knowledge-based iterative approach to word sense disambiguation. Very roughly, as
an illustration only, we remind that in WordNet bus is a kind of (public) transport, so
it is possible to compute that bus service has to be classified as a public transport

public transport
service

service

train
service ferry

service

boat
service bus

service

coach
service transport

service

car
service

customer
service

taxi
service express

service

car ferry
service

Language Technologies Meet Ontology Acquisition 375

service. In this way the complex domain terms can be semantically interpreted and
arranged in a hierarchical manner (please note that the terms – single words have to
be defined somehow, either in WordNet or in thesauri, otherwise OntoLearn has no
way to calculate their meaning). Figure 3 shows a domain concept tree, obtained from
the lexicalized tree after the semantic interpretation. We see there that an express can
be a bus or a train, and both interpretations are valid because they are obtained from
relations between terms within the domain. Conceptual relations play important role
in the semantic interpretation. The chosen kernel of conceptual relations is built using
the definition of basic relations given in [11].

Fig. 3. Domain concept tree [10]

OntoLearn evaluation is difficult as the ontology assessment is still an open problem.
There may be experimental validation and evaluation, by users who apply the
ontology, as well as assessment against methodological evaluation guidelines.
OntoLearn was evaluated as a tool supporting ontology engineers in the Harmonise
project. During the first year of the project, a core ontology with 300 concepts was
manually defined. Simultaneously OntoLearn extracted an initial list of 14,383
candidate terms and organised them in a domain concept forest of 3,840 concepts.
The latter resource was submitted to the domain experts for ontology updating and
integration. The obtained precision ranged from 72.9% to about 80% and the recall
was 52.74%. The precision shift is due to the well-known fact that experts may have
different intuitions about the relevance of a concept. The authors conclude: “…In any
case, OntoLearn favoured a considerable speed up in ontology development, since
shortly the Harmonise ontology reached about 3,000 concepts. Clearly, the definition
of an initial set of basic domain concepts is crucial, so as to justify long lasting and

car
service

coach
service#2

public transport
service

boat
service

car
service#2

customer
service

bus
service#2

taxi
service

coach service, bus service

express
service

train
service

express
service#2

coach
service#3

ferry
service

car-ferry
service

service

transport
service

376 Galia Angelova

even harsh discussions. But once an agreement is reached, filling the lower levels of
the ontology can still take a long time simply because it is a tedious and time-
consuming task.” Therefore the authors consider OntoLearn as a very useful tool
within the Harmonise project [10]. A drawback of OntoLearn is that it is unable to
analyze totally unknown terms as it exploits much linguistic information which is
available for the words known to the system only.

In the computational linguistics, OntoLearn is a state-of-the-art result for ontology
construction using semantic interpretation. The aim is to enrich a general purpose
ontology – WordNet – with the detected domain concepts (as WordNet does not cover
complex domain terms). Today only few papers propose to enrich existing ontologies
with new concepts. Another approach addressing documents in Internet is reported in
[12], where the authors collect for each concept in WordNet the words that appear
most distinctively in texts related to it (topic signatures) and apply them for clustering
the concepts that lexicalize the word senses of a given word.

The results reported in [13] illustrate the spirit of the information retrieval

approaches to taxonomy learning (in contrast to the rule-based solution of OntoLearn
presented above). The system described in [13] builds taxonomic links by solving a
classification tasks for every concept pair. Let us consider two terms, say conference
and event. They could be either unrelated, or taxonomically related in three different
ways: is-a(conference,event), is-a(event,conference), siblings(conference,event).
Therefore, intuitively, the decision is to gather as many different sources of evidence
as possible and choose the relation with maximal evidence according to all of them.
This approach combines information from:

(i) Linguistic patterns explicating is-a relations matched to a large text corpus [14];
(ii) Linguistic patterns explicating is-a relations matched to the Web [14];
(iii) WordNet and its hyponyms, and
(iv) the lexicalized is-a relation, as exemplified at Fig. 2.

For instance, a pattern for searching hyponyms for NounPhrases (NP) in corpus is
NP0 such as NP1, NP2, …, NPn-1 and/or NPn (see [14] for other patterns).

Similar patterns for searching in Internet may reveal descriptions of hyponymic
relations. Table 1 summarises some results for is-a and the related probabilities:

conference is-a conference is-a
 event 0.44 service 0.27,
 meeting 0.11 meeting 0.11,
 activity 0.11 activity 0.11
A. Extraction from corpus B. Extraction from Internet

Table 1. Evidence for taxonomic relations, extracted from different sources

The four sources of evidence are normalized in order to be comparable and
combined by two very simple techniques (to take the mean of all possible values and
to use the maximum). The result shows that combining diverse and heterogeneous

Language Technologies Meet Ontology Acquisition 377

information indeed leads to better results than classification according to a single
source (and conference is-a event). The approach is evaluated against a handcrafted
ontology for the touristic domain. The mean strategy with all WordNet senses yielded
precision 17.16% and recall 29.84% with threshold t=0.01; and the one with the first
WordNet senses – precision 17.38% and recall R=29.24% at t=0.01. The max strategy
with all senses yielded a precision 16.03% and recall 29.87% at t=0.04. These results
are comparable and show that there is a lot of potential in the combination of different
approaches for text extraction.

The last result which we overview is presented in the paper [15]. It builds a taxonomy
starting from the results of a parser. We explain the construction by example. Let us
consider the sentences:

People book hotels. The man drove the bike along the beach.

After parsing them, and after identifying the basic word forms (which turns hotels to
hotel and drove to drive), the following semantic relations can be extracted from the
parsing results:

book_subj(people) drive_obj(bike) drive_subj(man)
book_obj(hotel) drive_along(beach)

Not all dependencies from this kind are interesting, but the repeating ones reveal
semantic links between the verb, the thematic role and the filler (word or concept).
Thus hotels are bookable, bikes are drivable, men are driving etc. And in contrast to
the similarity-based clustering, which is popular in taxonomy construction, one can
consider the Formal Concept Analysis [16] as an alternative set-theoretic
classification. The authors show a taxonomy built for the tourism domain, using the
attributes as presented in the example above (Table 2 and Figure 4). The claim is that
Figure 4 is much easier to read and trace for the human engineer, as in keeps the
labels of the classification features. The conceptual hierarchy is built on the basis of
the inclusion relations between the selectional restrictions of all the verbs. Thus FCA
supports tracing of reasons why a taxonomy looks the way it is, according to
linguistic knowledge acquired from text. Figure 4 is in fact an interesting idea of
linking natural language processing and FCA in order to trace the properties of the
extracted knowledge chunks. If the input corpora are updated regularly, there is a
natural way to justify the ontology evolution accordingly. A more detailed evaluation
of this approach is presented in [17].

 bookable rentable driveable rideable joinable
apartment X X

car X X X
motor-bike X X X X
excursion X X

trip X X

Table 2. Concepts and attributes as a formal context in the domain of tourism

378 Galia Angelova

Fig. 4. A taxonomy built for Table 2, which reflects features extracted by parsing.

5 Discussion and Conclusion

In this paper we summarise typical approaches of how to employ language
technologies in order to acquire knowledge from texts. We prefer to focus on
prototypes which clearly organize the extracted language units into conceptual
structures. For clarity and brevity, we grouped the approaches into three main
categories: acquisition of instances, concepts, hierarchies. We emphasize that the
extracted structures are often domain-dependent (because they are based on the input
corpus) and need further refinement and formalization.

Despite the variety of the particular applications, there are some established
strategies of how to apply language technologies in knowledge acquisition. For
instance, it is common to extract phrasal descriptions after parsing and to encode the
corresponding knowledge chunks. The assumption is that verbs pose more or less
strong selectional restrictions on their arguments and this linguistic phenomenon
reflects semantic relationships. The better the parser is, the more sentence phrases it
extracts and the final result is more sophisticated and more accurate. However, the
relatively low recall of this task is an evidence that many concepts are not
communicated via compact phrasal descriptions and therefore are difficult to grasp by
automatic text processing.

Together with the main language technologies in use (lexical and morphological
analysers, POS taggers, tools for recognition of named entities, parsers, extractors of
collocations, semantic interpreters of word senses) we exemplified the main
classification technology applied for building a taxonomy – the unsupervised
clustering. Mostly the is-a relation is considered. The resulting ontological structures
are not perfect but they are viewed as drafts that need further justification by human
experts. The concepts in the taxonomies mirror the words (strings) occurring in the
source texts and the human expert may choose to delete some of them. If a word has
several meanings and the input corpora are really large, then mining by patterns or
counting the verb-object collocations will hopefully reveal all senses as shown at

bookable

rentablejoinable

rideable

bike

car

driveable trip excursion apartment

Language Technologies Meet Ontology Acquisition 379

Table 1. It is still unclear how to evaluate the usefulness and the correctness of a
particular ontology acquired for application in certain domain.

However, word senses are not ontological concepts although there are many
similarities between lexicons and ontologies [18]. An ontology is a set of categories
and relationships among them while a lexicon depends on the word senses in
particular natural language. In the same way the text semantics, extracted in formal
propositions, is not conceptual model of the information encoded in the text.
Moreover, gathering facts from Internet, we have no methods to evaluate whether the
extracted knowledge is relevant to the real world. For instance, the NER module
might collect named entities from science fiction sites. So even the results of the
successful NER task, which are extracted with more than 90% linguistic accuracy,
need conceptual verification before asserting them into a formal conceptual model.
From this perspective, extracting knowledge from dedicated domain sites (e.g.
ePortfolio portals) is a more promising approach for automatic ontology construction.

We have already said that attempts for automatic extraction of logical propositions
are rare as the complexity of the task is well-known. Extraction of one fact from two
sentences is not trivial, especially using the methods applied today, as the current
parsers work over single sentences only. Another ontological construct that is not
tackled automatically is the description of the classification perspective, since it is
rarely encoded as a compact statement in free texts.

One may argue that the results presented above are discouraging because of their
low accuracy. However the author prefers the optimistic vision. All the prototypes are
at their initial implementation stage and the cited papers report work in progress.
Moreover, the quality of the language technology tools is growing incrementally and
this contributes to the increasing quality of the very large linguistic resources. In
addition, there are many publicly available tools (e.g. POS-taggers and parsers for
English) and open resources like WordNet. The interest in the multilingual resources
and tools is growing too and much bilingual terminology is already extracted
automatically. This facilitates the work of research groups in smaller countries who
deal with languages other than English. The author believes that soon there will be
large open archives of electronic text resources in a number of languages and many
publicly available tools for language processing (similarly to the paper archives which
were collected also incrementally). All these stimuli motivate further research
attempts in automatic ontology acquisition. It seems unlikely that the quality of the
automatically extracted ontologies will be satisfactory enough but at least drafting
ontologies will be much easier. The author also believes that methods for ontology
assessment against domain corpora will be developed in the near future.

References

[1] T. Berners-Lee. Weaving the Web. Harper, 1999.
[2] Reinberger, M.-L., Spyns, P., Pretorius, A.J. and Daelemans, W. Automatic Initiation of an

Ontology. In R. Meersman, Z. Tari (Editors), Proc. CoopIS/DOA/OBDASE 2004, Springer,
Lecture Notes in Computer Science 3290, 2004, pp. 600-617.

[3] L. Hirschman. The Evolution of Evaluation: Lessons from the Message Understanding
Conferences. Computer Speech and Language 12, 1998, pp. 281-305.

380 Galia Angelova

[4] Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D. and Kirilov, A. KIM – a Semantic
Platform for Information Extraction and Retrieval. Journal of Natural Language
Engineering 10 (3/4), 2004, pp. 375-392, see also URL: http://62.213.161.156/KIM/screen/
KWUIMain.jsp

[5] Handschuh, S. and S. Staab. CREAM: CREAting Metadata for the Semantic Web. Computer
Networks: The International Journal of Computer and Telecommunications Networking,
Volume 42 , Issue 5, 2003, pp. 579 – 598.

[6] Maedche, A. and S. Staab. Ontology Learning for the Semantic Web. IEEE Intelligent
Systems 16 (2), Special Issue on Semantic Web, 2001, pp. 72-79.

[7] Reinberger, M.-L. and P. Spyns: Discovering Knowledge in Texts for the Learning of
DOGMA-inspired Ontologies. In the Proc. ECAI-2004 Workshop on Ontology Learning
and Population: Towards Evaluation of Text-based Methods in the Semantic Web and
Knowledge Discovery Life Cycle, August 2004, pp. 19-24.

[8] Faure, D. and T. Poibeau. First Experiments of Using Semantic Knowledge Learned by
ASIUM for Information Extraction Task Using INTEX. In the Proc. of the Workshop on
Ontology Learning, ECAI 2000, pp. 7-12.

[9] Lee, C.H., Seu, J. H. and M. Evens. Building an Ontology for CIRCSIM-Tutor. Proc. 13th
Midwest AI and Cognitive Science Society Conference, MAICS-2002, Chicago, pp. 161-
168.

[10] Navigli, R. and P. Velardi. Learning Domain Ontologies from Document Warehouses and
Dedicated Web Sites. Journal of Computational Linguistics, Vol. 30, Issue 2, June 2004, pp.
151 - 179.

[11] Sowa, J. Conceptual Structures: Information Processing in Mind and Machine, 1984,
Addison-Wesley, Reading, MA.

[12] Agirre E., Ansa1, O., Hovy E. and D. Martínez. Enriching very large ontologies using the
WWW. In the Proc. of the Workshop on Ontology Learning, ECAI 2000, pp. 37-42.

[13] Cimiano P., Pivk A., Schmidt-Thieme L. and S. Staab. Learning Taxonomic Relations
from Heterogeneous Evidence. In the Proc. ECAI-2004 Workshop on Ontology Learning
and Population, 2004.

[14] Hearst, M.A., Automatic Acquisition of Hyponyms from Large Text Corpora, in Proc.
COLING-1992, pp. 539-545.

[15] Cimiano P., Hotho, A. and S. Staab. Comparing Conceptual, Divisive and Agglomerative
Clustering for Learning Taxonomies from Text. In the Proc. ECAI 04, IOS Press, 2004, pp.
435-439.

[16] Ganter, B. and R. Wille, Formal Concept Analysis – Mathematical Foundations, Springer
Verlag, 1999.

[17] Cimiano, P., Staab, S. and J. Tane. Automatic Acquisition of Taxonomies from Text: FCA
meets NLP. In the Proc. of the ECML/PKDD Workshop on Adaptive Text Extraction and
Mining, Cavtat--Dubrovnik, Croatia, 2003, pp. 10-17.

[18] Hirst, G. Ontology and the lexicon. In: Staab, S. and R. Studer (Eds.), Handbook on
Ontologies, Berlin: Springer, 2004, pp. 209-229.

Weighted Pseudo-distances for

Categorization in Semantic Hierarchies

Cliff A. Joslyn1 and William J. Bruno2

1 Computer and Computational Sciences, Los Alamos National Laboratory, Los
Alamos, NM, 87545, USA, joslyn@lanl.gov

2 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545,
USA, billb@lanl.gov

Abstract. Ontologies, taxonomies, and other semantic hierarchies are
increasingly necessary for organizing large quantities of data. We con-
tinue our development of knowledge discovery techniques based on com-
binatorial algorithms rooted in order theory by aiming to supplement the
pseudo-distances previously developed as structural measures of vertical
height in poset-based ontologies with quantitative measures of vertical
distance based on additional statistical information. In this way, we seek
to accommodate weighting of different portions of the underlying ontol-
ogy according to this external information source. We also wish to im-
prove on the deficiencies of existing such measures, in particular Resnik’s
measure of semantic similarity in lexical databases such as Wordnet. We
begin by recalling and developing some basic concepts for ordered data
objects, including our pseudo-distances and the operation of probability
distributions as weights on posets. We then discuss and critique Resnik’s
measure before introducing our own sense of links weights and weighted
normalized pseudo-distances among comparable nodes.

1 Introduction

We are pursuing approaches to knowledge discovery based on combinatorial al-
gorithms rooted in order theory [8], casting databases as ordered combinatorial
data objects equipped both with inherent semantics and appropriate quantita-
tive measures to support user-guided discovery tasks such as search, retrieval,
discovery, anomaly detection, linkage, and alignment, with applications in intel-
ligence analysis, homeland defense, computational biology, and law enforcement.

Ontologies, taxonomies, and other semantic hierarchies are increasingly neces-
sary for organizing large quantities of data. Recent years have seen the emergence
of a prominent example in the Gene Ontology (GO)3 [5], a large, (> 16K node)
multi-taxonomy of biological functions and processes annotated to thousands
of genes. Other cases include the UMLS Meta-Thesaurus [2], object-oriented
typing hierarchies [12], and verb typing hierarchies in computational linguistics
3 http://www.geneontology.org

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 381–395, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

382 Cliff A. Joslyn and William J. Bruno

[3]. Cast as Directed Acyclic Graphs (DAGs), these all entail partially ordered
sets (posets) [16]. And other order-theoretical techniques such as formal concept
analysis [4] and reconstructibility analysis, which uses lattices of reconstruction
hypotheses of relational databases cast as irredundant covers of a space of vari-
ables [10], are available to provide order-theoretical representations of relational
data objects. Research in fundamental properties and techniques for ordered
data objects is sorely lacking; and their increasing size and the need for such
tasks as linkage and federation of multiple ontologies constructed on similar do-
mains by different organizations, creates unmet challenges in computer science
and combinatorial algorithms.

In prior work we have explored some order-theoretical properties of semantic hi-
erarchies such as measures of distance, level, and size in posets [6]. We have also
developed the POSet Ontology Categorizer (POSOC)4 for the task of “catego-
rization” of gene lists in the GO, represented as a multi-labeled partially ordered
set (poset), which we call a POSet Ontology (POSO) [7,9,17].

POSOC takes as a query a list of genes of interest, and then calculates a score for
each node in the GO to represent how well that node best captures the overall
distribution and location of the query in the poset. This score, whose ranks
are as illustrated in an example in Fig. 1, depends on the vertical “separation”
from the scored node to those nodes below it where query terms sit. We thus
developed the concept of a pseudo-distance δ(a, b) between comparable nodes
a ≤ b to measure this vertical distances as a property of the collection of lengths
of the chains in the chain decomposition of the poset interval [a, b].

It has been noted that our approach suffers from a deficiency, in that the struc-
ture of the GO is not uniform, but may be “denser” in certain regions and
“sparser” in others, depending, for example, on the attention paid by the au-
thors, or even the vagaries of funding of the research which supports construction
of the GO. As an illustration, consider the taxonomy on the left of Fig. 2. While
it appears that “grey wolf” should be as “close” to “animal” as is “ungulate”,
in fact we know that this isn’t the case.

So our structural measure based on chains lengths should be supplemented by an
approach to “stretch” or “shrink” links in the structure based on other available
information. We propose to capture this additional information by a probability
distribution p cast onto the POSO, and then use p to modify POSOC’s current
pseudo-distances δ(a, b) to become a weighted pseudo-distance δw(a, b) reflecting
this degree of “stretch”.

Here we do not presume any particular source for these probabilities. In practice,
we’re inspired by similar motivations as Lord et al. [13], who constructed p as
the frequency with which GO node terms appeared in SWISS-PROT-Human
protein database. They then used Resnik’s measure of semantic similarity [15]
developed for Wordnet5 to measure the semantic distance between GO nodes.

4 http://www.c3.lanl.gov/~joslyn/posoc.html
5 http://www.cogsci.princeton.edu/~wn

Weighted Pseudo-distances for Categorization in Semantic Hierarchies 383

GO:0003673 : Gene Ontology

GO:0008150 : biological process 26 8

 GO:0008151 :
cell growth and/or maintenance: 20 7, 97%

 GO:0008152 : metabolism: 8 6, 97%

 GO:0006139 : nucleobase,
nucleoside, nucleotide and

nucleic acid metabolism: 7 5, 54%

has-part

GO:0009058 :
biosynthesis: 68, 41%

 GO:0009059 :
macromolecule
biosynthesis:

32, 41%

 GO:0006412 :
protein biosynthesis:

14, 41%

GO:0006497 :
protein lipidation: 1 1, 41%

 GO:0019538 :
protein metabolism: 11, 41%

GO:0042157 :
lipoprotein metabolism: 14, 41%

 GO:0042158 :
lipoprotein biosynthesis; 6 4, 41%

GO:0006464 :
protein modification: 3 3, 41%

GO:0005575 :
cellular component

GO:0003674 :
molecular function

has-part
has-part

GO:0016070 :
RNA metabolism: 2 2, 54%

GO:0006396 :
RNA processing :

4, 36%

GO:0006401 :
RNA catabolism:

16, 10%

GO:0006397 :
mRNA processing:

13, 15%

GO:0008380 :
RNA splicing:

10, 18%

 GO:0006371 :
mRNA splicing : 5, 15%

GO:0006402 :
mRNA catabolism:

17, 5%

Fig. 1. Partial output from POSOC for a sample query [7]. Nodes in the GO
are annotated by the rank of their score and the percentage of the query they
cover.

Mammal

Grey
Wolf

Mouse Ungulate

Reptile

Animal

Finch

Mammal

Grey
Wolf

Mouse

Ungulate

Reptile

Animal

Finch

Fig. 2. A semantic hierarchy (left); with stretched links (right).

In this paper, we begin by recalling and developing some basic concepts for
ordered data objects, including our current pseudo-distances δ and the operation
of probability distributions as weights on posets. We then discuss and critique
Resnik’s measure of “semantic similarity” in weighted POSOS before introducing
our own sense of link weights and weighted normalized pseudo-distances among
comparable nodes.

384 Cliff A. Joslyn and William J. Bruno

2 Preliminaries on DAGs, Posets, and Covers

Assume a finite set of nodes P with |P | ≥ 2. Then, assume a directed acyclic
graph (DAG) Γ ⊆ P 2 where γ = 〈a, b〉 ∈ Γ is a directed edge from a node
b ∈ P to another a ∈ P . We also sometimes use γ(a, b) to indicate a particular
edge 〈a, b〉 ∈ Γ . Then a chain (specifically, a DAG chain) of length h ≥ 2 is a
collection of edges

C = 〈γ1, γ2, . . . , γi, . . . , γh−1〉 ⊆ Γ (1)

where, letting γi = 〈ai, bi〉, for h > 2 and 1 ≤ i ≤ h − 1, we have bi = ai+1.

We also represent Γ as a relational structure Γ = 〈P,⇐〉, where ⇐ ⊆ P 2 is a
relation on P such that ∀a, b ∈ P, a⇐ b ↔ 〈a, b〉 ∈ Γ , so that there’s a direct
link in the DAG from b “down” to a.

The DAG Γ uniquely generates two mathematical structures:

– Let V(Γ) := 〈P,≺〉, be the cover relation, or just cover, where ≺ is the
transitive reduction of ⇐ [1]. So a ≺ b when γ(a, b) is an edge in Γ which is
non-transitive, that is, 〈γ(a, b)〉 is the only chain C with a1 = a, bh−1 = b.

– Let P(Γ) := 〈P,≤〉 be the partially ordered set (poset) defined by Γ by
transitive and reflexive closure of ⇐. Below we sometimes use just P when
clear from context. So a ≤ b when there’s any chain C with a1 = a, bh−1 = b.

Fig. 3 shows an example DAG Γ on P = {0, A,B, . . . ,K, 1}, with two transitive
edges D⇐B, I ⇐ 1 shown as dashed lines, removal of which yields the cover
relation V(Γ). P(Γ) would result from both retaining D⇐B and I ⇐ 1 and
adding all other transitive links, e.g. H ⇐B,E ⇐C. Note the inclusion of the
special nodes 0, 1 ∈ P as global bounds, which we will always assume are present.

B

F G

A

I

H

C

E J

D

1

K

0

Fig. 3. A bounded DAG.

Weighted Pseudo-distances for Categorization in Semantic Hierarchies 385

Given a DAG Γ , we generally focus on the corresponding poset and cover re-
lations. In particular, below we will use a ≤ b to mean that a ≤ b in the poset
P(Γ), and a⇐ b, or γ(a, b), to mean that a ≺ b in the cover V(Γ). ∀a ∈ P , let

↓ a := {b ∈ P : b ≤ a}, ↑ a := {b ∈ P : a ≤ b},

↓̇ a := {b ∈ P : b ≺ a}, ↑̇ a := {b ∈ P : a ≺ b}

be its ideal, filter, children, and parents respectively.

Two nodes a, b ∈ P are called comparable, denoted a ∼ b, when either a ≤ b
or b ≤ a. When a, b ∈ P, a �= b and a ≤ b, we simply say a ≤ b ∈ P . Two
nodes a, b ∈ P are non-comparable if a �∼ b. A collection of nodes A ⊆ P
is also called a chain (specifically, a poset chain) if ∀a, b ∈ A, a ∼ b, and an
antichain if ∀a, b ∈ A, a �∼ b. The height H(P) of a poset, or just H, is the size
of the largest chain, and the width W(P) is the size of the largest anti-chain.

Note that unlike in lattices, when P is a general poset then for a pair of nodes
a, b ∈ P the concepts of least upper bound a∨ b and greatest lower bound a∧ b,
when they exist, are not singular. Rather, a ∨ b, a ∧ b ⊆ P are the sets of the
(possibly multiple) least upper (greatest lower) bounds of a and b. For example,
in Fig. 3 we have E ∨ J = {C,K} ⊆ P .

Below assume two comparable nodes a ≤ b ∈ P . Then let

C(a, b) := {C1, C2, . . . , Cj , . . . , CM} ⊆ 22P

be the set of all DAG chains from a to b. [a, b] := {c ∈ P : a ≤ c ≤ b} is the in-
terval from a to b and is always a bounded sub-poset of P with [a, b] =

⋃M
j=1 Cj .

From Dilworth’s theorem [16], we know that M ≥ W([a, b]). But otherwise, while
bounded, the number M of chains is generally arbitrary with respect to a and b.

Let hj := |Cj |− 1 be the length of a particular such chain Cj ∈ C(a, b). While in
principle 0 ≤ hj ≤ H− 1, note that hj = 0 ↔ a = b, so in practice hj ≥ 1. Also
define h̄j := hj/(H− 1) as a chain length normalized to the height of P . Let

h(a, b) := 〈h1, h2, . . . , hj , . . . , hM 〉 , h̄(a, b) := h/(H− 1)

be the vectors of chain lengths connecting a to b. We also denote

h∗(a, b) = min
hj∈h(a,b)

hj, h∗(a, b) = max
hj∈h(a,b)

hj ,

h̄∗(a, b) = min
h̄j∈h̄(a,b)

h̄j, h̄∗(a, b) = max
h̄j∈h̄(a,b)

h̄j .

Finally, note that for a �= b and DAG chain Cj , we have Cj = {a, b}∪C for some,
possibly empty, chain C = {c2, c3, . . . , chj−1} ⊆ P , so that for 2 ≤ i ≤ hj − 1,

a ≺ c2 ≺ c3 ≺ . . . ≺ chj−2 ≺ chj−1 ≺ b. (2)

386 Cliff A. Joslyn and William J. Bruno

3 Pseudo-distances

Our approach begins with measures between comparable nodes a ≤ b, which
indicate how “high” b is above a. A pseudo-distance is a function δ:P 2 → IR
where ∀a ≤ b ∈ P, h∗(a, b) ≤ δ(a, b) ≤ h∗(a, b), provideing some aggregate
measure of the number of “hops” between two comparable nodes. There is also
a normalized form δ̄ := δ/(H−1) which measures what proportion of the height
of the whole poset P is taken up between a and b, so that δ̄(a, b) ∈ [0, 1].

Current pseudo-distances implemented in POSOC include:

– Minimum chain length: δm(a, b) := h∗(a, b), δ̄m(a, b) := h̄∗(a, b)
– Maximum chain length: δx(a, b) := h∗(a, b), δ̄x(a, b) := h̄∗(a, b)
– Average of extreme chain lengths:

δax(a, b) :=
h∗(a, b) + h∗(a, b)

2
, δ̄ax(a, b) :=

h̄∗(a, b) + h̄∗(a, b)
2

.

– Average of all chain lengths:

δap(a, b) :=

∑
hj∈h(a,b) hj

M
, δ̄ap(a, b) :=

∑
h̄j∈h̄(a,b) h̄j

M
.

In our example in Fig. 3 (recalling that transitive edges are removed from the
cover relation ≺), we have H(P) = 6. Considering D ≤ 1, then W([D, 1]) = 3,
while M = 5, and

C(D, 1) = { D ≺ E ≺ I ≺ B ≺ 1, D ≺ E ≺ I ≺ C ≺ 1,
D ≺ E ≺ K ≺ 1, D ≺ J ≺ C ≺ 1, D ≺ J ≺ K ≺ 1},

h(D, 1) = 〈4, 4, 3, 3, 3〉 , h̄(D, 1) = 〈4/5, 4/5, 3/5, 3/5, 3/5〉 ,
δm(D, 1) = 3, δx(D, 1) = 4, δax = 3.5, δap(D, 1) = 3.4,
δ̄m(D, 1) = 0.60, δ̄x(D, 1) = 0.80, δ̄ax = 0.70, δ̄ap(D, 1) = 0.68.

4 Weighted Posets

Our overall motivation is to improve on the quantitative approach which Lord
et al. [13] and Resnik [15] brought to measures of distance (in their language,
“semantic similarity”) in taxonomies equipped with probability distributions. To
do so, we need to understand the basic operations of probabilities on posets.

Definition 1 (Weighted Poset). Define a weighted poset as a structure O :=
〈P(Γ), p〉, where p:P → [0, 1] is a probability distribution on the nodes P of the
poset P(Γ), so that

∑
a∈P p(a) = 1.

Weighted Pseudo-distances for Categorization in Semantic Hierarchies 387

For any node b ∈ P , what we will call a “beta” function β:P → [0, 1] is a kind
of probability measure over Γ , defined as

β(b) :=
∑
a≤b

p(a) =
∑
a∈↓ b

p(a). (3)

Fig. 4 continues our example with β(a) to the right of each node, and p(a) below
it. Weights are also shown on links, which will be discussed in Sec. 7 below.

B 0.7
0.0

F 0.0
0.0

.7

G 0.0
0.0

A 0.0
0.0

.7 I 0.7
0.5

H 0.0
0.0

0.0

.7

C 0.9
0.0

E: 0.2
0.0

J: 0.4
0.2

D: 0.2
0.2

.5

0 .2

.2

.5

1 1.0
0.0

.3 .1

K 0.5
0.1

.5

.1
.3

0 0.0
0.0

Node: beta
p

Fig. 4. An example of a weighted poset O.

β is what’s known as an isotone, or order-preserving, map on P , which is crucial
in Monjardet’s general theory of metrics in posets [14]:

Proposition 1. a ≤ b → β(a) ≤ β(b).

Proof. Follows from a ≤ b → ↓ a ⊆ ↓ b, Eq. (3), and p(a) ≥ 0. ��

5 A Mathematical Aside

We are regretfully ignorant of literature concerning discrete probability distribu-
tions like p on finite ordered sets, and yet we can note some intriguing connections
to some powerful formalisms. In particular, let B(O) := {a ∈ P : p(a) > 0} ⊆ P

388 Cliff A. Joslyn and William J. Bruno

be the base of O. Then consider the case when P is a Boolean lattice, in par-
ticular the power set 2Ω on some underlying finite set Ω. β then is the belief
function Bel on Ω from Dempster-Shafer evidence theory [11], and Eq. (3) be-
comes ∀A ⊆ Ω,Bel(A) =

∑
B⊆A p(A). Bel is super-additive, with the modular

property

∀A,B ⊆ Ω, Bel(A ∪ B) ≥ Bel(A) + Bel(B) − Bel(A ∩ B). (4)

Expressed back in the lattice P , Eq. (4) becomes

∀a, b ∈ P, β(a ∨ b) + β(a ∧ b) ≥ β(a) + β(b), (5)

recalling that the single point a ∨ b ∈ P now always exists. There are some
important special cases, for example:

– If B(O) is the antichain of the atoms of P , then Eq. (5)

∀a, b ∈ P, β(a ∨ b) + β(a ∧ b) = β(a) + β(b),

so that Bel becomes a classical probability measure Pr with p its discrete
distribution, and

∀A,B ⊆ Ω, Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B).

– If B(O) is a maximal chain C ⊆ P with |C| = H(P), then

∀a, b ∈ P, β(a ∧ b) = min(β(a), β(b))

so that Bel becomes a so-called “necessity measure” η with

∀A,B ⊆ Ω, η(A ∩ B) = min(η(A), η(B)).

Open questions remain about these properties when P is a general lattice, a
complemented lattice, or a general poset (all finite). However, it’s interesting to
consider a potential form of Eq. (5) when P is a general poset:

∀a, b ∈ P,
∑

c∈a∨b

β(c) +
∑

c∈a∧b

β(c) ≥ β(a) + β(b),

and consider connections to general families of semimodular maps on posets [14].

6 Resnik’s Semantic Similarity

A currently attractive way to approach semantic distance in semantic hierarchies
is to use Resnik’s measure of “semantic similarity” [15], originally developed for
application to Wordnet, but then applied successfully by Lord et al. to the GO
[13]. Not only do these concepts have a natural interpretation in our language,
they also serve as a point of departure for our development.

Weighted Pseudo-distances for Categorization in Semantic Hierarchies 389

Definition 2 (Resnik Semantic Similarity). Given a weighted poset O, then
∀a, b ∈ P , define

δResnik(a, b) = max
c∈a∨b

[− log2(β(c))] . (6)

Some issues are immediately evident when comparing the Resnik measure to
our pseudo-distances δ. First, unlike δResnik, our measure δ is definitely not a
distance, most significantly because it is not defined for pairs of general nodes
a, b ∈ P , but rather only for comparable nodes a ≤ b ∈ P .

There is also some ambiguity as to the semantics of δResnik as a measure of
information content, since as discussed in Sec. 5, while the p’s are definitely
values of a discrete distribution on P , β is almost never actually a probability
measure on P .

Also, if a portion of P , and in particular the ideal ↓ b of a node b ∈ P , is a lattice,
then the similarities between all the children of b are identical, no matter their
β values.

Theorem 1. Let b ∈ P with ↓ b ⊆ P a lattice. Then ∀a1, a2, a3, a4 ∈ ↓̇ b,
δResnik(a1, a2) = δResnik(a3, a4).

Proof. Since ↓ b is a lattice, therefore ∀a, a′ ∈ ↓̇ b, a ∨ a′ exists uniquely, and in
particular a ∨ a′ = {b}. Thus ∀a1, a2, a3, a4 ∈ ↓̇ b, δResnik(a1, a2) = − log(β(b)) =
δResnik(a3, a4). ��

But most significantly, δResnik cannot distinguish among links in a chain.

Theorem 2. If a ≤ b ≤ c, then δResnik(a, c) = δResnik(b, c) = δResnik(c, c).

Proof. Since a ≤ b → a∨b = {b} uniquely in P , then δResnik(a, c) = δResnik(b, c) =
δResnik(c, c) = − log(β(c)). ��

This is precisely contrasted with our pseudo-distances δ and δ̄, which satisfy

a ≤ b ≤ c → δ(b, c) ≤ δ(a, c), δ̄(b, c) ≤ δ̄(a, c).

7 Link Weights in Weighted Posets

Despite the weaknesses of δResnik, it is valuable in pointing the way towards
information theoretical distance measures in probability weighted posets, and
in being defined on all a, b ∈ P . While we are also actively researching such
measures for multiple purposes [6], categorization in general and POSOC in
particular depends only on proper measures among comparable nodes a ≤ b ∈ P .

We are therefore looking for a different mechanism to introduce link weights into
our categorization algorithm. Our aim is to “lengthen” chains in the weighted

390 Cliff A. Joslyn and William J. Bruno

poset proportional to the amount of probability concentrated along them, while
leaving them at “original length” where there is none. To do so, we also take an
information theoretical approach, although somewhat distinct from Resnik’s.

Definition 3 (Information Gain). For all pairs of comparable nodes a ≤ b ∈
P , let

ι(a, b) := β(b) − β(a) (7)

be the amount of information gained when moving from b down to a. For each
edge γ(a, b), let ι(γ) := ι(a, b) be the edge weight.

As an example, in Fig. 4 we have

ι(D,K) = β(K) − β(D) = 0.5 − 0.2 = 0.3.

Also in Fig. 4, we have labeled each of the arcs γ with the information gain ι(γ).

It is obvious that ι(a, b) ∈ [0, 1]. It is also comforting that for all pairs of com-
parable nodes a ≤ b ∈ P , no matter which chain is traversed from b down to a,
the sum of the edge weights is always equal to the information gain from b to a.

Proposition 2.

∀a ≤ b ∈ P, ∀Cj ∈ C(a, b),
∑

γi∈Cj

ι(γi) = ι(a, b).

Proof. Fix a ≤ b ∈ P , and a chain Cj ∈ C(a, b) of length hj , and use the notation
from Eq. (1) and Eq. (2). Then we have∑

γi∈Cj

ι(γi) = (β(c2) − β(a)) + (β(c3) − β(c2)) + . . . +

(β(chj−1) − β(chj−2)) + (β(b) − β(chj−1))
= β(b) − β(a) = ι(a, b).

��

This development follows Monjardet almost precisely [14], with β an isotone map
on P , ι(γ) an edge weight, and ι(a, b) a path weight.

Continuing our example, for D ≤ 1, where we still have the M = 5 chains, we
also have

ι(D, 1) = .8
= ι(〈D,E〉) + ι(〈E, I〉) + ι(〈I, B〉) + ι(〈B, 1〉) = 0.0 + 0.5 + 0.0 + 0.3
= ι(〈D, J〉) + ι(〈J,K〉) + ι(〈K, 1〉) = 0.2 + 0.1 + 0.5

and similarly for the other chains. This is very convenient, because then we
can deal with the information gain between comparable nodes and edge weights
indiscriminately: information gain can always be calculated by edge weights, but
we can also work with information gains whenever we want.

Weighted Pseudo-distances for Categorization in Semantic Hierarchies 391

8 Weighted Normalized Pseudo-distances

For comparable nodes a ≤ b ∈ P , we now want to take the chain lengths hj (or
the normalized chain lengths h̄j) and adjust them by the information gain ι(a, b).
Thus for a particular chain Cj ∈ C(a, b) of length hj

(
h̄j

)
, we wish to construct

a weighted chain length vj(a, b) (or a normalized weighted chain length v̄j(a, b))
as a function of hj

(
h̄j

)
and ι(a, b), which will be equal to hj

(
h̄j

)
scaled up

with ι(a, b). In this paper, we have only developed the normalized case for v̄j .

Considering a generic pair of comparable nodes a ≤ b ∈ P with information gain
ι = ι(a, b) = β(b)−β(a), and a particular chain Cj ∈ C(a, b) with length h̄ = h̄j ,
then how should the weighted, normalized chain length v̄ be determined? Our
motivations are as follows.

First, h and ι are in some sense independent quantities. As illustrated in cartoon
form in Fig. 2, the size of ι indicates the amount of “stretch” in the chain C, no
matter the number of “hops” along its length. So, “grey wolf” is farther from
“animal” than “ungulate” is, despite the fact that they’re both chains of length
two. Similarly, “finch” and “mouse” are stretched to be a similar distance from
“animal”, despite the differences in those chain lengths. So despite the fact that
by Thm. 1, as any particular chain Cj grows, ι increases with the chain length
h̄j , nonetheless in any particular case h̄j could be small while ι is large, or vice
versa.

We thus wish to identify a function f : [0, 1]2 → [0, 1] such that v̄j :=f
(
h̄j, ι(a, b)

)
,

and list the properties desirable for f(h, ι) with h, ι ∈ [0, 1]:

1. In one limit, ι could be zero, indicating that no probability mass was en-
countered when traversing from b down to a. In this case, we wish v̄ to be
recovered simply as h̄, requiring that f(h, 0) = h.

2. Otherwise, we want ι to add in to increase the total length, requiring v̄ ≥ h̄,
or in other words f(h, ι) ≥ h.

3. Then, considering some limit cases, if the entire structure is traversed by a
maximal chain, then v̄ should be maximum, so that f(1, ι) = 1.

4. Similary, in the degenerate case of a = b so that there are no chains and no
ι gain, then v̄ should be minimal, so that f(0, 0) = 0.

5. Finally, if ι = 1 so that all the probability mass is encountered when travers-
ing from b down to a, then v̄ is maximal, no matter than length h: f(h, 1) = 1.

Thus we arrive at the following.

Definition 4 (Weighted Normalized Chain Lengths). For a ≤ b ∈ P , and
for each chain Cj ∈ C(a, b), 1 ≤ j ≤ M , define v̄j := f

(
h̄j, ι(a, b)

)
, where

f(h, ι) := h1−ι, h, ι ∈ [0, 1], (8)

as the weighted chain length. Construct v̄(a, b) := 〈v̄1, v̄2, . . . , v̄j , . . . , v̄M 〉 as
the vector of weighted chain lengths, with v̄j ∈ v̄(a, b), and let

v̄∗(a, b) = min
v̄j∈v̄(a,b)

v̄j , v̄∗(a, b) = max
v̄j∈v̄(a,b)

v̄j .

392 Cliff A. Joslyn and William J. Bruno

Fig. 5. v̄j as a function of h̄j and ι(a, b).

Theorem 3. v̄j as defined using f in Eq. (8) satisfies the conditions 1–5 above.

Proof. Condition 2 follows from the fact that both h, 1 − ι ∈ [0, 1], so that
f(h, ι) = h1−ι ≥ h. All the other conditions follow directly from the form of f .

Fig. 5 shows f as a surface in [0, 1]2, and Fig. 6 shows level curves of f for various
values of h (left) and ι (right). Inspection of the figures reveals some interesting
behaviors. For example, a large ι will bring up even a small h to a high value
of f ; for high h, f degrades gradually to be bounded below by h as ι drops,
whereas for low h, this dropoff is more sudden.

We are now ready to introduce a modification to the prior pseudo-distances.

Fig. 6. (Left) Level curves of f(h, ι) for h = 1(f ≡ 1), .75, .5, .25, .0001; (Right)
Level curves for ι = 1(f ≡ 1), .9, .5, .1, 0.

Definition 5 (Weighted Normalized Pseudo-Distance). Given a weighted
poset O, then for all a ≤ b ∈ P , let a weighted normalized pseudo-distance
δ̄w(a, b) be any function such that v̄∗(a, b) ≤ δ̄w(a, b) ≤ v̄∗(a, b). In particular,
define the following weighted normalized pseudo-distances:

Weighted Pseudo-distances for Categorization in Semantic Hierarchies 393

– Minimum Normalized Weighted Chain Length: δ̄w
m(a, b) := v̄∗(a, b).

– Maximum Normalized Weighted Chain Length: δ̄w
x (a, b) := v̄∗(a, b).

– Average of Extreme Normalized Weighted Chain Lengths:

δ̄w
ax(a, b) :=

v̄∗(a, b) + v̄∗(a, b)
2

.

– Average of All Normalized Weighted Chain Lengths:

δ̄w
ap(a, b) :=

∑
v̄j∈v̄(a,b) v̄j

M
.

Given a weighted pseudo-distance, then the POSOC methodology [7] is simply
modified to substitute δ̄w for δ̄. The results of our example are shown in Tab. 1.

j hj h̄j v̄j

1 3.000 0.600 0.903
2 3.000 0.600 0.903
3 3.000 0.600 0.903
4 4.000 0.800 0.956
5 4.000 0.800 0.956

δ∗ δ̄∗ δ̄w
∗

m 3.000 0.600 0.903
x 4.000 0.800 0.956
ax 3.500 0.700 0.930
ap 3.400 0.680 0.924

Table 1. Results for D ≤ 1. (Top) Chain lengths hj , normalized chain lengths
h̄j , and weighted normalized chain lengths h̄j for chains Cj ∈ C(D, 1), 1 ≤ j ≤
M = 5; (Bottom) Pseudo-distances δ∗, normalized pseudo-distances δ̄∗, and
weighted normalized pseudo-distances δ̄w

∗ for ∗ ∈ {x,m, ax, ap}.

9 Conclusion and Discussion

We have demonstrated a method by which probabilities can be used to weighte
pseudo-distances in ordered data objects. Space allows only an explication of
this basic step, and not its application within the overall POSOC ontology cat-
egorization algorithm. While straightforward, this requires the determination of
a real probability distribution p on the GO, perhaps in a manner similar to Lord
et al [13]. The details and results of this application, along with development
for non-normalized weighted chain lengths vj and pseudo-distances δw, await
further work.

394 Cliff A. Joslyn and William J. Bruno

We should also mention an additional step we wish to take in the future. As
we’ve seen, v̄ is not especially sensitive to even moderate information gains ι
even when the chain lengths h̄j are reasonable. But moreover, the example in
Fig. 4 is perhaps somewhat unfortunately chosen, in that the probability mass
is concentrated on the right-hand side of the structure. The pair D ≤ 1 we
considered has a relatively large gain ι(D, 1) = 0.8. In practice, in a real ontology,
mass can be expected to be widely distributed over a very wide and shallow
structure (the width of the GO in some places exceeds 6000, while the height is
only 16), meaning that it can be expected that for any typical pair of nodes a ≤
b, ι(a, b) would actually be expected to be very low, and thus v̄ quite close to h̄.
Thus we are also considering the viability of a non-linear function for information
gain instead of Eq. (7) to heighten or tune the affect of small information gains.
In particular, we are considering various logarithmic forms similar in spirit to
Resnik’s Eq. (6).

10 Acknowledgments

This work was sponsored by the Department of Energy under contract W-7405-
ENG-36 to the University of California. We would like to thank the Los Alamos
National Laboratory Protein Function Inference Group for their contributions to
this work, and in particular Michael Wall (LANL Computer and Computational
Science) for his consultation. We also appreciate the dialog currently ongoing
with Alex Sanchez, Phillip Lord, and Robert Stevens of U. Manchester. Finally,
we’d like to thank Petko Valtchev of the University of Montreal for the reference
to Monjardet.

References

1. Aho, AV; Garey, MR; and Ullman, JD: (1972) “The Transitive Reduction of a
Directed Graph”, SIAM Journal of Computing, v. 1:2, pp. 131-137

2. Bodenreider, Olivier; Mitchell, Joyce A; and McCray, Alexa T: (2002) “Evaluation
of the UMLS As a Terminology and Knowledge Resource for Biomedical Informat-
ics”, in: AMIA 2002 Annual Symposium, pp. 61-65

3. Davis, Anthony R: (2000) Types and Constraints for Lexical Semantics and Link-
ing, Cambridge UP

4. Ganter, Bernhard and Wille, Rudolf: (1999) Formal Concept Analysis, Springer-
Verlag

5. Gene Ontology Consortium: (2000) “Gene Ontology: Tool For the Unification of
Biology”, Nature Genetics, v. 25:1, pp. 25-29

6. Joslyn, Cliff: (2004) “Poset Ontologies and Concept Lattices as Semantic Hierar-
chies”, in: Conceptual Structures at Work, Lecture Notes in Artificial Intelligence,
v. 3127, ed. Wolff, Pfeiffer and Delugach, pp. 287-302, Springer-Verlag, Berlin

7. Joslyn, Cliff; Mniszewski, Susan; and Fulmer, Andy; and GG Heaton: (2004) “The
Gene Ontology Categorizer”, Bioinformatics, v. 20:s1, pp. 169-177

8. Joslyn, Cliff; Oliverira, Joseph; and Scherrer, Chad: (2004) “Order The-
oretical Knowledge Discovery: A White Paper”, LAUR = 04-5812,
ftp://ftp.c3.lanl.gov/pub/users/joslyn/white.pdf

Weighted Pseudo-distances for Categorization in Semantic Hierarchies 395

9. Joslyn, Cliff; Cohn, JD; Verspoor, KM; and Mniszewski, SM: (2005) “Automat-
ing Ontological Function Annotation: Towards a Common Methodological Frame-
work”, submitted to 2005 Bio-Ontologies Meeting, ISMB 05

10. Klir, George and Elias, Doug: (2003) Architecture of Systems Problem Solving,
Plenum, New York, 2nd edition

11. Klir, George and Yuan, Bo: (1995) Fuzzy Sets and Fuzzy Logic, Prentice-Hall, New
York

12. Knoblock, Todd B and Rehof, Jakob: (2000) “Type Elaboration and Subtype Com-
pletion for Java Bytecode”, in: Proc. 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages

13. Lord, PW; Stevens, Robert; Brass, A; and C Goble: (2003) “Investigating Semantic
Similarity Measures Across the Gene Ontology: the Relationship Between Sequence
and Annotation”, Bioinformatics, v. 10, pp. 1275-1283

14. Monjardet, B: (1981) “Metrics on Partially Ordered Sets - A Survey”, Discrete
Mathematics, v. 35, pp. 173-184

15. Resnik, Philip: (1995) “Using Information Content to Evaluate Semantic Similarity
in a Taxonomy”, in: Int. Joint Conf. on Artificial Intelligence, pp. 448-452, Morgan
Kaufmann

16. Schröder, Bernd SW: (2003) Ordered Sets, Birkhauser, Boston
17. Verspoor, Karin; Cohn, J; Joslyn, C; SM Mniszewski, A Rechtsteiner, LM Rocha,

and T Simas: (2004) “Protein Annotation as Term Categorization in the Gene
Ontology Using Word Proximity Networks”, BMC Bioinformatics, v. 6, suppl 1

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 396-410, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Games of Inquiry
for Collaborative Concept Structuring

Mary A. Keeler1 and Heather D. Pfeiffer2

1Center for Advanced Research Technology in the Arts and Humanities
University of Washington, Seattle, Washington 98117, USA

mkeeler@u.washington.edu
2Department of Computer Science

New Mexico State University, Las Cruces, New Mexico 88003-8001, USA
hdp@cs.nmsu.edu

Abstract. Google’s project to digitize five of the world's greatest libraries will
dramatically extend their search engine reach in the future. Current search-
engine philosophy, which asserts that "any search starts with a question to be
answered," will need to be advanced in terms of Peirce's philosophy: "Any
inquiry begins by creating an hypothesis to be tested, or with abduction." As
conceptual structures researchers prepare to meet access challenges in the world
of large Internet knowledge stores, they have a solid foundation in Peirce's
theorized stages of inquiry: abduction, deduction, and induction. To indicate
how conceptual structures tools must augment collaborative, Internet-based
inquiry, we imagine a future scenario in the context of a user-centered testbed,
where Peirce scholars apply Peirce's pragmatic theory in their complex
manuscript reconstruction work. We suggest that games of inquiry can be
developed to formalize user collaboration and technology needs, for improved
specification of tool requirements in the testbed context.

1 Scenario Context and Characters

Imagine some particular day in the future, when the technology to support
collaborative inquiry has advanced through rapid-prototyping in user-centered
testbeds, so that researchers can work together efficiently, no matter where they are
located and no matter where their primary data is safely stored in library archives. In
this particular scenario, the researchers are Peirce scholars and the data of their
research are Peirce's manuscripts archived at Harvard's Houghton Library. These
scholars are remotely located from one another, so must use the Internet to collaborate
in their work to transcribe the digitized images of Peirce's handwritten manuscripts
into digital text and to catalog a coherent sequence of Peirce's manuscript pages.
Transcription involves deciphering what Peirce wrote, which becomes more difficult
as his handwriting deteriorated in his declining years when he suffered from cancer
and other ailments.

During the last seventeen years of his life (1897-1914), Peirce produced his most
intensive theoretical work, on semiotic, pragmatism, and his system of Existential
Graphs (EG) as a notation for the study of logic [see 1 and 2]. Amounting to some
40,000 pages, very few of these manuscripts have ever been published. And very few
scholars have ever studied these pages, which their Houghton Library curator

Games of Inquiry for Collaborative Concept Structuring 397

estimates will survive no more than a few dozen more years (due to their high-acid
paper). By 2005, scholars and technologists realized that Internet-based technology
had advanced to make possible the reconstruction and representation of Peirce's
polymathic corpus (ranging from religion, philosophy, and cosmology, to computer
science, mathematics, logic, geophysics, and many others fields). Five, especially
qualified scholars joined to pursue some of that reconstruction, collaboratively, in the
Peirce Online Resource Testbed (PORT) project [3].

Jay Zeman, Professor Emeritus of Philosophy and specialist in Peirce's EG, lives in
Florida; Bob Burch, Professor of Philosophy at Texas A&M is also an expert in
Peirce's EG; Peter Øhrstrøm, Professor of Communication at the University of
Aalborg in Denmark is an specialist in modal logic (including Peirce's "gamma
graphs"); Robert Marty is Professor Emeritus at the University of Perpignon in
France, a specialist in Peirce's "semiotic logic"; and Frithjof Dau, in Germany,
completed his doctoral degree studying concept graphs in 2002, and a treatise on
Peirce's EG in 2005. They joined PORT's collaboratory testbed, in partnership with
technologists, to help develop imaging and transcribing methods and tools that would
improve the quality and efficiency of their work. They are particularly motivated to
create better access to the manuscript data because of inadequacies and
misrepresentations in previous editions of Peirce's writings. The Collected Papers of
Charles Sanders Peirce (referred to as "CP"), an eight-volume edition produced more
than fifty years ago1, remains (in spite of its many deficiencies) the most complete
print resource of his work2.

On this particular imaginary day in the future, the scholars are engaged in perhaps
the most difficult detective problem during the initial stage of reconstructing Peirce's
corpus. As in the initial stage of scientific investigations, the scholars must prepare
the raw data (in the form of digitized manuscript page images) to serve as reliable
data for interpretation, by calibrating (ordering the pages in some sequence and
grouping the sequences accurately). For scholarly interpretation of his ideas as they

1 The misnamed Collected Papers of Charles Sanders Peirce is the only large-scale and

purportedly comprehensive edition of Peirce's writings. Published in six volumes, from 1931
to 1935, and enlarged by two volumes in 1958, its topical selections omit Peirce's writings on
science and mathematics almost entirely. Although, it contains nearly 150 selections from
his unpublished manuscripts, only one-fifth of those selections consist of complete
manuscripts, and many of them are inaccurately dated; parts of some manuscripts appear in
up to three of the eight volumes, and at least one series of papers is scattered throughout
seven of the eight. Most manuscripts appear in excerpts (with only rare indication of how
much has been left out), and different parts of the same manuscript appear in different
volumes (because of the topical order), and in some cases parts of different manuscripts are
grafted together (without mention), sometimes consisting of writings composed more than
three decades apart. As a scholarly tool, this edition is unreliable and often frustrating [See 4
for detailed discussion].

2 A textually and chronologically reliable print edition of Peirce's writings was begun in the
late 1980s (Writings of Charles S. Peirce: A Chronological Edition) [5]. As of 2005, only
six of the originally projected thirty volumes have been published, and even if completed,
that edition would present less than one-third of Peirce's entire work. More significantly, in
its paper-print format, cost of production may prohibit representation of Peirce's late
manuscripts, which are characterized by text enclosed in graphical figures, graphics
embedded in text, text contoured around graphics, whole pages of graphics with no text at
all, and graphical figures with as many as four colors.

398 Mary A. Keeler and Heather D. Pfeiffer

evolved, the page order should be chronological, as they were written by Peirce.
Unfortunately, achieving that ideal may never be entirely possible, since only about
one third of the corpus was originally dated by Peirce. At least, the order of each
manuscript should be as close to Peirce's own apparent compositional order as
possible. Even that goal is challenging, since some 10,000 pages in the Harvard
collection3 are considered "lost." These pages are present in the collection, but not
properly placed in any manuscript sequence. Many more pages have been tentatively
placed in supplementary folders, and labeled, for example, "145(s)," to indicate pages
thought to belong to MS 145. In other cases, if scholars have not yet considered some
group of "lost pages," which seem to belong together, they are simply labeled with a
manuscript number. Such is the case with manuscript "507," a folder of nine pages,
listed in the "Robin catalogue" of the Houghton collection4 as undated and
unnumbered.

2 A Manuscript Mystery

We enter the scenario with the five scholars attempting to solve a "lost page" mystery,
as an example of the complexity of work in the initial stage of reconstruction. The 32
pages of the folder labeled "145(s)" have been previously identified as possibly
belonging with the folder labeled "145," which the Robin catalogue lists as a
manuscript of 12 pages (undated and unnumbered). Quoting from the manuscript title
page, the catalogue entry reads: "An Attempt to state systematically the Doctrine of
the Census in Geometrical Topics or Topical Geometry, more commonly called
'Topologie' in German books; Being a Mathematical-Logical Recreation of C.S.
Peirce following the lead of J.B. Listing's paper in the 'Gottinger Abhandlungen'"
[6:17]. The scholars each verify this catalogue entry with what they find in the "145"
folder (using Hoffmann's online version of the Robin catalogue and PORT's online
manuscript data archive). They find that the association of "145" pages with the
manuscript pages of "145(s)" is supported by empirical evidence they can see in the
manuscript page images displayed on each of their screens simultaneously. The pages
of "145" are in a notebook with lined pages that appear to match the pages of
"145(s)." But they question whether the folder labeled "145(s)" (of 32 pages) should
be designated "145," while the folder labeled "145" (of 12 pages) should be "145(s),"
indicating that its fewer pages are supplementary material for what should be the
primary material in the folder currently marked "145(s)"?

3 When Peirce's papers (amounting to between eighty and one-hundred thousand pages) were

given to Harvard, shortly after his death (1915), they were not properly stored for several
years (apparently, even distributed as scratch paper in war-time paper shortages), during
which they fell into disarray. The microfilm (high-contrast, black and white, produced in
1967) and photo copies from it cannot be used in place of the original pages, which must be
carefully examined for any discriminating features that might be clues as to where they
belong (such as color and width of ruled lines and handwritten script, type of paper,
watermark, shape of a torn or cut edges, weathering effects, and so on).

4 Richard Robin's Annotated Catalogue of the Papers of Charles S. Peirce [6] provides the
most valuable and comprehensive view of the disordered manuscripts (and their incomplete
representation in the microfilm edition). See Michael Hoffmann's digital version of the
Robin catalogue: http://www.iupui.edu/~peirce/robin/robin.htm.

Games of Inquiry for Collaborative Concept Structuring 399

Meanwhile, at least one page in the "507" folder (of unplaced pages) has been
recognized as very similar in appearance and content to page number 22 in "145" (so
close as to be considered possibly an earlier or later-written version of page 22).
However, even though the "507" page has obviously been cut from a notebook, its cut
edge does not match any cut fragment in the "145" or "145(s)" notebooks. And
though its textual content appears to be nearly identical to that on page 22, the EGs
across the top of the page are not identical. The "507" catalogue entry gives almost
no clue: "Beta and gamma graphs, with algebraic translations. Rules of
transformation" [6: 65].

Previously, the scholars had encountered the comparable case of a notebook
catalogued and labeled as "464" and a folder of 15 pages labeled "464(s)" on
notebook paper that looks exactly like that of the 35 pages of "464." In this case too,
"464," but not "464(s)," has an entry in the Robin catalogue designating it as "Part 1
of the 3rd draft of 3rd Lecture" of his 1903 "Lowell Lecture" series.

As with "145," the content of one page of "464(s)" has obviously been cut from a
notebook, and it appears very similar to that of a page in the "464" notebook; but in
this case the cut edge of the "464(s)" page matches exactly with a cut fragment in
"464," and even the marginal text that has been cut through matches. So there is
strong empirical evidence that "464" and "464(s)" belong together, while the proper
designation of "145" and "145(s)," together with the mystery of the "507" page
(which is extremely similar in content but does not empirically match page 22 in
"145"), remains in doubt. Where does this page belong, and how should "145" and
"145(s)" be properly designated in the catalogue of manuscript material?

3 Essential Collaboration Capabilities

For the critical identification work in our future scenario of scholars at work, the
digital images of the manuscript pages must be extremely accurate representations of
the original pages. They must provide evidence not only of what Peirce rendered in
graphical forms and in handwritten text but also of other bibliographic features (such
as color, kind, and condition of the paper). The manuscript images must exhibit to all
collaborating scholars the same critical features, no matter what may be the variations
among the qualities of their computer display systems. Any visible feature on a page
may be needed in their judgments as to where the page belongs, what was its
significance to Peirce, and what insights it might convey. The mediating tools of their
virtual collaboration context make it possible for the scholars to confer effectively in
such minute judgments, in spite of the differences in display capabilities among their
computer systems.

3.1 Consistent Image Quality

An image-display mediator (originally developed as "AI-Trader," by Puder and
Römer [7]), monitors the differences among the scholars' five different computer
displays and matches them across all system factors (such as file-compression ratio,
screen size and resolution, and color calibration). This automatically standardized
image is the reference quality for all collaborators, and enables the mediator to notify
the scholars when their views do not correspond. On request, the mediator negotiates

400 Mary A. Keeler and Heather D. Pfeiffer

among the collaborator's individual requests to establish the optimum perceived
attribute values for any selected purpose. Matching views is especially important for
collaboration on detailed features such as tone of paper (for page matching). Subtle
qualities that are not immediately recognized as significant might be identified as
crucial evidence by one scholar and then confirmed in collaborative interpretation.
All scholars have access to reliably comparable views of the same artifact, while
individually each is able to explore the primary data for potentially relevant features
identified from the perspective of his particular background knowledge of Peirce's
work.

The mediation service avoids the problem of simply serving the lowest display
system capabilities, and allows the scholars to intervene in the process at any point
needed to resolve discrepancies because of differences in image quality among their
displayed views of manuscript pages. The lowest quality display system of any
scholar does not prevent those with higher quality systems from seeking and finding
crucial evidence, and bringing it to the collaboration context as the object for
consideration and discussion. The image-display mediator negotiates among
complexly interrelated system variance factors (including resolution and color
accuracy, compressed file quality, and speed of transmission) to serve all participants
efficiently. Concurrently, the scholars can readily monitor this mediation process, as
it reconciles "competing factors," to remain aware in viewing the images as the
evidence of what Peirce rendered on paper. Any relative bibliographic invariance
they identify in the evidence (such as a particular type of notebook paper or color of
ink used in particular graphic forms) might then serve to establish meaningful
segmentation, to be indexed for catalogue identifications that can be used in
automatically searching for possible matching pages.

3.2 Concurrent Catalogue Documentation

PORT's concept-based catalogue for the Peirce archive, which has evolved from the
data of print finding aids, has been digitally linked to both transcribed text and digital
images of the original manuscript pages. By means of the catalogue, each manuscript
page's digital image and transcription is coded to all existent corresponding print
edition entries of its content, and each image appears on screen with its actual or
estimated date of composition, if known. The scholars can propose corrections to the
catalogue entries reflecting any additions and alterations accumulated during their
intensive transcription and calibration work. Variations among their transcriptions
and calibrations are monitored automatically, by digital matching, and these points of
disagreement are highlighted in the digital transcriptions.

An ontology of the collection (or a comprehensive framework capable of relating
the digitized archive data in a conceptual structure, for logical representation of
inference relations) interrelates the catalogue entries on many conceptual levels.
Special ontologies function as specialized database indexes (or views), representing
the conceptual perspectives of particular disciplinary conventions with respect to the
archive and any related data. These specialized indexes continue to evolve as each
discipline evolves, keeping all views conceptually coordinated. Formal Concept
Analysis [see 8] provides a graphical interface of lattices displaying the related views
of catalogue entries in a relational database [see 9]. Graphical views (or

Games of Inquiry for Collaborative Concept Structuring 401

visualizations) of this data-under-evolution enable disciplinary specialists to remain
critically aware of the complex implications of each researcher's contribution
(including their own) with respect to others in the scheme of inquiry as a whole.
Other methods of knowledge representation and processing have made possible the
essential functions of this collaborative resource evolution (see section 5 for scenario
examples of the user-driven development process).

3.3 Essential Testbed Functions

Scholars or researchers in any specific discipline can report their reconstructions of
Peirce's complex arguments, as hypotheses, based on their interpretations of the
imaged and transcribed manuscript content. Editors and other scholars or researchers
are then able to track their own hypotheses as well as those of others, from the image
evidence supporting them, through the systematic deduction of their implications for
manuscript order and content, to the ongoing inductive testing by scholars or
researchers who interpret and employ content of the reconstructed arguments. Not
only is the order of pages in a manuscript frequently hypothetical because of lost or
misplaced pages, but Peirce's complex style of composition increases the uncertainty
of accurate reconstruction. He sometimes uses the same page in several versions of
elaborated discussion, the course of which sometimes even doubles-back on itself to
pick up an unexplored path.

In our future scenario, each scholar in the testbed creates a map of the page-by-
page course of a particular hypothetical Peircean "exploration." These computer-
generated diagrams record each (possibly unique) reconstruction of Peirce's multi-
path arguments5. These "S-diagrams" can then be matched, by either human
perception or computer-generated graph methods. Detected relative invariance
among maps reveals agreements in sequence across all scholars' hypothetical
reconstructions, and pin-points where controversies in reconstructions lie and further
investigation should be pursued. As interpretations proceed and scholars'
hypothetical reconstructions evolve, a "dynamic map" is generated, which continues
to display the evolution of the collaborative effort (see section 5). Many tools (for
database, document, and knowledge-based management, search and retrieval,
knowledge acquisition, interlingua for both natural language translation and system
integration, knowledge-based communication services support and discourse
management) have been integrated and customized to serve the scholars’ reporting,
tracking, and mapping needs (de Moor suggests an architecture [10:269-70]).

4 Stages of Inquiry

As our scenario proceeds, the scholars are engaged in hypothetical inference, the first
stage of inquiry as Peirce conceived its three stages of abduction, deduction, and
induction. In the first stage, abduction:

5 As early as 1986, one Peirce scholar (Shea Zellweger) mapped on paper the pattern of several

Peirce manuscripts, creating an elaborate, page-by-page, "organic" figure of the course of his
writings (see 1 for examples).

402 Mary A. Keeler and Heather D. Pfeiffer

1. they experience a mysterious or disturbing phenomenon (P): that page 1 of manuscript "507"
looks strikingly similar in content to but does not empirically match page 22 of manuscript
"145(s)";

2. they suppose that P would be explicable as not surprising, if hypothetical condition (H) were
true, and then;

3. they accept in these conditional terms that H might be true [see CP 5.189].

Using the facts observable in the manuscript evidence, together with previous
known facts of Peirce's work, each scholar attempts to formulate an H to explain P.
Abduction's role in inquiry is to begin argumentation by providing claims that suggest
how further inquiry might proceed and what might be its aim. Peirce stresses its
significance in relation to the other two stages of inquiry: "Its only justification is that
from its suggestion deduction can draw a prediction which can be tested by induction,
and that, if we are ever to learn anything or to understand phenomena at all, it must be
by abduction that this is to be brought about" [CP: 5.171].

4.1 Collaborative Abduction

In the scenario, Jay Zeman studies his S-diagram for manuscript "145" and notices
that the content of the questionable "507" page might indicate a "branch" in Peirce's
argument toward a discussion of gamma graphs, which could connect with the content
of "145(s)" at page 22. He uses mediated standard-quality images to refer to both
pages, together, indicating to the other scholars on an overlaid commentary image file
what passages and points on the pages of text and images lead him to make his
conjecture. Meanwhile, Bob Burch has been comparing the image of the "507" page
with images of "145(s)" and "145" pages, arranging them side-by-side on his display
screen. Since all the manuscript material was imaged at a standard focal length, the
pages of each folder are represented in actual size relationships. Bob finds that the
"507" page matches the "145(s)" paper (in terms of size and ruled line spacing), and
appears to match that of "145." He double-checks the match of paper tones with a
color-calibrated detector and finds that they apparently measure the same color; but to
be certain, he runs a test on the full-size image files (with more color-depth data than
can be displayed on his screen). That test indicates that the "507" paper is the same as
the "145," but not quite the same as that of "145(s)."

Peter Øhrstrøm is working on the content alone, and finds that the folder labeled
"145(s)" picks up the topic of "145" soon after the first page, and that the second page
has a verso with only gamma graphs, possibly indicating where Peirce could have
made a branch in his trend of thought. Peter reports that hypothesis, and Frithjof Dau
confirms it as plausible from his knowledge of Peirce's EG notation (alpha, beta, and
gamma). Frithjof's analysis of why Peirce created the "507" page indicates that he
apparently redrew the EGs of "507" on the "145(s)" page 22, leaving out one figure,
but Frithjof is not entirely sure that "507" is a bridge between "145" and "145(s)."
Meanwhile, Robert Marty wonders (based on his knowledge of Peirce's semeotic
logic) if the "507" page may have been cut from some as yet undiscovered version of
"145," because Peirce decided it simply headed too quickly into the gamma graph part
of EG, without explaining significant sign theory context. Although Marty suspects,
he is not yet ready to assert that conjecture formally as an hypothesis, and must
consult some of Peirce's other discussions of his logic and its graphical notation.

Games of Inquiry for Collaborative Concept Structuring 403

Jay Zeman mentions some significant bibliographic evidence, at this point: that
"145(s)" has a title page very similar to that of "145," although with fewer colors in its
title lettering and a shorter title, "Geometrical Topics;" and it is dated "April - May
1905." If Peirce wrote this manuscript over a month's time, that might explain the
slight difference found between its tone of paper and that of "145"? Could the fact
that "145(s)" has fewer colors throughout its 32 pages (only green, blue, and black)
indicate it was Peirce's first attempt, while the five colors (green, blue, red, brown,
and black) of "145" indicate a more advanced, succeeding attempt? As Jay closely
compares the images of pages from both on his screen, he finds that "145" is
definitely more elaborate in content, with both colorful text and graphics. The
mystery remains, where does the "507" page then belong?

4.2 Directing Inquiry

Abduction refers to any operations by which theories and concepts are engendered
[see CP 5.590 (1903)]. As inquiry proceeds, the consequences (or implications) of
each scholar's hypothesis must be traced out by deduction, and compared with the
results of experimentation by induction (in further efforts to represent his corpus
accurately and, beyond, in the interpretation of Peirce's ideas in the many fields where
it is relevant, including knowledge representation). As soon as one hypothesis is
refuted, another one is subjected to the same stages of argumentation: Abduction
merely suggests what may be; Deduction proves what must be; Induction shows what
actually is operative [see CP 5.590]. Peirce identifies other modes of reasoning that
mingle these three forms of argument [see CP 2.103 (1902)], for example, analogy
[see CP 7.97 (1902); also see Sowa's discussion of analogy as a prerequisite for
logical reasoning: 11], but he considers these three to be logically elementary, with
distinct roles and limitations.

Abduction furnishes all our ideas concerning real things, beyond what are given in
perception, but is mere conjecture, without probative force. Deduction is certain but
relates only to ideal objects. Induction gives us the only approach to certainty
concerning the real that we can have. In forty years diligent study of arguments, I have
never found one which did not consist of those elements. [CP 8.209 (1905)]

Peirce criticizes the common mistake of mixing the three as a simple argument,
and even more commonly of confusing abduction with induction. They are "opposite
poles of reason": one the most ineffective argument, the other the most effective.

The method of either is the very reverse of the other's. Abduction makes its start from
the facts, without, at the outset, having any particular theory in view, though it is
motivated by the feeling that a theory is needed to explain the surprising facts. Induction
makes its start from an hypothesis, which seems to recommend itself, without at the
outset having any particular facts in view, though it feels the need of facts to support the
theory. Abduction seeks a theory. Induction seeks for facts. In abduction the
consideration of the facts suggests the hypothesis. In induction the study of the
hypothesis suggests the experiments which bring to light the very facts to which the
hypothesis had pointed. [CP 7.218 (1901)]

Induction (the experimental testing of a theory) is the most effective because,
"although the conclusion at any stage of the investigation may be more or less

404 Mary A. Keeler and Heather D. Pfeiffer

erroneous, yet the further application of the same method must correct the error."
Induction measures the degree of concordance of theory with fact [CP 5.145 (1903)].

Peirce conceived his theory of inquiry to explain the "marvelous self-correcting
property of reason," and how "making experiments" upon his logical graphs can come
into play [CP 5.579 (1898); and see Dau's analysis of Peirce's EG: 12]. After
abduction allows a mass of facts to suggest a theory, deduction constructs an image or
diagram of that suggested ideal interpretation by which relations of parts that are
implicit in the proposed theory become explicit and convincingly predictable.
Induction then tests to verify that predictability under real conditions. One of his
latest accounts stresses the directive nature of inquiry.

Abduction having suggested a theory, we employ deduction to deduce from that ideal
theory a promiscuous variety of consequences to the effect that if we perform certain
acts, we shall find ourselves confronted with certain experiences. We then proceed to try
these experiments, and if the predictions of the theory are verified, we have a
proportionate confidence that the experiments that remain to be tried will confirm the
theory. [CP 8.209 (1905)]

In inquiry, we ask the pragmatic question: If what we conjecture were true, as the
cause of something unexpected, what would be the consequences? We conjecture
what might have been the antecedents from the consequences we observe,
provisionally accept that explanation as an hypothesis worth testing, then proceed to
the deductive stage of observing what we have asserted as the state of things, in
diagrams (or graphs) of its premises. We can then perceive in the parts of the diagram
relations not explicitly mentioned in the premises, as implications that should subsist,
at least in a certain proportion of cases, and conclude their necessary or probable truth
[see CP 1.66 (c. 1896)]. Abduction and deduction establish the rational directions for
inductive investigation [see 13, for a detailed analysis verifying the order of these
stages].

5 Games of Inquiry

We can correlate Peirce's theory and logical stages of inquiry with Robert Brandom's
pragmatic inferentialist theoretical framework and his model of discursive practice
[see 14], for a functional analysis of the scenario. Under that model, when a scholar
asserts a claim (an hypothesis) about the manuscript pages, he expresses his
commitment to a belief, which gives its conceptual content his authority and licenses
others (including himself) to undertake a corresponding commitment to use that
assertion as a premise in further inferences. In Brandom's theory, inferences involve
both intercontent and interpersonal relations in the discursive practice of "giving and
asking for reasons." When one scholar expresses a claim that entails a claim
expressed by another, anyone who is thereby committed to the first is committed to
the second. In Brandom's model, the direction and strength of any scholar's assertion
(of its conceptual content) are defined by two normative dimensions: a speaker's
commitment to that content, and what serves as entitlement to (as reasons for) that
commitment. Communication becomes essential to rational practice, as "the
interpersonal, intracontent inheritance of entitlement to commitments" [15:165].

Games of Inquiry for Collaborative Concept Structuring 405

Pragmatically, Brandom and Peirce agree that logic is "the linguistic organ of
semantic self-consciousness and self-control," making it possible "to criticize, control
and improve our concepts" [15:19, 149]. Logic's instrumental task is to make explicit
what is implicit in the use of ordinary vocabulary, to reveal patterns of inference that
are formally valid because they are invariant. But Brandom emphasizes that these
formal properties of inference derive from material inferences that must be explained
in terms of ordinary language; so the primary task of logic is to help us express
something about the conceptual contents of material inferences. Rather than a
standard of right reasoning, logic is "a 'distinctive set of tools' which we can use to
make explicit (and hence available for criticism and transformation) the inferential
commitments that govern the use of all our vocabulary, and hence the contents of
concepts" [15:30; 14:246-6]. Consistent with Peirce's pragmatic theory, Brandom
warns that when we display relevant grounds and consequences in logic to assert their
inferential relations, we must never expect to achieve complete transparency of
commitment and entitlement. That ideal serves as only a conceptual limit to hope for
in pursuing inquiry [see 15:149, 76].

Brandom's functional theory of concepts focuses on their role in reasoning as prior
to their supposed origin in experience [see 15:25; 14:243]. Conceptual content is
determined by how concepts are structured by inferences, prior to their use in
effectively referring to anything. He stresses: "the representational aspect of the
propositional contents that play the inferential roles of premise and conclusion should
be understood in terms of the social or dialogical dimension of communicating
reasons, of assessing the significance of reasons offered by others," rather than as
arrived at noninferentially from sense perception [see 15:166]. His model of
discursive practice treats concepts as norms, not as single signs but as nodes in an
inferential network of related concepts. Those norms determine "what counts as a
reason for particular beliefs, claims, and intentions," as rules determine the
correctness of moves in a game [15:25; 14:243]6. In fact, Brandom's model identifies
conceptual content in an expression by whether it can play a role in the inferential
game of making claims and giving and asking for reasons7.

Brandom contends that we give beliefs, desires, and intentions conceptual content
when we ask such pragmatic questions as "under what circumstances would what is
believed, desired, or intended be true?" [15:158]. His theory and model enforce the
distinction between what is said or thought (the propositional dimension) and what it
is said or thought about (the representational dimension), and he stresses that even our
reports of observable properties, such as color, must be inferentially articulated to
have conceptual content. Otherwise, we could not distinguish these noninferential
reports from the automatic responses of machinery, such as thermostats and
photocells. To understand a concept is to be able (or know how) to distinguish what
follows from its application and what it follows from in the practical sense [see
15:108]. Any expressed report that functions conceptually must at least serve as a
premise from which to draw inferential consequences: there can be no autonomous
language game of entirely noninferential reports. The representational use of

6 Peirce stresses a similar semeotic understanding in indicating how his Existential Graphs

should be applied dialogically in inquiry (see CP 4.429-431).
7 Brandom's model is based on Wilfred Sellars's suggested game of "giving and asking for

reasons" [see 15:35; and 14:251-54].

406 Mary A. Keeler and Heather D. Pfeiffer

propositional concepts relies on the social structure of their inferential articulations in
the game of giving and asking for reasons [see 15:183]. Conceptual content is
collaborative, inferential content.

5.1 The Manuscript Reconstruction Game

The scholars in the scenario report their claims in conditional form, to make explicit
what is not otherwise made explicit in their ordinary discourse involving the informal
material inferences that reflect what they consider significant during their empirical
observations of the manuscript material. Using these formal expressions (or asserted
hypotheses), they engage in collaborative discourse. In the testbed context [see 16],
the game mode of discourse helps the scholars formulate and select valid hypotheses
to explain their surprising experience of the evidence (the mystery of the "507" page).
Their game, called the Manuscript Reconstruction Game (MRG), is played as a
formal deductive and inductive test of each scholar's proposed hypothesis (of its
strength in terms of commitments and entitlements as rationally and empirically valid
for accurately reconstructing the manuscript pages).

Those playing the game must report: by selecting propositionally contentful
expressions capable of serving in inferences as both premise and conclusion (what
can be offered as, and itself stand in need of, reasons). Learning to play the game
involves being able to tell what is a reason for what, distinguishing good reasons from
bad, by keeping score on what other players are committed and entitled to, as two
dimensions of normative status. Understanding the conceptual content of a claim is
being able to accord it proper significance, or knowing how a commitment would
change the score in various inferential contexts with other claims [see 15:165-66]. So
the players must also track the relations of commitments and entitlements in the
game's progression.

If Bob Burch makes a commitment by expressing the declarative sentence: "The
paper of page 1 of manuscript '507' does not match that of page 22 in '145(s)' (with
the color match test results as entitlement), indicating it was not originally written in
that notebook," then a commitment by Jay Zeman, such as, "Manuscript '507' was cut
from '145(s)'," is not compatible. And other possible sentences uttered by the other
scholars may be incompatible. For each scholar's explicitly expressed observation,
there will be a set of sentences that are logically incompatible with it; and inclusion
relations among the sets of sentences asserted in a dialog among the five scholars will
then indicate inferential relations among the sentences. That is, for example, the
content of the claim expressed by asserting, "Page 1 of '507' could mark a branch of
'145'," entails the content of the claim expressed by asserting, "'507' is the same paper
tone as '145'," because everything incompatible with being the same paper tone is
incompatible with marking a branch of "145"—perhaps. The two sorts of normative
status (commitments and entitlements) and their interactions among the sentences
asserted in the play of the game, are tracked in the three sorts of inferential relations:

committive (that is, commitment-preserving) inferences,
a category that generalizes deductive inference;

permissive (that is, entitlement-preserving) inferences,
a category that generalizes inductive inference; and

incompatibility entailments, a category that generalizes
modal (counterfactual-supporting) inference [see 15:194].

Games of Inquiry for Collaborative Concept Structuring 407

The incompatibilities among commitments and their entitlements are automatically
displayed to the scholars for their examination and consideration.

The three sorts of inferential consequence relations are ranked (all incompatibility
entailments are commitment-preserving, though not vice versa, and all commitment-
preserving inferences are entitlement preserving, though not vice versa) [see 15:195]),
and can be used to map the discussion's evolution as the scholars produce and
consume reasons. Inheritance of commitment, inheritance of entitlement, and
entailments according to the incompatibilities defined by the interactions of
commitments and entitlements compose three axes that "inferentially articulate." The
map reveals what Brandom calls the normative fine structure of rationality (NFS),
describing the progress of the game in making implicit content explicit [see 15:195;
also see Wille's rendering of Brandom's "rich inference structures" in Contextual
Judgment Logic: 17]. The scholars rely on the mechanism of the game, as a logical
editor or "logical lens," to help them focus on and clarify the complexities of
inference and conceptual content in their collaborative view of the manuscript
evidence. Incompatibilities that emerge mark possibly missing hypothetical
inferences that should direct further inquiry. Meanwhile commitment-preserving
inferences trace the implications of validly related claims, and entitlement-preserving
inferences record the tested reliability of those claims with respect to the evidence.

Under Brandom's framework, each scholar's commitments are his beliefs and the
entitlements are his reasons for believing, based on the evidence. They express these
commitments and entitlements to make explicit their implicit material inferences in an
"inferentially articulated network," as the game requires. The game offers a method
of "harmonizing" these rational and empirical elements of their collaborative
conceptual content, by directing attention to incompatibilities to be resolved. In
attempting to maximize their own scores, players must minimize the incompatibility
entailments to improve their collaborative hypotheses, as the ultimate objective of the
game. Brandom compares that process to judges formulating principles of common
law: "intended both to codify prior practice, as represented by precedent, expressing
explicitly as a rule what was implicit therein, and to have regulative authority for
subsequent practice" [15: 75-76; and see 11:19]. Peirce's theory of inquiry has the
same normative aim: "to articulate the conditions for veracity, under which thinking
can reasonably be considered to increase order, harmony, and connectedness in the
world of thought" [18:35; see 14:256].

5.2 The Tools Improvement Game

In the scenario, Peter Øhrstrøm, Robert Marty, and Frithjof Dau need to find more
material evidence in the manuscript collection from which to determine their asserted
commitments that are based on valid entitlements. They begin a game with
conceptual structures tools builders to specify requirements for an automated method
of finding all instances of Peirce's gamma graph work in the archive. Selecting
Martin's WebKB search engine [19], for testing, they first attempt to locate all
manuscripts where Peirce discusses both his sign theory and his EG together. The
same harmonizing framework helps the scholars jointly clarify their collaboration tool
requirements in their testbed partnerships with tool developers, by making explicit

408 Mary A. Keeler and Heather D. Pfeiffer

their implicit augmentation-tool needs8. Emerging requirements can be tracked to
eliminate incompatibilities, and an NSF concept map is generated as a virtual
prototype (or hypothetical tool) for evaluation, before any actual system is built.
Testing the actual prototype is carried out in the same recursive process of inquiry,
with the scholars now playing the game as they assess their needs in using it; and each
prototype generation is tracked to eliminate (or make compliant) incompatibilities
with other tools. The NFS map represents each tool system's evolving
documentation, and reveals incompatibilities among tool specifications to aid in
developing standardization that is directed de jure by tool usage, rather than de facto,
by tool developers. The "tools improvement game" (TIG; to be described in future
work) can be played concurrently with the MRG.

6 Conclusions

In 1868, Peirce began his study of inquiry with an essay intended for a series called
"Search for a Method." He began by contending that in some or all respects our
"modern minds" still operate under Cartesian influence when we assume that
argumentation is represented by "a single thread of inference depending often upon
inconspicuous premisses." Peirce urged that we should "stand upon a very different
platform from this." We must begin inquiry with all the prejudices we actually have
that are based on valid entitlements: "no one who follows the Cartesian method will
ever be satisfied until he has formally recovered all those beliefs which in form he has
given up" [CP 2.265]. And because of those beliefs: "all higher animals have some
insight into what is passing in the minds of their fellows. Man shows a remarkable
faculty for guessing at that. Its full powers are only brought out under critical
circumstances" [CP 7.40]. In the course of inquiry, we may find reason to doubt what
we began by believing; but in that case we doubt because we have a positive reason
for it, not because we began with complete doubt.

Brandom’s inferentialist model gives Peirce's pragmatic theory of inquiry the
functional context of a game. In asserting sentences, we explicitly undertake
commitments to the correctness of our material inferences (our implicit beliefs) from
the circumstances to the consequences of their application. In making these
commitments, we understand propositional content, "not as the turning on of a
Cartesian light, but in practical mastery of inferentially articulated responses." Clear
thinking and expression are matters of knowing what we are committed to in making
claims, and what entitles us to those commitments. If we fail in either of these
components, we fail to understand conceptual content, because we fail to grasp the
inferential commitments that our use of concepts involves [see 15:63-64; 14:252-53].
Although Brandom's model obscures the initial significance of abduction that Peirce
emphasizes in ordering the three stages of inquiry, Brandom clearly incorporates it as

8 See http://port.semanticweb.org/ICCS2005/gametools.pdf for a diagram indicating how the

tools operations can be connected and communicate with other components of the testbed.
John Sowa's Flexible Modular Framework (FMF) [20] and Heather Pfeiffer's Conceptual
Programming Environment (CPE) [21] integrate the tools and data needed in the testbed.

Games of Inquiry for Collaborative Concept Structuring 409

a directing influence in the recursive process of conducting inquiry, which is
functionally consistent with Peirce's theory [see 14:255-57].

Whether we hope to reconstruct manuscripts or to improve conceptual structures
tools, Brandom's model and Peirce's theory of inquiry promise a solid foundation for
meeting the challenges of Google's "digital library of the 21st century." This paper
attempts to take its own pragmatic advice: Before entering inquiry, we should mark
out the proposed course of it, even if circumstances subsequently require the plan to
be modified, as they usually will [see CP 5.34]. Pragmatically, our scenario offers an
abduction, from which we may deduce what would be the necessary specific tool
requirements, for that hypothetical concept of collaborative scholarship to become
true.

References
General Notes: "MS" references are to Peirce's manuscripts archived at the Houghton Library,
Harvard; for CP references, Collected Papers of Charles Sanders Peirce, 8 vols., ed. Arthur W.
Burks, Charles Hartshorne, and Paul Weiss (Cambridge: Harvard University Press, 1931-58).

1. Keeler, M. [2003]. "Hegel in a Strange Costume: Reconsidering Normative Science in
Conceptual Structures Research." In: de Moor, A., Lex, W., and Ganter, B. (Eds.):
Lecture Notes in Artificial Intelligence, Vol. 2746, Springer-Verlag, pp. 37-53.

2. Keeler, M. [forthcoming, 2005]. "The Philosophical Context of Peirce's Existential
Graphs," Cognito, Centro de Estudos do Pragmatismo Filosofia.

3. Keeler, M. and Kloesel, C. [1997]. "PORT: A Testbed Paradigm for Knowledge
Processing in the Humanities." In: Lukose, D., Delugach, H., Keeler, M., and Searle, L.
(Eds.): Lecture Notes in Artificial Intelligence, Vol. 1257, Springer-Verlag, pp. 505-520.

4. Keeler, M. and Kloesel, C. [1997]. "Communication, Semiotic Continuity, and the
Margins of the Peircean Text." In David Greetham (ed.), Margins of the Text. Ann Arbor:
University of Michigan Press.

5. Peirce, C. S. [1982-97]. Writings of Charles S. Peirce: A Chronological Edition. Six
volumes. Edited by Christian J.W. Kloesel et al. Bloomington: Indiana University Press
(see the Peirce Edition Project <http://www.iupui.edu/~peirce>).

6. Robin, R. S. [1967]. Annotated Catalogue of the Papers of Charles S. Peirce. Amherst:
University of Massachusetts Press.

7. Puder, A. and Römer, K. [1997]. "Generic Trading Service in Telecommunication
Platforms." In: Lukose, D., Delugach, H., Keeler, M., and Searle, L. (Eds.): Lecture Notes
in Artificial Intelligence, Vol. 1257, Springer-Verlag, pp. 551-565.

8. Ganter, B. and Wille, R. [1999]. Formal Concept Analysis: Mathematical Foundations.
Berlin Heildelberg New York : Springer-Verlag.

9. Priss, U. and Old, L. J. [2004]. "Modelling Lexical Databases with Formal Concept
Analysis." Journal of Universal Computer Science, Vol 10: 8, pp. 967-984.

10. de Moor, A. [2004]. "Improving the Testbed Development Process in Collaboratories."
In: Wolff, K.E., Pfeiffer, H.D. and Delugach, H.S. (Eds.): Lecture Notes in Artificial
Intelligence, Vol. 3127, Springer-Verlag, pp. 261-274.

11. Sowa, J.F. and Majumdar, A.K. [2003]. "Analogic Reasoning." In: de Moor, A., Lex, W.,
and Ganter, B. (Eds.): Lecture Notes in Artificial Intelligence, Vol. 2746, Springer-Verlag,
pp.16-36.

12. Dau, F. [2004]. "Types and Tokens for Logic with Diagrams." In: Wolff, K.E., Pfeiffer,
H.D. and Delugach, H.S. (Eds.): Lecture Notes in Artificial Intelligence, Vol. 3127,
Springer-Verlag, pp. 62-93.

13. Staat, W. [1993]. "On Abduction, Deduction, Induction, and the Categories,"
Transactions of the Charles S. Peirce Society, Vol. XXIX, No. 2, pp. 225-237.

410 Mary A. Keeler and Heather D. Pfeiffer

14. Keeler, M. [2004]. "Using Brandom's Framework to Do Peirce's Normative Science." In:
Wolff, K.E., Pfeiffer, H.D. and Delugach, H.S. (Eds.): Lecture Notes in Artificial
Intelligence, Vol. 3127, Springer-Verlag, pp. 37-53.

15. Brandom, R. [2000]. Articulating Reasons: An Introduction to Inferentialism.
Cambridge, MA: Harvard University Press.

16. de Moor, A., Keeler, M. and Richmond, G. [2002]. "Towards a Pragmatic Web." In:
Priss, U., Corbett, D. and Angelova, G. (Eds.): Lecture Notes in Artificial Intelligence,
Vol. 2393, Springer-Verlag, pp. 235-249.

17. Wille, R. [2003]. "Conceptual Contents as Information—Basics for Contextual Judgment
Logic. In: de Moor, A., Lex, W., and Ganter, B. (Eds.): Lecture Notes in Artificial
Intelligence, Vol. 2746, Springer-Verlag, pp. 1-15.

18. Parker, Kelly A. [2003]. "Reconstructing the Normative Sciences." Cognito, Centro de
Estudos do Pragmatismo Filosofia, Vol. 4, no. 1, pp. 27-45.

19. Martin, P. [1997]. "The webKB set of tools: A common scheme for shared www,
annotations, shared knowledge bases and information retrieval." In: Lukose, D.,
Delugach, H., Keeler, M., and Searle, L. (Eds.): Lecture Notes in Artificial Intelligence,
Vol. 1257, Springer-Verlag, pp. 585-588.

20. Sowa, J.F. [2002]. "Architectures for Intelligent Systems." In: Special Issue on Artificial
Intelligence of IBM Systems Journal, Vol. 41, pp. 331-349.

21. Pfeiffer, H.D. [2004]. "An Exportable CGIF Module from the CP Environment: A
Pragmatic Approach." In: Wolff, K.E., Pfeiffer, H.D. and Delugach, H.S. (Eds.): Lecture
Notes in Artificial Intelligence, Vol. 3127, Springer-Verlag, pp. 319-332.

Toward Cooperatively-Built

Knowledge Repositories

Philippe Martin, Michael Blumenstein, and Peter Deer

Griffith University - School of I.T. - PMB 50 Gold Coast MC - QLD 9726 Australia�

pm@phmartin.info

Abstract. After noting that informal documents and formal knowledge
bases are far from ideal for discussing or retrieving technical knowledge,
we propose mechanisms to support the sharing, re-use and cooperative
update of semi-formal semantic networks, assign values to contributions
and credits to the contributors. We then propose ontological elements
to guide and normalize the construction of such knowledge repositories,
and an approach to permit the comparison of tools or techniques.

1 Introduction

The majority of technical information is currently published in mostly unstruc-
tured forms within documents such as articles, e-mails and user manuals. Thence,
finding and comparing tools or techniques to solve a problem is a lengthy process
(with often sub-optimal results) that involves reading many documents partly
redundant with each other. This process heavily relies on memory and manual
cross-checking, and its outcomes, even if published, are lost to many people
with similar goals. Writing documents is also a lengthy process that involves
summarizing what has been described elsewhere and making choices on which
ideas or techniques to describe and how: level of detail, order, etc.

To sum up, whatever the field of study, there is currently no well structured
semantic network of techniques or ideas that a Web user could (i) navigate
to get a synthetic view of a subject or, as in a decision tree, quickly find its
path to relevant information, and (ii) easily update to publish a new idea (or a
new way to explain an idea) and link it to other ideas via semantic relations.
Such a system is indeed difficult to build and initialize. However, it is part
of a vision for a semi-formal “standardized online archive of computer science
knowledge” [8] and dwarfed by the much more ambitious visions of a “Digital
Aristotle” which would be capable of teaching much of the world’s scientific
knowledge by (i) adapting to its students’ knowledge and preferences [3], and
(ii) preparing and answering (with explanations) test questions for them [9]. The
current approaches that are related to the above-cited problems can be divided
into three groups.

First, the approaches indexing (parts of) documents by metadata (generated
or manually inputed) such as Dublin Core metadata, DocBook metadata, topics,
� The 1st author began this article at the LOA, Italy

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 411–424, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

412 Philippe Martin, Michael Blumenstein, and Peter Deer

categories from ontologies, and formal summaries. These approaches are useful
for retrieving or exploiting a large base of documents but do not lead to any
browsable/updatable semantic network organizing facts or ideas. The same can
be said about most document-related query answering systems.

Second, the approaches aiming to represent elements of a domain into for-
mal or semi-formal knowledge bases (KBs). Some KBs essentially contain term
definitions, formal ones as in Open GALEN (an ontology of medical knowledge)
and semi-formal ones as in Fact Guru [7]; they are interesting to re-use for
representing or indexing parts of documents but are insufficient to learn about
a domain or compare techniques to solve a problem. Other KBs are mainly
intended to support problem solving, e.g. the KBs of the QED Project (which
aims to build a formal KB of all important established mathematical knowledge)
and those of the Halo project [9] (which has for long term goal the design of a
“Digital Aristotle”), and hence are not meant to be directly read and browsed.

Third, the hypertext-based Web sites describing and organizing resources
(researchers, discussion lists, journals, concepts, theories, tools, etc.) of a domain,
e.g. MathWorld. Some sites permit their users to collaborate or discuss by adding
or updating documents, e.g. via wiki systems or annotation systems. Because
these systems do not use semantic relations, the resulting information is often
as poorly structured as in mailing lists and hence includes many redundancies,
and arguments and counter-arguments for an idea are hard to find and compare.
However, Wikipedia, an on-line hypertext encyclopedia which is also a wiki, al-
beit a very controlled one, has good quality articles on a wide variety of domains.
These articles are well connected and permit their readers to get an overview of
a subject and explore it to find information. Yet, Wikipedia’s content structure
and support for collaboration and IR could be improved. An easy-to-use and
easy-to-implement feature would be a support for some semantic relations (e.g.
subtypeOf, instanceOf, and partOf) and especially argumentation relations (e.g.
proof, example, hypothesis, argument, correction; pre-Web hypertext systems
like AAA [6] supported predefined sets of such relations). A semi-formal English-
like syntax such as ClearTalk (the notation used in Fact Guru and CODE4 [7])
would support more knowledge processing while still being user-friendly.

It would be utopic to think that even motivated knowledge engineers would
be (in the near future) able/willing to represent their research ideas completely
into a formal, shared, well-structured readable semantic network that can be
explored like a decision tree: there are too many things to enter, too many
ways to describe or represent a same thing, and too many ways to group and
compare these things. On the other hand, representing the most important
structures into such a semantic network and interconnecting them with informal
representations seems achievable and extremely interesting for education and IR
purposes. Section 2 proposes some mechanisms to support the sharing, re-use
and cooperative update of such semantic networks, including some mechanisms
to assign values to the contributions and credits to the contributors. Section 3
proposes some ontological elements to guide and normalize the construction
of these knowledge repositories. Section 4 shows an approach to permit the
comparison of tools or techniques.

Toward Cooperatively-Built Knowledge Repositories 413

2 Support of Cooperation Between Knowledge Providers

2.1 Making Knowledge Explicit and Sharing It

We only consider asynchronous cooperation since it both underlies and is more
scalable than exchanges of information between co-temporal users of a system.

The most decentralized knowledge sharing strategy is the one the W3C envi-
sages for the “Semantic Web”: many small ontologies, more or less independently
developed, thus partially redundant, competing and very loosely interconnected.
Hence, these ontologies have problems similar to those we listed for documents:
(i) finding the relevant ontologies, choosing between them and combining them is
difficult and sub-optimal even for a knowledge engineer (let alone for a machine),
(ii) a knowledge provider cannot simply add one concept or statement “at the
right place”, and is not guided by a large ontology (and a system exploiting it)
into providing precise concepts and statements that complement existing ones
and are more easily re-used, and (iii) the result is not only more or less lost to
others but increases the amount of “data” to search.

A more knowledge-oriented strategy is to have a knowledge server permitting
registered users to access and update a single large ontology on a domain and
upload files mixing natural language sentences with knowledge representations
(e.g. in a controlled language). WebKB-1, WebKB-2, OntoWeb/Ontobroker and
Fact Guru are examples of servers allowing this. This was also the strategy used
in the well publicized KA2 project [1] which re-used Ontobroker and aimed to
let Knowledge Acquisition researchers index their resources, but (i) the provided
ontology was extremely small and could not be directly updated by users, and
(ii) the formal statements had to be stored within an invented attribute (named
“onto”) of HTML hyperlink tags via a poorly expressive language. Thus, this
approach was limiting and frustrating, and this project was not followed.

We know of only two knowledge servers having special protocols to support
users’ cooperation1: Co4 [2] and WebKB-2 [4]. The approach of Co4 is based on
peer-reviewing; the result is a hierarchy of KBs, the uppermost ones containing
the most consensual knowledge while the lowermost ones are the private KBs of
contributing users. We believe the approach of WebKB-2 which has a KB shared
by all its users leads to more relations between categories (types or individuals)
or statements from the different users and is easier to handle (by the system and
the users) for a large amount of knowledge and large number of users. Details
can be found in [4] but here is a summary of its principles.

To avoid lexical problems, each category identifier is prefixed by a short
identifier of its creator (who is also represented by a category). Each statement
also has an associated creator and hence, if it is not a definition, may be
considered as a belief. Any object (category or statement) may be re-used by any
user within his/her statements. The removal of an object can only be done by
1 Most servers, including WebKB-2, support concurrency control (e.g. via KB locking)

and several, like Ontolingua, support users’ permissions on files/KBs. Cooperation
support is not so basic: it is about helping knowledge re-use, conflict prevention and
the solving of each conflict once it has been detected by the system or a user.

414 Philippe Martin, Michael Blumenstein, and Peter Deer

its creator but a user may “correct” a belief by connecting it to another belief by
a “corrective relation” (e.g. pm#corrective_specialization). (Definitions cannot
be corrected since they cannot be false). If entering a new belief introduces a
redundancy or an inconsistency that is detected by the system, it is rejected. The
user may then either correct his/her belief or re-enter it again but connected by a
“corrective relation” to each belief it is redundant or inconsistent with: this allows
and makes explicit the disagreement of one user with (his/her interpretation of)
the belief of another user. This also technically removes the cause of the problem:
a proposition A may be inconsistent with a proposition B but a belief that “A is
a correction of B” is not technically inconsistent with a belief in B. (Definitions
from different users cannot be inconsistent with each other, they simply define
different categories/meanings). Choices between beliefs may have to be made
by people re-using the KB for an application, but then they can exploit the
explicit relations between beliefs, e.g. by always selecting the most specialized
ones. WebKB-2 displays a statement with its meta-statements, hence with the
associated corrective relations. Finally, to avoid seeing the objects of certain
creators during browsing or within query results, a user may set filters on these
creators, based on their identifiers, types or descriptions.

For the construction of knowledge repositories, an interesting aspect of this
approach to encourage re-use, precision and object connectivity is that it also
works for semi-formal KBs. Here, regarding a statement, semi-formal means
that if it is written in a natural language (whether it uses formal terms or not)
it must at least be related to another statement by a formal relation, e.g. a
generalization relation (pm#corrective_generalization, pm#summary, etc.) or an
argumentation relation. Thus, to minimize redundancies and to help informa-
tion retrieval within information repositories, this minimal semantic structure
(which in many situations is the only one bearable by people) could be used to
organize ideas that are otherwise repeated in many documents. For instance, for
a Web site that centralizes and organizes/represents in a formal, semi-formal and
informal way resources (tools, techniques, publications, mailing list, teams, etc.)
related to a domain (e.g. CGs), it would be very interesting to have some space
where discussions could be conducted in this minimal semi-formal way, and hence
index or partly replace the mailing list: this would avoid recurring discussions or
presentations of arguments, show the tree of arguments and counter-arguments
for an idea, permit incremental additions, encourage deeper or more systematic
explorations of each idea, and record the various reached status-quos.

Below is an example of what the top-levels of a semi-formal discussion could
look like when displayed in an indented linear form (we do not expect this
organization to be the direct result of a discussion but it may be the result of a
semi-automatic re-organization of this discussion and then be refined by further
semi-formal discussions). To save space, we have replaced (counter-)argument
relations by ‘+’ and ‘-’, used comments to give an idea of lower levels, and
not represented the authors of the statements. The (counter-)arguments for a
statement are valid for its specializations and the (counter-)arguments of the
specializations are (counter-)examples for their generalizations.

Toward Cooperatively-Built Knowledge Repositories 415

A KRL should (also) have an XML-based notation to ease knowledge sharing
+: this permits to use URIs and Unicode

-: most syntaxes can be adapted for that //+: as noted by Berners-Lee
+: this permits to re-use XML tools (parsers, XSLT, ...)

-: useless additional step since KBSs do not use XML internally
> classic XML tools re-usable even if a graph-based model is used

> classic XML tools work on RDF/XML
-: some XML tools expect a classic XML tree to be followed
-: with difficulties since RDF/XML has multiple serialisations

-: XML-based KRLs are hard to read without XML tools
+: this is acknowledged by about everyone //including by the W3C
-: this does not matter since XML tools exist

-: this is impossible or inconvenient in many tools or situations
-: a good notation and a good text editor is often more convenient

+: other notations may still be used //-: but they are not standards ...
+: Not using XML would require a separate plug-in for each syntax

-: installing a plug-in takes less time than always loading XML files
> The Semantic Web (SW) KRL should have an XML notation

> The SW KRL should have an XML syntax but a graph-based model
+: for flexibility and normalization reasons //+: TBL’s arguments
+: classic XML tools re-usable even if a graph-based model is used
-: then there are partially redundant standards (e.g. with RDF/XML)
-: a subset of XML can be used //examples: EARL, MPV, RSS, etc.
> RDF should have the current RDF/XML syntax

-: it is particularly arbitrary and hard to understand
-: it leads to errors //+:cannot use schema validation languages
-: it is inefficient //+:parsers 5-20 times slower than with XML

2.2 Valuating Contributions and Contributors

The above described knowledge sharing mechanism of WebKB-2 records and
exploits annotations by individual users on statements but does not record and
exploit any measure of the “usefulness” of each statement, a value representing
its “global interest”, popularity, originality, etc. Yet, this is interesting for a
knowledge repository and especially for semi-formal discussions: statements that
are obvious, un-argued, or for which each argument has been counter-argued,
should be marked as such (e.g. via darker colors or smaller fonts) in order to
make them less visible (or invisible, depending on the selected display options)
and discourage the entering of such statements. More generally, the presentation
of the combined efforts from the various contributors may then take into account
the usefulness of each statement. Furthermore, given that the creator of each
statement is recorded, (i) a value of usefulness may also be calculated for each
creator (and displayed), and (ii) in return, this value may be taken into account
to calculate the usefulness of the creator’s contributions; these are two additional
refinements to both detect and encourage argued and interesting contributions,
and hence regulate them.

Ideally, the system would allow user-defined measures of usefulness for a
statement or a creator, and adapt its presentation of the repository accordingly.
Below we present the default measures that we shall implement in WebKB-2
(or more exactly, its successor and open-source version, AnyKB). We may try
to support user-defined measures but since each step of the user’s browsing
would imply re-calculating the usefulness of all statements (except those from
WordNet) and all creators, the result is likely to be very slow. For now, we only
consider beliefs: we have not yet defined the usefulness of a definition.

416 Philippe Martin, Michael Blumenstein, and Peter Deer

To calculate a belief usefulness, we first associate two more basic attributes
to the belief: 1) its “state of confirmation” and 2) its “global interest”.
1) The first is equal to 0 if the belief has no (counter-)argument linked to it
(examples of counter-argument relation names: “counter-example”, “counter-
fact”, “corrective-specialization”). It is equal to 1 (i.e. the belief is “confirmed”)
if (i) each argument has a state of confirmation of 0 or 1, and (ii) there exists
no confirmed counter-argument. It is equal to -1 if the belief has at least one
confirmed counter-argument. It is also equal to 0 in the remaining case: no con-
firmed counter-argument but each of the arguments has a state of confirmation
of -1. All this is independent of whom authored the (counter-)arguments.
2) Each user may give a value to the interest of a belief, say between -5 and 5
(the maximum value that the creator of the belief may give is, say, 2). Multiplied
by the usefulness of the valuating user, this gives an “individual interest” (thus,
this may be seen as a particular multi-valued vote). The global interest of a belief
is defined as the average of its individual interests (thus, this is a voting system
where more competent people in the domain of interest are given more weight).
A belief that does not deserve to be visible, e.g. because it is clearly a particular
case of a more general belief, is likely to receive a negative global interest. We
prefer letting each user explicitly give an interest value rather than taking into
account the way the belief is generalized by or connected to (or included in)
other beliefs because interpreting an interest from such relations is difficult. For
example, a belief that is used as a counter-example may be a particular case of
another belief but is nevertheless very interesting as a counter-example.
Finally, the usefulness of a belief is equal to the value of the global interest if
the state of confirmation is equal to 1, and otherwise is equal to the value of the
state of confirmation (i.e. -1 or 0: a belief without argument has no usefulness,
whether it is itself an argument or not).
In argumentation systems, it is traditional to give a type to each statement, e.g.
fact, hypothesis, question, affirmation, argument, proof. This could be used in
our repositories too (even though the connected relations often already give that
information) and we could have used it as a factor to calculate the usefulness
(e.g. by considering that an affirmation is worth more than an argument) but
we prefer a simpler measure only based on explicit valuations by the users.

Our formula for a user’s usefulness is: sum of the usefulness of each belief

from the user + square root (number of times he/she voted on the interest

of beliefs) . The second part of this equation acknowledges the participa-
tion of the user in votes while decreasing its weight as the number of votes
increases. (Functions decreasing more rapidly than square root may perhaps
better balance originality and participation effort).

These measures are simple but should incite the users to be careful and
precise in their contributions (affirmation, arguments, counter-arguments, etc.)
and give arguments for them: unlike in anonymous reviews, careless statements
here penalise their authors. Thus, this should lead users not to make statements
outside their domain of expertise or without verifying their facts. (Using a
different pseudo when providing low quality statements does not seem to be an

Toward Cooperatively-Built Knowledge Repositories 417

helpful strategy to escape the above approach since this reduces the number of
authored statements for the first pseudo). On the other hand, the above measures
should hopefully not lead “correct but outside-the-main-stream contributions”
to be under-rated since counter-arguments must be justified. Finally, when a
belief is counter-argued, the usefulness of its author decreases and hence he/she
is incited to remove it or deepen the discussion.

In his description of a “Digital Aristotle” [3], Hillis describes a “Knowledge
Web” to which researchers could add ideas or explanations of ideas “at the
right place”, and suggests that it should “include the mechanisms for credit
assignment, usage tracking, and annotation that the [current] Web lacks”, thus
supporting a much better re-use and evaluation of the work of a researcher
than via the current system of article publishing and reviewing. However, Hillis
does not give any indication on such mechanisms. Although the mechanisms
we proposed in this sub-section and the previous one were intended for one
knowledge repository/server, they seem usable for the Knowledge Web too. To
complement the approach with respect to the Knowledge Web, the next sub-
section proposes a strategy to achieve knowledge sharing between knowledge
servers.

2.3 Combining the Advantages of Centralization and Distribution

One knowledge server cannot support the knowledge sharing of all researchers.
It has to be specialized and/or act as a broker for more specialized servers. If
competing servers had an equivalent content (today, Web search engines already
have “similar” content), a Web user could query or update any server and, if
necessary, be redirected to use a more specialized server, and so on recursively
(at each level, only one of the competing servers has to be tried since they mirror
each other). If a Web user directly tried a specialized server, it could redirect
him/her to use a more appropriate server or directly forward him/her query to
other servers.

To permit this, our idea is that each server periodically checks related servers
(more general servers, competing servers and slightly more specialized servers)
and 1) integrates (and hence mirrors) all the objects (categories and statements)
generalizing the objects in a reference set that it uses to define its “domain” (if
this is a general server, this set is reduced to pm#thing, the uppermost concept
type), 2) integrates either all the objects that are more specialized than the
objects in the reference set, or if a certain depth of specialization is fixed,
associates to its most specialized objects the URLs of the servers that can provide
specializations for these objects (note: classifying servers according to domains
is far too coarse to index/retrieve knowledge from distributed knowledge servers,
e.g. knowledge about “neurons” or “hands” can be relevant to many domains;
thus, a classification by objects is necessary), and 3) also associates the URLs
of more general servers to the direct specializations of the generalizations of
the objects in the reference set (because the specializations of some of these
specializations do not generalize nor specialize the objects in the reference set).

418 Philippe Martin, Michael Blumenstein, and Peter Deer

Integrating knowledge from other servers is certainly not obvious but this is a
more scalable and exploitable approach than letting people and machines select
and re-use or integrate dozens or hundreds of (semi-)independently designed
small ontologies. A more fundamental obstacle to the widespread use of this
approach is that many industry-related servers are likely to make it difficult or
illegal to mirror their KBs. However, other approaches will suffer from that too.

3 Some Ontological Elements

By default, the shared KB of WebKB-2 includes an ontology derived from
the noun-related part of WordNet and various top-level ontologies [5]. A large
general ontology like this is necessary to ease and normalize the cooperative
construction of knowledge repositories but is still insufficient: an initial ontology
on the domain of the repository is also necessary. As a proof of concept for our
tools to support a cooperatively-built knowledge repository, we initially chose to
model two related domains: (i) Conceptual Graphs (CGs), since this domain is
the most well known to us, and (ii) ontology related tools, since Michael Denny’s
“Ontology editor survey”2 attracted interest despite being purposefully shallow
and poorly structured.

Modelling these two domains implies partially modelling related domains,
and we soon had the problem of modularizing the information into several files
to support readability, search, checking and systematic input3. These files are
also expected to be updatable by users when our knowledge-oriented wiki is
completed. In order to be generic, we have created six files4: “Fields of study”,
“Systems of logic”, “Information Sciences”, “Knowledge Management”, “Con-
ceptual Graph” and “Formal Concept Analysis”. The last three files specialize
the others. Each of the last four files is divided into sections, the uppermost
ones being “Domains and Theories”, “Tasks and Methodologies”, “Structures
and Languages”, “Tools”, “Journals, Conferences, Publishers and Mailing Lists”,
“Articles, Books and other Documents” and “People: Researchers, Specialists,
Teams/Projects, ...”. This is a work in progress: the content and number of files
will increase but the sections seem stable. We now give examples of their content.

3.1 Domains and Theories

Names used for domains (“fields of study”) are very often also names for tasks.
Task categories are more convenient for representing knowledge than domain
2 http://www.xml.com/pub/a/2004/07/14/onto.html
3 Although the users of WebKB-2 can direcly update the KB one statement at a time,

the documentation discourages them to do so because this is not a scalable way to
represent a domain (as an analogy a line command interface is not a scalable way to
develop a program). Instead, they are encouraged to create files mixing formal and
informal statements and ask WebKB-2 to parse these files, and in the end when the
modelling is complete and if the users wish to, integrate them to the shared KB.

4 See http://www.webkb.org/kb/domain/

Toward Cooperatively-Built Knowledge Repositories 419

categories because (i) organizing them is easier and less arbitrary, and (ii) many
relations (e.g. case relations) can then be used. Since for simplicity and normali-
zation purposes a choice must be made, whenever suitable we have represented
tasks instead of domains. When names are shared by domain categories and
task categories (in WebKB-2, categories can share names but not identifiers),
we advise the use of the task categories for indexing or representing resources.

When studying how to represent and relate document subjects/topics (e.g.
technical domains), [10] concluded that representing them as types was not
semantically correct but that mereo-topological relations between individuals
were appropriate. Our own analysis confirmed this and we opted for (i) an
interpretation of theories and fields of study as large “propositions” composed of
many sub-propositions (this seems the simplest, most precise and most flexible
way to represent these notions), and (ii) a particular part relation that we
named “>part” (instead of “subdomain”) for several reasons: to be generic, to
remind that it can be used in WebKB-2 as if it was a specialization relation (e.g.
the destination category needs not be already declared) and to mak clear that
our replacement of WordNet hyponym relations between synsets about fields
of study by “>part” relations refines WordNet without contradicting it. Our
file on “Fields of study” details these choices. Our file on “Systems of logics”
illustrates how for some categories the represented field of study is a theory
(it does not refer to it) thus simplifying and normalizing the categorization.
Below is an example (in the FT notation) of relations from WordNet cate-
gory #computer_science, followed by an example about logical domains/theories.
When introducing general categories in Information Sciences and Knowledge
Management, we used the generic users “is” and “km”. In WebKB-2, a generic
user is a special kind of user that has no password: anyone can create or connect
categories in its name but then cannot remove them.

#computer_science__computational_science (^engineering science that ...^)
>part: #artificial_intelligence, //in WordNet, AI is ">part:" of CS
>part: is#software_engineering_science (is), //link created by "is"
>part: is#database_management_science (is),
>part of: #engineering_science__engineering__applied_science__technology,
part: #information_theory, //link from WordNet: "(wn)" is implicit
part of: #information_science;

km#substructural_logic (^system of propositional calculus weaker ...^)
>part of: km#non-classical_logic__intuitionist_logic,
>part: km#relevance_logic km#linear_logic,
url: http://en.wikipedia.org/wiki/Intuitionistic_logic;

km#CG_domain__Conceptual_Graphs__Conceptual_Structures
>part of: km#knowledge_management_science,
object: km#CG_task km#CG_structure km#CG_tool km#CG_mailing_list,
url: http://www.cs.uah.edu/~delugach/CG/ http://www.jfsowa.com/cg/;

To provide a core ontology that will guide the sharing, indexation or represen-
tation of techniques in Knowledge Management, hundreds of categories will need
to be represented. We have only begun this work. On ontological issues too our
approach departs from the one of the KA2 project [1] since a good part of
its small predefined ontology was a specialization hierarchy of 37 Knowledge

420 Philippe Martin, Michael Blumenstein, and Peter Deer

Acquisition (KA) domains, the names of which could have been used for tasks,
structures, methods (PSMs) and experiments. E.g., this hierarchy included:
reuse_in_KA > ontologies PSMs; PSMs > Sysiphus-III_experiment;

3.2 Tasks and Methodologies

In most model libraries for KA, each non-primitive task is linked to techniques
that can be used for achieving it, and conversely, each technique combines the
results of more primitive tasks. We tried this organization but at the level
of generality of our current modelling it turned out to be inadequate: it led
(i) to arbitrary choices between representing sometimes as a task (a kind of
process) or a technique (a kind of process description), or (ii) to the represen-
tation of both notions and thus to introduce categories with names such as
KA_by_classification_from_people; both cases are problematic for readability
and normalization. Similarly, instead of representing methodologies directly, i.e.
as another kind of process description, it seems better to represent the tasks
advocated by a methodology (including their supertask: following the methodo-
logy). Furthermore, with tasks, many relations can then be used directly: similar
relations do not have to be introduced for techniques or methodologies. Hence,
we represented all these things as tasks and used multi-inheritance. This consi-
derably simplified the ontology and the source files. Here are some extracts.

km#KM_task__knowledge_management_task__KM < is#information_sciences_task,
> km#knowledge_representation km#knowledge_extraction_and_modelling

km#knowledge_comparison km#knowledge_retrieval_task
km#knowledge_creation km#classification km#KB_sharing_management
km#mapping/merging/federation_of_KBs km#knowledge_translation
km#knowledge_validation
{km#monotonic_reasoning km#non_monotonic_reasoning}
{km#consistent_inferencing km#inconsistent_inferencing}
{km#complete_inferencing km#incomplete_inferencing}
{km#structure-only_based_inferencing km#rule_based_inferencing}
km#language/structure_specific_task //e.g. km#CG_task and km#FCA_task
km#teaching_a_KM_related_subject km#KM_methodology_task,

object of: km#knowledge_management_science,
object: km#KM_structure; //between types, the default cardinality is 0..N
//"object" has different meanings depending on the connected categories

km#knowledge_retrieval_task < is#IR_task,
> {km#specialization_retrieval km#generalization_retrieval}
km#analogy_retrieval km#structure_only_based_retrieval
{km#complete_retrieval km#incomplete_retrieval}
{km#consistent_retrieval km#inconsistent_retrieval};

3.3 Structures and Languages

In our top-level ontology [5], pm#description_medium (supertype for languages,
data structures, ...) and pm#description_content (supertype for fields of studies,
theories, document contents, softwares, ...) have for supertype pm#description

because (i) such a general type grouping both notions is needed for the signatures
of many basic relations, and (ii) classifying WordNet categories according to the
two notions would have often led to arbitrary choices. However, we represented
the default ontology of WebKB-2 as a part of WebKB-2 and hence allowed

Toward Cooperatively-Built Knowledge Repositories 421

part relations between any kind of information. To ease knowledge entering and
certain exploitations of it, we allow the use of generic relations such as part,
object and support when, given the types of the connected objects, the relevant
relations (e.g. pm#subtask or pm#physical_part) can automatically be found.

For similar reasons, to represent “sub-versions” of ontologies, softwares, or
more generally, documents, we use types connected by subtype relations. Thus,
for example, km#WebKB-2 is a type and can be used with quantifiers.

km#KM_structure < is#symbolic_structure,
> {km#base_of_facts/beliefs km#ontology km#KB_category km#KB_statement}

km#KB km#KA_model km#KR_language km#language_specific_structure;

km#ontology__set_of_category_definitions/constraints
> km#lexical_ontology km#language_ontology km#domain_ontology
km#top_level_ontology km#concept_ontology km#relation_ontology
km#multi_source_ontology__MSO,

part: 1..* km#KB_category 1..* km#category_definition;

km#KR_language__KRL__KR_model_or_notation
> {km#KR_model/structure km#KR_notation}
km#frame_oriented_language km#predicate_logic_oriented_language
km#graph_oriented_language km#KR_language_with_query_commands
km#KR_language_with_scripting_capabilities,

attribute: km#semantics;

km#CG_structure < km#language_specific_structure,
> km#CG_statement km#CG_language km#CG_ontology;

3.4 Tools

We first illustrate some specialization relations between tools then we use the
FCG notation to give some details on WebKB-2 and Ontolingua. (The FT
notation does not yet permit to enter such details. As in FT, relation names
in FCG may be used instead of relations identifiers when there is no ambiguity).

km#CG_related_tool < km#language/structure_specific_tool,
> km#CG-based_KBMS km#CG_graphical_editor km#NL_parser_with_CG_output;

km#CG-based_KBMS < km#KBMS,
> {km#CGWorld km#PROLOG\+CG km#CoGITaNT km#Notio km#WebKB};

km#WebKB > {km#WebKB-1 km#WebKB-2}, url: http://www.webkb.org;

km#input_language (*x,*y) = [*x, may be support of: (a km#parsing,
input: (a statement, formalism: *y))];

[any pm#WebKB-2, //", part:": has for part, "a ": existential quantifier
part:(a is#user_interface, part:{a is#API, a is#HTML_based_interface,

a is#CGI-accessible_command_interface,
no is#graph_visualization_interface}),

part: {a is#FastDB, a km#default_MSO_of_WebKB-2},
input_language: a km#FCG, output_language: {a km#FCG, a km#RDF},
support of: a is#regular_expression_based_search,
support of: a km#specialization_structural_retrieval,
support of: a km#generalization_structural_retrieval,
support of: (a km#specialization_structural_retrieval,

kind: {km#complete_inferencing, km#consistent_inferencing},
input: (a km#query, expressivity: km#PCEF_logic),
object: (several km#statement, expressivity: km#PCEF_logic)

)]; //"PCEF": positive conjunctive existential formula
[any km#Ontolingua,

part: {a is#HTML_based_interface, no is#graph_visualization_interface,
no DBMS, a km#ontolingua_library}, input_language: a km#KIF,

output_language:{a km#KIF, no km#RDF}, support of: a is#lexical_search];

422 Philippe Martin, Michael Blumenstein, and Peter Deer

3.5 Articles, Books and Other Documents

This example shows how a simple document indexation using Dublin Core
relations (we have done this for all the articles of ICCS 2002). Representing
ideas from the article would be more valuable. For examples of representations
of conferences, publishers, mailing lists, researchers and research teams, please
access http://www.webkb.org/kb/domain/.

[an #article, dc#Coverage: km#knowledge_representation,
pm#title: "What Is a Knowledge Representation?",
dc#Creator: "Randall Davis, Howard E. Shrobe and Peter Szolovits",
pm#object of: (a #publishing, pm#time: 1993,

pm#place: (the #object_section "14:1 p17-33",
pm#part of: is#AI_Magazine)),

pm#url: http://medg.lcs.mit.edu/ftp/psz/k-rep.html];

4 Example of Comparison of Two Ontology-Related
Tools

Fact Guru (which is a frame-based system) permits the comparison of two objects
by generating a table with the object identifiers as column headers, the identifiers
of all their attributes as row headers, and for each cell either a mark to signal
that the attribute does not exist for this object or a description of the destination
object. The common generalizations of the two objects (possibly one of them)
is also given. However, this strategy is insufficient for comparing tools. Even for
people, creating detailed tool comparison tables is often a presentation challenge
and involves their knowledge of which features are difficult or important and
which are not. A solution could be to propose predefined tables for easing the
entering of tool features and then compare them. However, this is restricting.
Instead or in complement, we think that a mechanism to generate good compa-
rison tables is necessary and can be found. The following query and generated
table illustrates an approach that we propose. The idea is that a specialization
hierarchy of features is generated according to (i) the uppermost relations and
destination types specified in the query, and (ii) only descriptions used in at least
one of the tools and their common generalizations are shown. To that end, some
FCG-like descriptions of types can be generated. In the cells, ‘+’ means “yes”
(the tool has the feature), ‘-’ means “no”, and ‘.’ means that the information
has not been represented. We invite the reader to compare the content of this
table with the representations given above; then, its meaning and the possibility
to generate it automatically should hopefully be clear. A maximum depth of
automatic exploration may be given; past this depth, the manual exploration of
certain branches (like the opening or closing of sub-folders) should permit the
user to give the comparison table a presentation better suited to his/her interest.
Any number of tools could be compared, not just two.

Toward Cooperatively-Built Knowledge Repositories 423

> compare pm#WebKB-2 km#Ontolingua on
(support of: a is#IR_task, output_language: a KR_notation), maxdepth 5

WebKB-2 Ontolingua
support of:
is#IR_task + +

is#lexical_search + +
is#regular_expression_based_search + .

km#knowledge_retrieval_task + .
km#specialization_structural_retrieval + .
(kind: {km#complete_inferencing, km#consistent_inferencing},
input: (a km#query, expressivity: km#PCEF_logic),
object: (several statement, expressivity: km#PCEF_logic))

+ .
km#generalization_structural_retrieval + .

output_language:
km#KR_notation + +

(expressivity: km#FOL) + +
km#FCG + .
km#KIF . +

km#XML-based notation + .
km#RDF + -

In the general case, the above approach where the descriptions are put in
the rows and organized in a hierarchy is likely to be more readable, scalable and
easier to specify via a command than when the descriptions are put in the cells,
e.g. as in Fact Guru. However, this may be envisaged as a complement for simple
cases, e.g. to display {FCG, KIF} instead of ‘+’ for the output_language relation.
In addition to generalization relations, “part” relations could also be used, at
least the >part relation. E.g., if Cogitant was a third entry in the above table,
since it has a complete and consistent structure-based and rule-based mechanism
to retrieve the specializations of a simple CG in a base of simple CGs and rules
using simple CGs, we would expect the entry ending by km#PCEF_logic to be
specialized by an entry ending by km#PCEF_with_rules_logic.

5 Conclusion

Knowledge repositories, as we have presented them, have many of the advantages
of the “Knowledge Web” and “Digital Aristotle” but seem much more achievable.
To that end, we have proposed some techniques and ontological elements, and
we are: (i) implementing a knowledge oriented wiki to complement our current
interfaces, (ii) experimenting on how to best support and guide semi-formal
discussions, and more generally, organize technical ideas into a semantic net-
work, (iii) implementing and refining our measures of statement/user usefulness,
(iv) completing the above presented ontology to permit at least the represen-
tation of the information collected in Michael Denny’s “Ontology editor survey”
(we tend to think that our current ontology on knowledge management will
only need to be specialized, even though we have not yet explored the catego-
rization of the basic features of multi-user support such as concurrency control,
transactions, CVS, file permissions, file importation, etc.), (v) permitting the
comparison of tools as indicated above, and (vi) providing forms or tables to
help tool creators represent the features of their tools.

424 Philippe Martin, Michael Blumenstein, and Peter Deer

References

1. V.R. Benjamins, D. Fensel, A. Gomez-Perez, S. Decker, M. Erdmann, E. Motta
and M. Musen. Knowledge Annotation Initiative of the Knowledge Acquisition
Community: (KA)2. Proc. of KAW98, Banff, Canada, April 1998.

2. J. Euzenat. Corporate memory through cooperative creation of knowledge bases
and hyper-documents. Proc. of 10th KAW, (36) 1–18, Banff (CA), Nov. 1996.

3. W.D. Hillis. “Aristotle” (The Knowledge Web). Edge Foundation, Inc., No 138,
May 2004. http://www.edge.org/3rd culture/hillis04/hillis04 index.html

4. P. Martin. Knowledge Representation, Sharing and Retrieval on the Web.
Web Intelligence (Eds.: N. Zhong, J. Liu, Y. Yao), Springer-Verlag, Jan. 2003.
http://www.webkb.org/doc/papers/wi02/

5. P. Martin. Correction and Extension of WordNet 1.7. Proc. of ICCS 2003 (Dresden,
Germany, July 2003), Springer Verlag, LNAI 2746, 160-173.

6. W. Schuler and J.B. Smith. Author’s Argumentation Assistant (AAA): A
Hypertext-Based Authoring Tool for Argumentative Texts. Proc. of ECHT’90,
Cambridge University Press, 137–151.

7. D. Skuce and T.C. Lethbridge. CODE4: A Unified System for Managing
Conceptual Knowledge. Int. Journal of Human-Computer Studies (1995), 42, 413–
451. Fact Guru, the commercial version of CODE4, is at www.factguru.com

8. D.A. Smith. Computerizing computer science. Communications of the ACM
(1998), 41(9), 21–23.

9. Vulcan Inc. Project Halo: Towards a Digital Aristotle. www.projecthalo.com
10. C.A. Welty and J. Jenkins. Formal Ontology for Subject. Journal of Knowledge

and Data Engineering (Sept. 1999), 31(2), 155-182.

What Has Happened to Ontology

Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe

Aalborg University
Department of Communication

Kroghstræde 3
DK – 9220 Aalborg East

Denmark
{poe,ja,scharfe}@hum.aau.dk

Abstract Ontology as the study of being as such dates back to ancient
Greek philosophy, but the term itself was coined in the early 17th cen-
tury. The idea termed in this manner was further studied within academic
circles of the Protestant Enlightenment. In this tradition it was gener-
ally believed that ontology is supposed to make true statements about
the conceptual structure of reality. A few decades ago computer science
imported and since then further elaborated the idea of ‘ontology’ from
philosophy. Here, however, the understanding of ontology as a collection
of true statements has often been played down. In the present paper we
intend to discuss some significant aspects of the notion of ‘ontology’ in
philosophy and computer science. Mainly we focus on the questions: To
what extent are computer scientists and philosophers — who all claim
to be working with ontology problems — in fact dealing with the same
problems? To what extent may the two groups of researchers benefit from
each other? It is argued that the well-known philosophical idea of onto-
logical commitment should be generally accepted in computer science
ontology.

1 Introduction

It is obvious that the term ‘ontology’ has become a key word within modern
computer science. In particular this term has become popular in relation to the
Semantic Web studies and the development of “formal ontologies” to be used in
various computer systems (see [3]). It is, however, also evident that ‘ontology’ is a
term imported from philosophy, and that the understanding of ‘ontology’ in com-
puter science differs somewhat from the understanding of the term in traditional
philosophy. Where philosophical ontology has been concerned with the furniture
and entities of reality, i.e., with the study of “being qua being”, computer sci-
entists have been occupied with the development of formalized, semantic, and
logic-based models, which can easily be implemented in computer systems. The
result is that we now have two distinct branches of research dealing with ‘ontol-
ogy’. In the present study we intend to discuss some significant aspects of this
import of ‘ontology’. To what extent are computer scientists and philosophers
— who all claim to be working with ontology problems — in fact dealing with

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 425–438, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

426 Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe

the same problems? To what extent may the two groups of researchers benefit
from each other?

The word ‘ontology’ was coined in the early 17th century, apparently as an
attempt to modernize the study of metaphysics. In Sect. 1 we intend to present
the background of metaphysics. In Sects. 2 and 3 we intend to deal with the
traditional, philosophical approach to ‘ontology’ taking two little known but
important and historically characteristic contributions into account, the first
contribution being by Jacob Lorhard (1561-1609) and the second by Jens Kraft
(1720-56). In Sect. 4 we shall examine the use of ontology in some relevant parts
of modern philosophy. In Sect. 5 we are going to look at the approach to ontology
in modern computer science. Finally, in Sect. 6 we intend to discuss what modern
philosophers and computer scientists working with ontology may possibly gain
from each other.

2 The Background of Metaphysics

A detailed presentation of the history of the notions of ontology is outside the
scope of this paper. However, we intend to outline some essential features of
this interesting historical development. (For more detailed expositions we refer
to works by José Ferrater Mora [19], Raul Corazzon [5], and Barry Smith [24]).

In short, ‘ontology’ may be defined as the study of being as such. As we
shall see, the term ontologia, was created in the circles of German protestants
sometime around 1600. However, as Dennis Bielfeldt has pointed out ‘ontology
is as old as philosophy itself’ [4]. In fact, the construction of the word ‘ontologia’
may be seen as an attempt to modernize the classical debate about metaphysics.
But this background of metaphysical studies of the idea of being is still essential
for the understanding of modern notions of ‘ontology’.

Two and a half millennia ago in his poem “On Nature” (‘ ’),
ontological problems were addressed by the Eleatic philosopher Parmenides [21].
He claimed that our everyday experience is incomplete and deceitful, and that the
reality which comes to us through our thoughts therefore must be more reliable
than the one we get to know through our senses. For thinking, Parmenides set
forth two sole paths of inquiry: First, “that it is and it is impossible for it not to
be”, and second, “that it is not and it necessarily must not be”. For Parmenides
there are two categories only: “being” and “non-being”.

Aristotle presented his theory of being in his Metaphysics. In this work he
maintained that “there is a science which investigates being as being and the
attributes which belong to this in virtue of its own nature” [1003a21-22]. He made
it clear that this science (‘ ’) does not restrict itself to a certain kind of
being; on the contrary, it deals with everything that exists. According to Aristotle
metaphysicians study “being qua being”, i.e., they study those properties applied
to entities by virtue of being.

Aristotle and his works Metaphysics and Categories are crucial instants in
the history of formal ontology. Aristotle, through his distinction between “being
potentially” () and “being actually” (), introduces a third cate-

What Has Happened to Ontology 427

gory to the rigid bifurcated ontology of Parmenides. Potentiality and actuality
are important explanatory terms in Aristotle’s understanding of change. The
idea of inactive powers or abilities, which can later become active or actual, re-
quires an ontology that expresses ways of being as well as kinds of being, thus,
the importance of his argument for seems obvious (see [30, p. 10]).

The classical study of being as such, however, does not solely go back to
Aristotelian metaphysics, but also to the ways in which Aristotle has been un-
derstood and interpreted in Antiquity and medieval scholasticism. A central
character in the early period is the Greek neo-platonic thinker Porfyrios (ca.
234-305) who makes some important comments on Aristotle in his work Isa-
goge. We would also like to draw attention to the Roman philosopher Boethius
(480-525) and his work Consolation of Philosophy as being among the sources
of medieval thinkers and their work with metaphysics and conceptual formaliza-
tion. Within medieval scholasticism several important contributions to the study
of being come to mind. In particular, the works by Ramon Llull (1232-1336) and
William of Ockham (1280-1349) should be mentioned.

In the beginning of the fourteenth century, Ramon Llull (1232-1316), in his
work Ars Magna, developed an ingenious alternative to the hierarchic concept
systems. With the aid of logical principles and graphical representation Llull
attempted to chain together all kinds of knowledge in combinatorial diagrams
illustrated as rotating discs. The project of Llull can be seen as an attractive
attempt to construct a conceptual system that is common to all humans as
well as independent of natural language, religion, and culture. The impact of
Llull on Leibniz and Leibniz’ further development of combinatorial thinking,
along with his impact on the research on language formalization and conceptual
structures, is studied by Thessa Lindof in her dissertation From the Middle Ages
to Multimedia — The Ars Magna of Ramon Llull in a New Perspective [13].

The renewed interest in philosophical studies of the fourteenth century was
dominated by the influence of Aristotle, although it followed its own path in the
debate between realists on the one hand and nominalists on the other. William of
Ockham, in his work Expositio aurea, discusses Porfyrios and develops his meta-
physics as a commentary to Aristotle. Opposite to realists, Ockham assumed
that those universal concepts, used by us and by science, exist as mere conven-
tions in our minds; they are formal statements about reality rather than realities
about the world itself. Ockham claimed that the objects of reality cause sense
impressions, which are transformed into mental images through the active mind.
The dispute concerning the status of the universals gives rise to the question as
to how this debate between realists and nominalists influences the elaboration
of conceptual representation of existence.

The history of ontology contains numerous other important contributors to
the study of being as such; among others: Thomas Aquinas, Francisco Suarez,
Johann Clauberg, Husserl and Heidegger.

428 Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe

3 ‘Ontology’ in Traditional Philosophy

In his presentation of the winter curriculum of 1765-66, Kant informed the stu-
dents that the course in metaphysics would deal with “ontology, the science,
namely, which is concerned with the more general properties of all things”. Later,
during one of his lectures, Kant explained:

Ontology is a pure doctrine of elements of all our a priori cognitions, or, it
contains the summation of all our pure concepts that we can have a priori
of things . . . Ontology is the first part that actually belongs to metaphysics.
The word itself comes from the Greek, and just means the science of be-
ings, or property according to the sense of the words, the general doctrine
of being. Ontology is the doctrine of elements of all my concepts that my
understanding can have only a priori. [1, p. 307ff]
By then it is clear that the term ‘ontology’ as well as the study it names had

become established. However, Kant’s indication of the origin of the term it not
very clear.

According to Barry Smith [24] the term ‘ontology’ (or ontologia) was coined in
1613, independently, by two philosophers, Rudolf Göckel (Goclenius), in his Lex-
icon philosophicum [9] and Jacob Lorhard (Lorhardus), in his Theatrum philo-
sophicum [17]. This turns out to be incorrect, since the term occurred already in
Jacob Lorhard’s book Ogdoas scholastica from 1606 [16]. In fact the word “on-
tologia” appears on the frontispiece where it is used synonymously with “meta-
physica” (see [5]).

Lorhard did not explain his use of the word “ontologia” in Ogdoas scholastica
or his identification of this term with “metaphysica”. However, his Liber de adep-
tione, which he published in 1597, appears to contain an important indication
in this respect.

Metaphysica, quae res omnes communiter considerat, quatenus sunt ,
quatenus summa genera & principia, nullis sensibilibus hypothesibus sub-
nixa. [15, p.75]
Metaphysica, which considers all things in general, as far as they are existing
and as far as they are of the highest genera and principles without being
supported by hypotheses based on the senses. (Our translation.)
Lorhard’s use of the Greek word (‘existing things’) in his definition of

‘metaphysica’ is rather remarkable. Had the word “ontologia” at that time been
part of his active vocabulary, it would certainly have been natural to use it in this
context. On the other hand, his use of in his 1597 definition of metaphysica
obviously suggests that it might in fact be very straightforward for Lorhard to
come up with the construction of the term “ontologia” and to use it in his 1606
book, Ogdoas scholastica.

According to Georg Leonhard Hartmann’s careful description [10] Jacob
Lorhard was born in 1561 in Münsingen in South Germany. In 1603 he be-
came “Rektor des Gymnasiums” in the protestant city of St. Gallen. In 1607,
i.e., the year after the publication of Ogdoas scholastica, he received a calling
from Landgraf Mortiz von Hessen to become professor of theology in Marburg.

What Has Happened to Ontology 429

At that time Rudolph Göckel (1547-1628) was also professor in Marburg in logic,
ethics, and mathematics. It seems to be a likely assumption that Lorhard and
Göckel met one or several times during 1607 and that they shared some of their
findings with each other. In this way the sources suggest that Göckel during 1607
may have learned about Lorhard’s new term ‘ontologia’ not only from reading
Ogdoas scholastica but also from personal conversations with Lorhard. For some
reason, however, his stay in Marburg became very short and after less than a
year he returned to his former position in St. Gallen. Lorhard died on 19 May,
1609.

Later, in 1613, Lorhard’s book was printed in a second edition under the title
Theatrum philosophicum. However, in this new edition the word “ontologia” has
disappeared from the front cover but has been maintained inside the book. In
1613, however, the term is also found in Rudolph Göckel’s Lexicon philosoph-
icum. The word “ontologia” is only mentioned briefly in the margin on page 16
as follows: “ontologia, philosophia de ente” (i.e., “ontology, the philosophy of
being”). Even though Göckel’s book is intended as a lexical work, it does not
include an article on “ontologia” (nor does it include articles on metaphysics or
first philosophy).

Neither Lorhard nor Göckel elaborated further on the concept of “ontologia”
nor did they indicate anything directly on the origin of the term. However, based
on the study of Lorhard’s works — in particular Liber de adeptione and Ogdoas
scholastica — it appears likely that the term was found by Lorhard at some time
between the writing of the two books.

Ogdoas Scholastica seems to have been intended as a textbook to be used
for teaching purposes. The title indicates that the volume contains eight parts.
The word ‘ogdoas’ in this title is in itself interesting. It is a Latin version of
the Greek word ‘ ’ for eight. The word was incorporated in ecclesiastical
Latin. This supports the general impression of the book as a work intended as a
presentation of science and philosophy presented on the background of protestant
theology. The parts of the volume may be seen as almost independent books.
The topics of the eight parts are Latin and Greek grammar, logics, rhetoric,
astronomy, ethics, physics and metaphysics/ontology. In the beginning of the
part on metaphysics/ontology Lorhard states the following definition:

Metaphysicae quae est ‘ ’ quatenus ab homine
naturali rationis lumine sine ullo materiae conceptu est intelligibile. [16, Book
8, p. 1]
Metaphysics is knowledge of the intelligible by which it is intelligible since
it is intelligible by man with (the help of) the natural light of reasoning
without conception of anything material. (Our translation.)

From a modern point of view it may seem rather surprising that meta-
physics/ontology is defined as some kind of ‘knowledge’, since it is now com-
monplace to emphasize the difference between what is actually existing and
what can be known. However, it would also be natural to assume that Ogdoas
Scholastica as a schoolbook should deal with reality as it can be known by hu-
man beings. The fact that Lorhard insists that metaphysics/ontology can be

430 Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe

obtained only by ‘the natural light of reasoning’ and not by the senses may be
seen as an interesting parallel to Parmenides’ view mentioned above according
to which the ontological realities must come to us through our thoughts and not
through our senses.

Ogdoas Scholastica contains a number of diagrams. In fact each of the parts
in the book may be represented as a tree-like structure of concepts. The purpose
of these illustrations may again be teaching. However, the use of such trees cer-
tainly also supports the ideal of logical systematisation. The first (upper) part of
Lorhard’s conceptual structure (his metaphysics/ontology) may be paraphrased
as in Fig. 1.

Fig. 1. Upper part of Lorhard’s metaphysics/ontology

Lorhard may have been inspired by the German Calvinist and academic
philosopher Clemens Timpler (1563-1624) who in his Metaphysicae systema me-
thodicum (1604) [28] has suggested that “omne intelligibile” (“anything intelli-
gible”) divides into “nihil” (“nothing”) and “aliquid” (“something”), and that
“aliquid” divides into “aliquid negativum” (“something negatively defined”) and
“aliquid positivum” (“something positively defined”), whereas “aliquid posi-
tivum” divides into “ens” (“entity”) and “essential” (“the essential”) and so
on. According to Joseph S. Freedman [6], Timpler exemplifies the highest stan-
dards of late sixteenth and early seventeenth century European academic philos-
ophy. Apparently, Timpler’s book could have been one of Lorhard and Göckel’s
inspirations. Since Göckel wrote a preface to Timpler’s book a rather close con-
nection between Timpler and Göckel seems to have existed. However, the word
“ontology”, as it seems, does not occur in the book.

In the circles of protestant philosophy the study of ontology/metaphysics
seems to have been linked to the interest of natural theology and to the formal

What Has Happened to Ontology 431

and mathematical understanding of reality. One interesting example could be
Lorhard’s ontology of ‘duration’ from 1606. Lorhard suggests the conceptual
structure in Fig. 2.

Fig. 2. Lorhard’s ontology of ‘Duratio’ [16, Book 8, p. 5]

It should be noted that according to Lorhard both ‘momentaneum’ and ‘suc-
cessivum’ may serve as genus for ‘reale’ and ‘imaginarium’.

Unfortunately, Lorhard’s books never became very famous. But Göckel has
to be regarded as relatively well-known. According to Mattias Wolfes [31] he was
given such flattering titles as ‘the Marburg Plato’, ‘the Christian Aristotle’, ‘the
teacher of Germany’, and ‘the light of Europe’.

After Göckel the word ‘ontology’ was used by Leibniz (1646-1716), but it was
Christian Wolff (1679-1754) who made the word ‘ontology’ popular in philosoph-
ical circles. The word appears in the title of his Philosophia prima sive ontologia
(1736) in which Wolff, displaying his systematizing skills, attempts to combine
Aristotelian and scholastic ontology with the theories of Descartes and Leibniz
[32]. “Ontologia” or “philosophia prima” is defined as “scientia entis in genere,
seu quantenus ens est”. Ontology, in other words, is the science of being qua
being; it is the study of “being” understood as a “genus”.

Wolff’s book system is an encyclopedia of science through which he in-
tended to demonstrate the logical structure of the world. His scientific ideals
were adopted from Euclid and Descartes. Science should be built upon clearly
defined concepts, on valid axioms and inferences, and logics was the formal-
ism that should secure humans of the eighteenth century a bright future. In
1739, Wolff’s pupil and successor, Alexander Gottlieb Baumgarten (1714-1762),
publishes his Metaphysica. In Metaphysica [2], Baumgarten defines ontology as
“scientia praedicatorum entis generaliorum”, (“the science of the most general
and abstract predicates of anything”).

It should also be mentioned that ontologia was not the only new name sug-
gested for the field. Johann Clauberg (1622-65) published in 1647 his Ontosophia

432 Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe

(see Mora [19]). This term seems to have been attractive for some philosophers.
However, the Wolffian tradition with its ‘ontologia’ turned out to be the winner
of the name game!

4 The Ontology of Jens Kraft

In the eighteenth century Wolff was the fashionable philosopher number one in
Germany as well as in the Scandinavian countries. From Wolff through Baum-
garten goes a straight line to the Danish-Norwegian mathematician and academic
philosopher, Jens Kraft (1720-1756). Through Kraft’s Ontologie [12] the study
of ontology was introduced to academic life in Scandinavia.

As it seems, during his student years in Copenhagen and while undertaking a
study tour to Germany, Kraft had attended Wolff’s lectures at Halle. Later, after
having been appointed a philosophy professor at Sorø Academy, as a counterpart
to Baumgarten’s Metaphysica, Kraft published his own Metaphysik (1751-53)
written in Danish. Imitating Baumgarten, Kraft divided his volume into the
books: Cosmologie, Ontologie, Psykologie and Naturlig Theologie.

Kraft defined ontology as the “science about the most general truths, and it
is using this science that I, in the following, at once intend to make a beginning
of metaphysics” [§ 10]. This means that Kraft assumed that there is a truth
regarding the conceptual structure of reality, and that it is in principle possible
to obtain knowledge about any detail in this structure. He held that ontology will
be useful background or a useful foundation for any kind of scientific activity.
In the preface to Ontologie Kraft explained the importance of the subject in the
following way:

I hold it to be almost unuseful to mention anything regarding the usefulness
of ontology, since it, in a so enlightened Seculo as ours, ought to be commonly
known, that all other sciences, both theoretical and practical, have it as their
foundation, and that the considerable mass of writings which from time to
time come to light, and which seem partly to want to overthrow, partly to
want to change and better the states and Religion, probably never would
have come under the press, if their authors had had any solid grasp of the
ontological truths. [12, Preface]
This means that according to Kraft, as for the whole Wolffian tradition,

ontology is not just a technique, but rather a framework of a number of true
statements regarding the fundamental structure of reality. He pointed out that
the two most basic features of reality are the principle of contradiction and the
principle of the sufficient reason.

It should be pointed out that according to Jens Kraft and the ontologists of
the 18th century, the understanding of reality is also important when it comes to
ethical and religious questions. They believed that dealing properly with ontol-
ogy may help mankind to make a better society. According to Jens Kraft, many
misunderstandings concerning social and religious improvements may in fact be
avoided, if “the ontological truths” are taken properly into account.

What Has Happened to Ontology 433

Among other things Kraft in his Ontologie dealt with the notion of time. Like
Lorhard he made a distinction between time and eternity. In §301 he explained
that “the finite can never obtain eternity, but it can obtain an infinite time
(Ævum) or a time with a beginning but without end. The infinite, by contrast,
has permanence (sempiternité)”. One the most interesting statements in Kraft’s
Ontologie is his description of the relation between time and existence:

We call the order in which things follow each other ‘time’; that which really
exists is called ‘the present’, that which has existed and no longer exists is
called ‘the past’, and that which has not yet existed, but which will, in fact,
come into existence, is called ‘the future time’. One part of time, as it follows
upon each other, is called ‘age’. [§ 298]
First of all it should be noted that Kraft, like Leibniz, does not accept any

kind of ‘empty time’. Time is the order of things. In consequence, there cannot be
any time if there are no things. In this way time depends on the existence of the
world. In addition, existence is in fact closely related to ‘the present’. ‘The past’
is clearly explained to be that which does not exist any longer, and the future is
seen as that which does not yet exist. This straightforward understanding of the
relation between time and existence corresponds to the so-called A-theory, and
it has later been questioned by the so-called B-theorists who would like to speak
about some kind of timeless existence at an instant or over a period (see [33]).
Kraft’s treatment of the notion of time in his Ontologie is a nice illustration of
the view according to which a certain ontological theory must involve some kind
of ontological commitment if it is to be interesting at all.

5 ‘Ontology’ in Modern Philosophy

As mentioned in [33] the modern emphasis on ‘ontological commitment’ is mainly
due to Willard Van Orman Quine (1908-2000), who was one of the most influen-
tial 20th century writers in the development of modern philosophical ontology.
According to Quine’s view the formulation of an ontology must involve state-
ments about actual existence or non-existence of entities discussed in the theory.
This is certainly not a new position. As we have indicated above it has been es-
sential for metaphysics/ontology since Antiquity. It is also obvious from theories
of ontology such as Lorhard’s and Kraft’s that a number of answers to essen-
tial questions have to be incorporated in the conceptual structures to which the
ontologies give rise. Peirce said something similar in (Collected Papers 5.496):
“There are certain questions commonly reckoned as metaphysical, and which cer-
tainly are so, if by metaphysics we mean ontology, which as soon as pragmatism
is once sincerely accepted, cannot logically resist settlement.”

The study of the relation between time and existence is an important theme in
modern philosophical ontology. In [33] it is argued that the four grades of tense-
logical involvement suggested by A.N. Prior (1914-69) form a useful framework
for discussing how various temporal notions may be related in a top-level ontol-
ogy. These grades represent four different ways of relating the so-called A-notions
(past, present, future) with the so-called B-notions (before, after, ‘simultaneous

434 Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe

with’). The full development of any ontology dealing with the fundamental no-
tions of time and temporal reality presupposes the choice between these grades.
But why should we choose one of the four possibilities rather than another of
them? From a formal point of view all four grades are possible, i.e., they are all
logically consistent. This means that each of the grades conceived as an onto-
logical theory is logically contingent. Therefore the choice between the grades
cannot be based on logical proofs only. It has to be based on something else.

This is not only the case for ontological theories dealing with ideas of time.
In general, we cannot deduce a unique ontological theory from unquestionable
logical or scientific principles. Ontological theories in general have to be under-
stood as contingent. This is not to say, that no logically unrefutable argument
can be given in favour of any ontological theory as compared with its competing
theories. Arguments in favour of a particular theory of ontology, however, have
to be based on other kinds of values than those involved in unquestionable logical
or scientific principles. In many cases, the choice of a certain ontological theory
among a number of consistent candidates depends on worldview and aesthetical
or even ethical values.

As argued recently by Christopher P. Long [14] we may certainly question the
view that ontology must precede ethics. On the contrary, the understanding of
the contingency of ontology clearly gives rise to the opposite view. In Long’s own
words: “Ontology becomes ethical the moment it recognizes its own contingency.
Responding to this recognition the ethics of ontology turns away from the quest
for certainty, toward the ambiguity of individuality, seeking to do justice to that
which cannot be captured by the concept.” [14, p.154]

6 ‘Ontology’ in Computer Science

In the discussions of representing knowledge in such a form that machines can
process it, the word ‘ontology’ has undeniably held a center stage position in the
last decade, and has indeed found its way into many research disciplines. The
overwhelming number of conferences, papers, and books on the subject makes it
indeed difficult to talk about ontology as one thing, and one thing only, in present
day computer science. For an excellent overview, see Roberto Poli’s: ‘Framing
Ontology’ [22]. Likewise, the import of the term ‘ontology’ from the realm of
philosophy into computer science is not easily accounted for, and it would be
wrong to assume that we here have a case of immediate transfer. Many influences
and trends in knowledge representation have contributed to this import (see [20]
and [29]).

Presumably, it was John McCarthy who first introduced the term ontology in
AI literature. In 1980 McCarthy used the term in his paper on circumscription
in a discussion of what kinds of information should be included in our under-
standing of the world [18]. His use of the term may be seen as a widening of the
concept, but in a non-invasive manner. In contrast, one of the most frequently
cited definitions on ontology as that of ‘a specification of a conceptualization’,
found in Gruber’s paper from 1993 [7], very much changes the view on ontology

What Has Happened to Ontology 435

and ontology research. This definition has often been debated (see for instance
[8]) but clearly, it alludes to something much more subjective and changeable
than the classical view allows for. In 1993 when Gruber published this paper, the
term had already gained some popularity and at that time several sources were
available [29]. Already in 1984, John Sowa mentions ontology in connection with
knowledge engineering [25]. In this book, interestingly, the notion of ontology is
closely related to the idea of possible worlds, such that a collection of possible
worlds may be represented in an ontology. In some capacities, this marks a mid-
dle position, in that it is easily seen how modal propositions can be incorporated
into an ontology under the classical view. And indeed, some domains cannot be
formally represented without taking into account not only things that actually
exists in the real world, but also things that may be imagined [23]. Possible
world semantics has later played an important role in ontology research, and
has been investigated, among others, by Nicola Guarino in order to formally
describe ontological commitment [8]. In 2000 John Sowa suggested the following
definition:

The subject of ontology is the study of the categories of things that exist or
may exist in some domain. The product of the study, called ”an ontology”,
is a catalog of the types of things that are assumed to exist in a domain of
interest, D, from the perspective of a person who uses language L for the
purpose of talking about D. [26, p.492]
Viewed within knowledge engineering a theory of ontology has to be seen in

relation to a certain domain of interest and it also must presuppose a certain
perspective.

Even though the contemporary uses and practices in ontology research es-
cape uniform description, certain affinities can be extracted. If we on one hand
consider the philosophical discipline (sometimes referred to as capitalized ‘On-
tology’ [8]), and on the other hand consider the growing collections of ontologies
such as found on the web (e.g. at www.daml.org), we do see certain tenden-
cies in the approaches to ontology. These tendencies are noticeable in several
interdependent dimensions sustained by positions that we propose to describe
as ‘Ontology as philosophical discipline’, and ‘ontology as information practice’,
respectively. Some of the marks of these positions are:

Plural or Singular
In the works of Lorhard, Kraft and others, ontology is construed as one sin-

gular system of thought. In this view we may talk about the ontologies (in the
plural) of Aristotle, Lorhard, Cyc, and SUMO; but we see them one at a time,
as each representing something comparably stable. In other words, each of on-
tologies should be understood as an intended attempt to describe how reality
actually is. If ontology is seen as an information practice, ontologies may refer
to multiple, possibly fragmented domain descriptions relative to some selected
perspectives rather than to monolithic systems. Here, ontologies are informa-
tion tools, some of which are crafted for very local purposes, and they do not
necessarily claim any degree of truth outside the domain or relative to other
perspectives than those for which they were designed. (See [11]).

436 Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe

Dependency of Domain and Perspective
The philosophical approach tends to work in a top-down manner, carving

up the world in segments, with the intent to provide domain-independent de-
scription. This is the view presented in Sects. 2 and 3 of this paper. In contrast,
the domain-dependent approach tends to work in a bottom-up manner, centered
on providing descriptions that may be populated by particular occurrences of
objects of more immediate interest. The question is whether focus is given to the
general question of what exists, or to the more specific question of what exists
in some domain discussed relative to some selected perspectives.

Position on Product
Ontology can be viewed as closely related to the process of understanding

what is (epistemology), or as an information strategy leaning towards the ques-
tion of how information can be shared relative to selected communications sit-
uations. In the first view, the resulting ontology is likely to hold strong claims
about the structure of the world. In the second view, top-level discussions give
way to domain specific considerations, whereby the relation to top-level distinc-
tions can be seen as problems of communication rather than as problems of
existence. Here, an ontology can be viewed as an artifact declaring what is (in
some particular domain).

In pure form, the Ontology as philosophical discipline is characterized by be-
ing singular, perspective- and domain-independent and oriented towards making
strong claims about the world. Similarly, ontology as an information practice is
characterized by fragmented pieces of knowledge, it depends on the choice of
domain and perspective, and as such, makes primarily local claims, and finally,
it is intended as an information strategy in which ontologies are seen as artifacts.

It is easily seen that in their pure forms we are faced with two very different
strands of research, but also that this is not a dichotomy: in reality, these posi-
tions form a continuum, and specific efforts in ontology research may occur at
any point between the extremes.

In [33] we have argued that any author formulating a theory on ontology deal-
ing with temporality has to make a choice in relation to the A-/B-distinction.
In general, it turns out that some kind of ontological commitment (in the philo-
sophical sense) has to be involved in making an ontology even one made for
practical purposes.

7 Relating the Positions

The introduction of conceptual ontology into computer- and communication sci-
ence is an example of how knowledge from humanities can be imported and
utilized in modern information technology. This emphasises the importance of
an ongoing dialogue between computer science and the humanities. Some of the
new findings in computer science may in fact be generated by the use of re-
search imported from the humanities. It is obvious that mathematicians and
computer scientists have developed ontology in several respects in order to make

What Has Happened to Ontology 437

it useful for their purposes. Good examples would be the notion of multiple in-
heritance and the focus on classifying and structuring relations. Evidently many
of these formalisms have also been used in philosophical logic. In this way a
useful re-export into the humanities has taken place. The notion of ontologi-
cal commitment is an important aspect of philosophical ontology. However, this
aspect is sometimes ignored in computer science, since ontology in these cases
has been seen as mainly an information practice. Nevertheless, it turns out by
closer inspection of the ontologies used in modern computer science that they
do in fact presuppose some rather specific, but hidden ontological commitments.
Maybe some of the computer scientists making these ontologies are not even
aware of these hidden commitments. Such a lack of awareness may turn out to
be rather problematic and the analysis therefore suggests that the computer sci-
entists involved with ontology should take the idea of ontological commitment
into serious account. As argued by Erik Stubkjær [27], an ontology should not
only be the result of a language study. In fact, it ought to be based on a coherent
and consistent theory which deals with reality in a satisfactory manner. It is an
obvious obligation on the developer of an ontology to discuss and defend his
choice of theory and the ontological commitments to which it gives rise.

Acknowledgements

The authors wish to thank lektor Anders Jensen and Ulrik Petersen for valuable
advice. The authors also acknowledge the stimulus and support of the ‘Euro-
pean project on delimiting the research concept and the research activities (EU-
RECA)’ sponsored by the European Commission, DG-Research, as part of the
Science and Society research programme — 6th Framework.

References

1. Ameriks, Karl and Naragon, Steve (ed.): Lectures on Metaphysics — part III, Meta-
physik Mrongovius 1790-1791, Cambridge University Press, (1997), p. 307 and 309.

2. Baumgarten, Alexander Gottlieb: Metaphysica. Editio VII. Halae Magdeburgicae
1779. Georg Olms Verlag, Hildesheim, (1963).

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American
May (2001), 284(5), p34, 10p, 2 diagrams, 2c.

4. Bielfeldt, D.: ‘Ontology’. in: The Encyclopedia of Science and Religion. Vol. 2,
(2003), p. 632.

5. Corazzon, Raul: Ontology. A resource guide for philosophers. Updated 12/10/2004.
(See http://www.formalontology.it), (2004).

6. Freedman, Joseph S.: European Academic Philosophy in the late Sixteenth and early
Seventeenth Centuries: The Life, Significance, and Philosophy of Clemens Timpler
(1563/4-1624), vol. 1-2, Georg Olms Verlag, Hildesheim, (1988).

7. Gruber, T.R.: A Translation Approach to Portable Ontologies. in: Knowledge Ac-
quisition, 5(2), pp. 199–220, (1993).

8. Guarino, N.: Formal Ontology in Information Systems. in: Guarino, N. (ed) Pro-
ceedings of FOIS’98, IOS Press, Amsterdam: Trento, Italy, pp. 3–15, (1998).

438 Peter Øhrstrøm, Jan Andersen, and Henrik Schärfe

9. Göckel (Goclenius), Rudolf: Lexicon philosophicum, quo tanquam clave philosoph-
icae fores aperiuntur. Francofurti, (1613), Reprographic reproduction, Georg Olms
Verlag, Hildesheim, (1964).

10. Hartmann, Georg Leonhard: Jacob Lorhard. Manuscript by Georg Leonhard Hart-
mann (1764-1828) transcribed by Ursula Hasler, Stadtarchiv St. Gallen.

11. Hesse, Wolfgang: Ontologie(n), GI Gesellschaft für Informatik e.V.
— Informatik-Lexikon, (2002), available online from the GI-eV website:
http://www.gi-ev.de/informatik/lexikon/inf-lex-ontologien.shtml

12. Kraft, Jens: Ontologie, eller Første Deel af Metaphysik. Sorøe Ridder-Academie,
Kiøbenhavn, (1751).

13. Lindof, Thessa: Fra middelalder til multimedier : Ramon Llull’s Ars Magna i en
ny belysning. (From the Middle Ages to Multimedia. The Ars Magna of Ramon Llull
in a New Perspective.) Ph.D. dissertation, Aalborg University, (1997).

14. Long, C.P.: The Ethics of Ontology. Rethinking an Aristotelian Legacy. State Uni-
versity of New York Press, (2004)

15. Lorhard, Jacob: Liber de adeptione veri necessarii, seu apodictici. Tubingae, (1597).
16. Lorhard, Jacob: Ogdoas scholastica. Sangalli, (1606).
17. Lorhard, Jacob: Theatrum philosophicum, Basilia, (1613).
18. McCarthy, J: Circumscription — A Form of Nonmonotonic Reasoning, in: Artifi-

cial Intelligence, 13, pp. 27–39, (1980).
19. Mora, José Ferrater: On the Early History of Ontology. in: Philosophy and Phe-

nomenological research, 24, pp. 36–47, (1963).
20. Orbst, L. and Liu, H.: Knowledge Representation, Ontological Engineering, and

Topic Maps. in: J. Park (ed), XML Topic Maps, Addison Wesley, pp. 103–148, (2003).
21. Parmenides: On Nature (‘ ’),
http://philoctetes.free.fr/parmenidesunicode.htm (n.d.).

22. Poli, R.: Framing Ontology. Available online from the Ontology resource guide for
philosphers: http://www.formalontology.it/essays/Framing.pdf

23. Schärfe, H.: Narrative Ontologies, in: C.-G. Cao and Y.-F. Sui (eds), Knowledge
Economy Meets Science and Technology – KEST2004, Tsinghua University Press,
pp. 19–26, (2004).

24. Smith, Barry: Ontology and Informations Systems. SUNY at Buffalo, Dept. of
Philosophy, <http://www.ontology.buffalo.edu/ontology>, (2004)

25. Sowa, John F.: Conceptual Structures: Information Processing in Mind and Ma-
chine, Addison–Wesley, Reading, MA, (1984).

26. Sowa, John F.: Knowledge Representation. Logical, Philosophical, and Computa-
tional Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, (2000).

27. Stubkjær, Erik: Integrating ontologies: Assessing the use of the Cyc ontology
for cadastral applications, in: Bjørke, J.T. and H. Tveite, (Eds): Proceedings of
ScanGIS’2001, Agricultural University of Norway, pp. 171–84 (2001).

28. Timpler, Clemens: Metaphysicae systema methodicum. Steinfurt, (1604).
29. Welty, C.: Ontology Research. in: AI Magazine, 24(3), pp. 11–12, (2003).
30. Witt, Charlotte: Ways of Being - Potentiality and Actuality in Aristotles’s Meta-

physics. Cornell University Press, London, (2003).
31. Wolfes, M.: Biographisch-Bibliographiches Kirchenlexikon, Band XVIII, Verlag

Traugott Bautz, (2001), Spalte 514–19.
32. Wolff, Christian: Philosophia prima sive ontologia. Reprographic reproduction of

second edition, Frankfurt/Leipzig (1736), Wissenschaftliche Buchgesellschaft, Darm-
stadt, (1962).

33. Øhrstrøm, P. and Schärfe, H.: A Priorean Approach to Time Ontologies. in: K.E.
Wolff et al. (eds.): Proceedings of ICCS 2004, LNAI 3127, (2004), pp. 388–401.

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 439-452, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Enhancing the Initial Requirements Capture of
Multi-Agent Systems Through Conceptual Graphs

Simon Polovina and Richard Hill

Web-Based and Multi-Agent Research Group
Faculty of Arts, Computing, Engineering and Sciences, Sheffield Hallam University

City Campus, Howard Street, Sheffield, S1 1WB, United Kingdom.
{s.polovina, r.hill}@shu.ac.uk

Abstract. A key purpose of Multi-Agent Systems (MAS) is to assist humans
make better decisions given the vast and disparate information that global
systems such as the Web have enabled. The resulting popularity of Agent-
Oriented Software Engineering (AOSE) thus demands a methodology that
facilitates the development of robust, scalable MAS implementations that
recognise real-world semantics. Using an exemplar in the Community
Healthcare domain and Conceptual Graphs (CG), we describe an AOSE
approach that elicits the hitherto hidden requirements of a system much earlier
in the software development lifecycle, whilst also incorporating model-
checking to ensure robustness. The resulting output is then available for
translation into Agent Oriented Unified Modelling Language (AUML) and
further developed using the agent development toolkit of choice.

1. Introduction

The Multi-Agent System (MAS) paradigm is proving a popular approach for the
representation of complex computer systems. Social abilities, without which agents
cannot interact, interoperate and most importantly, collaborate, are fundamental to the
coordination of enterprises and the systems required to support their operations.
Unified Modelling Language (UML, www.uml.org) Actors, whether they are human,
software or external legacy systems, appear to map readily to agents, and the notion
of goal attainment also indicates a plausible link between software abstraction and the
real-world [1].

The resulting popularity of Agent-Oriented Software Engineering (AOSE) has thus
demanded a methodology that facilitates the development of robust, scalable MAS
implementations that recognise these real-world semantics [2]. However, whilst many
approaches and tools assist the generation of MAS models, most of the development
has focussed upon the analysis and specification stages of the software development
lifecycle. Developers typically assemble abstract models, which are iterated into a
series of design models using the Unified Modelling Language (UML) or more
recently, Agent-Oriented Modelling Language (AUML) [3]. An approach that utilises
MAS platforms and toolkits such as JADE [4], to replicate existing systems from
class model representations is also attractive to developers as relatively simple

440 Simon Polovina and Richard Hill

mappings from classes to agents are realised, though it does require a familiarity with
Java and an understanding of how real-life interaction scenarios can be decomposed
and translated into program code. However, the generation of detailed program
designs, and subsequent code, often results in a significant departure from the more
abstract models as many important facets have not been elicited during the
requirements capture phase.

AOSE methodologies such as Gaia, Prometheus, Zeus and MaSE have attempted
to address these problems and provide a unifying development framework [5-8].
Except for Tropos [9] however, little work has been published that encompasses the
whole cycle from initial requirements capture through to implementation of MAS.

Tropos attempts to facilitate the modelling of systems at the knowledge level and
highlights the difficulties encountered by MAS developers, especially since notations
such as UML force the conversion of knowledge concepts into program code
representations [9]. As a methodology Tropos seeks to capture and specify ‘soft’ and
‘hard’ goals during an ‘Early Requirements’ capture stage, in order that the Belief-
Desire-Intention (BDI) architectural model of agent implementation can be
subsequently supported [10, 11]. Whilst model-checking is provided through the
vehicle of Formal Tropos [12], this is an optional component and is not implicit
within the MAS realisation process.

It is important to have a much deeper level of understanding of a system from the
outset, ensuring that fundamental business concepts are captured, described and
understood. Whilst conceptual modelling is often a means by which rich, flexible
scenarios can be captured, there is an inherent difficulty in specifying a design later in
the development lifecycle. This is compounded by the fact that flexibility often leads
towards lack of discipline, or consistency, in modelling, thus there is a need for a
concept-led, rigorous elicitation process, prior to MAS specification and design.

Our aim thus is to provide an extended and more rigorous means of capturing
requirements for MAS at the outset, by addressing the need to scrutinise qualitative
concepts that exist in the MAS environment, prior to more detailed analysis and
design with existing methodologies. Extensions to the UML meta model such as
AUML [3], have simplified the design and specification of agent characteristics such
as interaction protocols, yet the process of gathering and specifying initial
requirements is often limited to the discipline and experience of the MAS designer,
using established notations such as UML's use case diagrams [13].

This paper therefore proposes and describes an improved MAS design framework
that places a rigorous emphasis upon the initial requirements capture stage. Section 2
describes some of the shortcomings of requirements capture for MAS development,
before explaining the proposed process in Section 3. Section 4 uses an exemplar case
study in the Community Healthcare domain to explicate the process in detail,
illustrating the significance of the results.

2. Capturing Requirements

Whilst AUML addresses some of the complexities of MAS model generation, the
consideration of communication protocols, behaviours and allocation of tasks and

Enhancing the Initial Requirements Capture of Multi-Agent Systems 441

roles is inherently complicated as the problem domain to be modelled is generally
quite elaborate itself.

Polovina and Hill [14, 15] illustrated prior experience of modelling complex
healthcare payment scenarios with the advantages of Conceptual Graphs (CG)
including Peirce Logic, as explained elsewhere [16-19]. This study, conducted in
comparison to a combination of the Zeus Methodology and AUML, served to
illustrate that several problems remain at the requirements capture stage:
 Use case models are a convenient means of defining actors and for documenting

the existing processes. Use case notation is flexible enough to capture some of the
richer concepts; however there is no inherent model verification, so it is probable
that some significant details will be missed from the first iteration.

 Use case analysis is a procedure that elicits process-level tasks without challenging
qualitative issues.

 Whilst the process of describing and articulating use cases serves to elicit the
majority of the eventual agent behaviours, generation of an ontology of terms is
mostly based upon the existing processes together with the systems analyst's
knowledge and experience.

 Even though actors appear to map straight to agents, the assignment of behaviours
is often based on current practice, rather than from the systematic iteration from a
coherent model.
We accordingly believe that the consideration of ‘early requirements’ enables

much more capable MAS to be developed. If the above issues are thus ignored any
MAS would be unduly compromised.

3. The Process

The requirements capture process must therefore incorporate the following:
 A means of modelling the concepts in an abstract way that facilitates the

consideration of qualitative issues.
 An ability to reveal more system requirements to supplement the obvious actor-to-

agent mappings.
 An explicit means of model-checking before detailed analysis and design

specification.
 Improved support for capturing domain terms, with less reliance upon domain

experts.
We propose a process that improves the capture of requirements, in a robust and
repeatable manner, whilst also eliciting an awareness of significant facets of the
system much earlier during the requirements capture phase. The process is
summarised in the following stages:
1. Use Case Analysis - Requirements are gathered initially and represented as use

case models.
2. Model Concepts - The high level concepts are modelled as CG and used to describe

the overall scenario of the problem that is being investigated.
3. Transform with Transaction Model (TM) and Generate Ontology of Types - The

high level CG model is transformed with the Transaction Model (TM). The TM is

442 Simon Polovina and Richard Hill

a pattern that enables an agent to make a much more knowledgeable decision by
balancing the monetary and non-monetary costs and benefits of a candidate
transaction in a single integrated, interoperable environment [14-15, 16: 110-111].
As explained later the TM thus imposes a ‘balance-check’ rigour upon MAS
models, as well as generating an elementary hierarchy of ontological terms.

4. Model Specific Scenarios - Specific instances of the model are then modelled.
5. Inference with Queries and Validate - The model is tested by inferencing queries to

elicit rules for the ontology and refine the representation.
6. Translate to Design Specification - The model is then transformed into a design-

level specification such as AUML.
The process thus also incorporates an implicit means of validating the resulting

model, both as a means to drive iterations during the modelling process, and as an
overall validation prior to implementation.

4. A Healthcare Case Study

To illustrate the process, we describe in detail the elicitation steps with respect to an
ongoing exemplar in the Healthcare domain [14, 15]. Home-based community care
delivery is an example of a complicated, multi-agency social care system that is
plagued with inefficiencies and logistical problems. Social care systems typically
comprise a large number of autonomous functions and services, each interacting and
communicating with a variety of protocols. Thus the problem domain harnesses a vast
number of quantitative and qualitative issues that must be captured and represented
lucidly then translated into a functioning MAS so as not to limit an individual care
recipient’s quality of life. The first stage is to examine the use cases within the
system.

1. Use Case Analysis

Figure 1 illustrates the overall community healthcare scenario. Three actors and use
cases are identified.
 Elderly Person - An infirm, elderly person that chooses to continue to live in their

own home and request care support from the Local Authority.
 Local Authority - A localised representative body of the UK Government that

manages and administrates the delivery of healthcare services.
 Care Provider - A private organisation that delivers care services into the Elderly

Persons' home environment on behalf of the Local Authority.

2. Model Concepts

Figure 2 illustrates the same scenario modelled conceptually with a CG.

Enhancing the Initial Requirements Capture of Multi-Agent Systems 443

3. Transform with Transaction Model (TM) and Generate Ontology of Types

The Transaction Model (TM) is a useful means of introducing model-checking to the
requirements gathering process as well as a key but too often neglected component of
business processes [14, 15, 16: 110-111, 20]. This capture of requirements at the
outset ensures that the model-checking is not ‘bolted-on’ as an afterthought with all
its associated consequences [20]. The models are accordingly incomplete until both
sides of a transaction
‘balance’, and this has been
shown to lucidly represent
qualitative transactions such
as ‘quality of care received’
[14, 15].

Figure 3 shows that:
 The concepts identified

within the care scenario are
represented as a transaction
where one or more
‘economic event’ and
‘economic resource’ are
balanced against each
other.

 That balance is agreed by
one (or more) inside agent
and one (or more) outside
agent.

 Each concept is classified
in terms of type. Therefore
a hierarchy of types, which
is an important element of
an ontology, is derived.
The specialisation of the generic TM CG of Figure 3 onto the community

healthcare scenario is illustrated by the CG in Figure 4. What was not clear from the
outset (Figure 1) was the ‘source’ of the money - or which party pays the bill for the
care. The UK Welfare System has three particular scenarios:
 The Local Authority pays for the care in full.
 The Elderly Person pays for the care in full.
 The Local Authority and the Elderly Person make ‘part payments’ that amount to

100% of the care cost.
In order to satisfy the TM the developer (or ‘knowledge engineer’ in the context of

knowledge-based systems) would derive ‘Purchase_Agent’ as the supertype of
‘Local_Authority’ and ‘Elderly_Person’. (Alternatively as indicated elsewhere this
derivation could be part of an automated process, given the anticipated frequency of
such a scenario, indeed as could the derivation of Figure 4 from Figure 3 given the
added encoded knowledge of the healthcare domain that we describe [21].)

Elderly Person

Local Authority

Care Provider

manage
care

request
care

deliver
care

Fig. 1. Healthcare system as a use case model.

Fig. 2. Healthcare system represented as concepts.

444 Simon Polovina and Richard Hill

Fig. 3. Transaction Model (TM), after Polovina [14].

Fig. 4. Generic healthcare scenario after application of TM.

Fig. 5. Type hierarchy deduced from transformation with Transaction Model.

The elicitation of terms for the ontology is an important step during the agent
realisation process. Typically developers depend upon existing processes for the most
part, but the most significant contribution of this stage is the TM’s explicit balance-
check as noted earlier. The balance check also immediately raises the developer’s
awareness of the need to discover the appropriate terminology for the model. If the
model does not balance then the model itself is inherently too ill-defined and the
process cannot continue. Equally it is necessary to select the most appropriate
terminology, or else the model will be nonsensical.

Figure 5 illustrates the type hierarchy deduced from Figure 4. (Drawn using
Heaton’s rationale for showing the type hierarchy in CG [22].)

Enhancing the Initial Requirements Capture of Multi-Agent Systems 445

Fig. 6. Specific care scenario where the Local Authority (UK) pays.

4. Model Specific Scenarios

Once the generic model has been created, to assess its viability it is tested with some
general rules. We accordingly explore the specific scenario whereby an Elderly
Person has been assessed by the UK Government’s Social Services and is deemed to
be eligible to receive care at zero cost to the elderly person.

In this particular case (highlighted in Figure 6), we see that the ‘source’ of the
money to pay for the care is the Local Authority, “Sheffield City Council (SCC)” who
also manage the provision of the care. The care package is not delivered by the Local
Authority however; this is sold to them by private organisations, hence the need for a
‘Care Provider’. For our illustration the instance of the Care Provider is ‘Meals on
Wheels’. As the Local Authority thus incurs the cost of the care package, that is its
destination. Note that each concept in this figure now has a unique reference, denoting
a specific instance.

Conversely, the scenario exists where the Elderly Person is deemed to have
sufficient monetary assets not to warrant a free package of care. He or she accordingly
incurs its cost, and is thus its destination, rather than the Local Authority. This
situation is highlighted in Figure 7, where it can also be seen that the provision of the
care package is still managed by the Local Authority.

For both these scenarios (Figures 6 and 7) we also include the original use case
relationships of Figure 1. These are highlighted by the lighter shaded relations
‘requester’, ‘manager’ and ‘deliverer’. This ensures that these aspects of the
transaction are not lost and will be recognised in subsequent development.

446 Simon Polovina and Richard Hill

Fig. 7. Situation where Elderly Person pays.

5. Inference with Queries and Validate

We can see that from these foregoing CG that the general CG pattern shown as Figure
8 emerges. To evaluate this CG we examine the case where the Elderly Person’s
request has been assessed and that person’s ‘Assets’ are deemed to be less than a
particular threshold set by the Local Authority, who would therefore be the
destination of the care. As such the Local Authority in turn would provide that care to
the Elderly Person free of charge. Figure 9 shows this case.

Figure 10 illustrates the other situation, depicted by ‘less-than-threshold’ asset test
being set in a negative context. Here the Elderly Person would be the care destination
and costed to, as he or she is deemed to have assets that are not below the threshold.

So far we have explored the opposing scenarios whereby either the Local Authority
or the Elderly Person settles the bill for the care in full. The model recognises that the
Purchase_Agent may consist of more than one party (i.e. the Purchase_Agent would
take the plural “{*}” referent as shown in Figure 11). What about part-payment
situations, where the Elderly Person has sufficient assets to meet some of the cost?

As before, the generic model of concepts is produced, before specialising with an
individual scenario. The part-payment model in Figure 12 comprises the two parties,
Local_Authority and Elderly_Person, plus the Purchase_Agent derived earlier in
Figure 8. However, Figure 11 does not allow joint parties to be the Purchase_Agent.
Indeed we can no longer draw a co-referent link between Purchase_Agent,
Local_Authority and Elderly_Person.

Therefore we must re-iterate the model further to support Figure 12. Here the
Local_Authority and Elderly_Person have a split cost liability to the extent that is
variable depending on an individual's circumstances from a means or assets
assessment, whilst ensuring that the total liability adds up to 100%.

Enhancing the Initial Requirements Capture of Multi-Agent Systems 447

Fig. 8. Emergent general CG pattern for this TM.

Fig. 9. Elderly Person receives care package at zero cost.

We can now see that the Elderly_Person and Local_Authority agents are no longer
sub-types of the Purchase_Agent as originally illustrated, but are instead associated
via ‘liability’ relations. Referring back to the hierarchy of types defined in Figure 5,
we can now create a rule to supplant the ontology for the model. Figure 13 thus
depicts an ontological component that is no longer valid, hence set in a negative
context (or Peirce cut). The ontology is thus now depicted as shown by Figure 14.

Given the refinements discovered, the community care TM is updated in Figure 15
to reflect the new ontology that reflects the liability relationship. The co-referent links
are now valid thus the model can now be completed, enabling all three of the payment
scenarios to be accommodated.

448 Simon Polovina and Richard Hill

Fig. 10. Elderly Person pays for care package in full.

Fig. 11. Iterated CG, so far.

Fig. 12. Capturing part-payment situations.

Enhancing the Initial Requirements Capture of Multi-Agent Systems 449

6. Translate to Design Specification

Once the CG representations have been verified against the TM, it is then possible to
perform a translation to a design specification. The ‘inside’ and ‘outside’ agents in the
TM serve to provide direct mappings as follows:
 Inside Agent: Purchase_Agent, with liabilities jointly satisfied by Local_Authority

(“SCC”) / Elderly_Person (“Betty”).
 Outside Agent: Care Provider (“Meals_on_Wheels”).

Further iterations and graph joins (omitted for brevity) would illustrate the following
additional agents (where LA
stands for Local Authority):
 Care Request Agent:
Elderly_Person

 Purchasing Agent:
[Local_Authority]
-> (sub-agent) ->
[LA_Procurement_
Agent].

 Care Assessor Agent:
[Local_Authority]
-> (sub-agent) ->
[LA_Social_Worker].

 Finance Agent: Local_Authority -> (sub-agent) ->
[LA_Finance_Assessor].
From these direct translations we can construct agent bodies, to which specific sub-

tasks can be assigned. Each of the behaviours is informed by the relations specified
within the TM. For instance, referring back to Figure 1 the key abstract definition is
that: Management of Care is Local Authority. Accordingly, further
analysis of the models results in the ‘manage’ role of the Local Authority Agent
though its sub-agents identified above being decomposed into:
Assess_care_needs; Confirm_financial_eligibility;
Procure_care_package; Manage_care_delivery.
The process of revealing the agent behaviours is informed and contextualised by

the business protocols that TM has identified and the developer needs to apply across
the myriad agent protocols. For instance, the ‘Procure_care_package’
behaviour can accordingly be integrated from the TM to the FIPA Iterated Contract
Net protocol [23], thus devolving the task of obtaining the cheapest care package
available to a protocol to which a given task may be best suited.

This approach thus creates a situation whereby the method of requirements capture
concentrates on what the MAS must deliver from the outset to implementation,
assisting the developer in determining the extent to which the solution is influenced
by the business model.

Fig. 13. Ontological component that is no longer valid.

450 Simon Polovina and Richard Hill

Fig. 14. Revised ontology.

Fig. 15. Refined model to accommodate part-payment scenario.

Conclusions

We have described an approach that enhances the elicitation of MAS characteristics
during initial requirements capture, whilst also developing a set of ontological terms
which are relevant to the domain and its processes.

Additionally, as we demonstrate elsewhere [24] this approach does not
compromise further development with AUML, rather it ensures that the qualitative
issues have been captured and thoroughly considered prior to detailed system
specification. We believe that this approach offers the following significant
advantages:

Enhancing the Initial Requirements Capture of Multi-Agent Systems 451

 Abstract modelling of the concepts with CG provides a means of representing the
knowledge exchange within the resulting MAS. Since the high-level, qualitative
issues are addressed, developers can specify a system that includes behaviours that
can accommodate transactions such as ‘duty of care’.

 CG reveal subtleties during the initial requirements capture phase that are less
obvious than the direct mappings from actors to agents. The community care
example described clearly demonstrates the elicitation of an autonomous entity,
‘Purchase_Agent’ using this approach.

 After generating an initial model, specific scenarios can be inferred upon the
generic model, forcing a set of balance-check rules to be tested.

 Ontological terms are derived from the TM during the process of capturing
requirements. Again, the inherent balance check of the model ensures that terms
are agreed upon before the model is complete. This process ensures that debates
about slot names are conducted at the earliest opportunity possible, having the
immediate benefit of specifying more of the system detail before further model
development.
In summary we have described a framework for modelling MASs that incorporates

model checking to support the development of robust systems. The use of CG and the
notion of transactions enriches the requirements capture stage and serves as a
precursor to existing AOSE methodologies that require a design representation such
as AUML as an input. We feel that this would be a suitable primary discipline for the
myriad of agent-oriented software engineering methodologies that lack the necessary
detail for successful MAS requirements capture.

References

[1] M.D. Beer, I. Anderson and W. Huang, "Using agents to build a practical implementation of
the INCA (intelligent community alarm) system", in Proceedings of the fifth international
conference on Autonomous agents, 2001, pp. 106-107. http://doi.acm.org/
10.1145/375735.376013

[2] N.R. Jennings, "An Agent Based Approach for Building Complex Software Systems",
Comm. of ACM, vol. 44, pp. 35-41, 2001.

[3] B. Bauer, J.P. Muller and J. Odell, "Agent UML: A Formalism for Specifying Multiagent
Software Systems," in Agent-Oriented Software Engineering, Lecture Notes in Computer
Science, vol. 1957, P. Ciancarini and M.J. Wooldridge Eds. Springer-Verlag, 2000, pp. 91-
104.

[4] F. Bellifemine, A. Poggi and G. Rimassa, "JADE: a FIPA2000 compliant agent
development environment", in AGENTS '01: Proceedings of the fifth international
conference on Autonomous agents, 2001, pp. 216-217. http://doi.acm.org/
10.1145/375735.376120

[5] L. Padgham and M. Winikoff, "Prometheus: A Methodology for Developing Intelligent
Agents", "citeseer.ist.psu.edu/padgham02prometheus.html"

[6] F. Zambonelli, N.R. Jennings and M. Wooldridge, "Developing multiagent systems: The
Gaia methodology", ACM Trans.Softw.Eng.Methodol., vol. 12, pp. 317-370, 2003.

[7] H.S. Nwana, D.T. Ndumu, L.C. Lee and J.C. Collis, "ZEUS: a toolkit and approach for
building distributed multi-agent systems", in AGENTS '99: Proceedings of the third annual
conference on Autonomous Agents, 1999, pp. 360-361. http://doi.acm.org/
10.1145/301136.301234

452 Simon Polovina and Richard Hill

[8] S. DeLoach, "Multiagent Systems Engineering: A Methodology and Language for
Designing Agent Systems", citeseer.ist.psu.edu/deloach99multiagent.html

[9] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos and A. Perini, "TROPOS: An
Agent-Oriented Software Development Methodology", Journal of Autonomous Agents and
Multi-Agent Systems, vol. 8, pp. 203-236, 2004.

[10] M.P. Georgeff, B. Pell, M.E. Pollack, M. Tambe and M. Wooldridge, "The Belief-Desire-
Intention Model of Agency", in ATAL '98: Proceedings of the 5th International Workshop
on Intelligent Agents V, Agent Theories, Architectures, and Languages, 1999, pp. 1-10.

[11] L.W. Harper and H.S. Delugach, "Using Conceptual Graphs to Represent Agent Semantic
Constituents," in Conceptual Structures at Work: Proc. 12th Intl. Conf. on Conceptual
Structures (ICCS 2004), Lecture Notes in Artificial Intelligence, LNAI ed., vol. 3127, K.E.
Wolff, H.D. Pfeiffer and H.S. Delugach Eds. Heidelberg: Springer-Verlag, 2004, pp. 325-
338.

[12] A. Fuxman, R. Kazhamiakin, M. Pistore and M. Roveri, " Formal Tropos: language and
semantics (Version 1.0)". Accessed: 2005, 4th November. 2003. http://www.dit.unitn.it/~ft/
papers/ftsem03.pdf

[13] L. Mattingly and H. Rao, "Writing Effective Use Cases and Introducing Collaboration
Cases", The Journal of Object-Oriented Programming, vol. 11, pp. 77-87, 1998.

[14] S. Polovina, R. Hill, P. Crowther and M.D. Beer, "Multi-Agent Community Design in the
Real, Transactional World: A Community Care Exemplar," in Conceptual Structures at
Work: Contributions to ICCS 2004 (12th International Conference on Conceptual
Structures), H. Pfeiffer, K.E. Wolff and H.S. Delugach Eds. Aachen, Germany: Shaker
Verlag, 2004, pp. 69-82.

[15] R. Hill, S. Polovina and M.D. Beer, "Towards a Deployment Framework for Agent-
Managed Community Healthcare Transactions", in The Second Workshop on Agents Applied
in Health Care, 23-24 Aug 2004, Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI 2004), Valencia, Spain, IOS Press, 2004, pp. 13-21.

[16] J.F. Sowa, Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1984.

[17] J.F. Sowa, Knowledge Representation: Logical, Philosophical and Computational
Foundations, Brooks-Cole, 2000.

[18] S. Polovina and J. Heaton, "An Introduction to Conceptual Graphs", AI Expert, vol. 7, pp.
36-43, 1992.

[19] F. Dau, Lecture Notes in Computer Science 2892: The Logic System of Concept Graphs
with Negation: And Its Relationship to Predicate Logic, Heidelberg: Springer-Verlag, 2003.

[20] M.N. Huhns and M.P. Singh, "Service-Oriented Computing: Key Concepts and
Principles", IEEE Internet Computing, vol. 9, pp. 75-81, 2005.

[21] J. Lee, L.F. Lai, K.H. Hsu and Y.Y. Fanjiang, "Task-based conceptual graphs as a basis for
automating software development", International Journal of Intelligent Systems, vol. 15, pp.
1177-1207, 2000.

[22] J.E. Heaton, Goal Driven Theorem Proving Using Conceptual Graphs and Peirce Logic,
PhD Thesis, Loughborough University, 1994.

[23] FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS, "FIPA Iterated Contract
Net Interaction Protocol Specification". Accessed: 2005, 11/21. 2000. http://www.fipa.org/
specs/fipa00030/PC00030D.html

[24] R. Hill, S. Polovina and M.D. Beer, "From Concepts to Agents: Towards a Framework for
Multi-Agent System Modelling", Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), ACM Press, Utrecht University,
Netherlands, in press. http://www.aamas-conference.org/

F. Dau, M.-L. Mugnier, G. Stumme (Eds.): ICCS 2005, LNAI 3596, pp. 453-466, 2005.
 Springer-Verlag Berlin Heidelberg 2005

Outline of trikonic |>*k: Diagrammatic Trichotomic

Gary Richmond

City University of New York
New York, USA

garyrichmond@rcn.com

Abstract. C. S. Peirce’s research into a possible applied science of whatever
might be trichotomically analyzed has here been developed as trikonic – that is,
diagrammatic trichotomic. Such a science (and its proposed adjunct tool) may
have significant implications for the work of testbed collaboratories and other
virtual communities concerned with pragmatically directed inquiry and
knowledge representation.

1. Introduction

In a fragment entitled “Trichotomic” Charles S. Peirce, the originator of the science,
introduces trichotomic as “the art of making three-fold divisions” [EP I: 280]. This
new applied science rests upon Peirce’s triadic categorial distinctions, which he
outlines in many places, for example, in a letter to Victoria Lady Welby:

“Firstness is the mode of being of that which is such as it is, positively and without
reference to anything else.

Secondness is the mode of being of that which is such as it is, with respect to a
second but regardless of any third.

Thirdness is the mode of being of that which is such as it is, in bringing a second
and third into relation to each other.“ [CP 8.328]

Working from suggestions in the “Trichotomic” manuscript and in such related
writings of this period as “A Guess at the Riddle” and “One, Two, Three,” the author
has developed and here introduces trikonic,1 |>*k, method and proposed tool for
trichotomic analysis-synthesis in an internet age, directed especially towards
catalyzing the evolution of virtual communities.

Triadic divisions figure in nearly every discipline within Peirce’s purview of
theoretical science, prominently in his scientific and coenoscopic philosophy, and
most especially within his phenomenology and logic interpreted as semeiotic (a
tripartite science – theoretical grammar, critical logic, and theoretical rhetoric – all
directed to the analysis of semiosis, or “sign action” in one form or another).
Additionally, for a very few years (1885-1888), Peirce made an intensive study of a

1 The symbol |>*k is employed when referring to the applied science as here developed;

“trikonic” is used whenever an adjective is needed. The author introduced a few of the ideas
of this paper at the ICCS04 PORT workshop [11]

454 Gary Richmond

practical science allied to, but significantly different from, the theoretical ones which
tended to dominate his interests. Although he returned to theoretical researches in the
years following, the development of an applied science of trichotomic – facilitating
inquiry into anything which might be so analyzed – was seen by him as essential to
the growth of a scientific humanity, a change which he imagined it might help usher
in. In one of the drafts of “A Guess at the Riddle,” he comments that his fully
developed trichotomic analysis would constitute “one of the births of time.” [CP
1.354 Fn 1 p 181]

Yet, even in those communities which value Peirce’s contribution to the
development of a scientific philosophy, research into an applied trichotomic science
remains largely untouched by contemporary knowledge representation workers,
whereas from one perspective it would seem to constitute a quasi-necessary element
in the realization of Peirce’s pragmatism in collaboratory testbeds and other virtual
projects which incorporate this pragmatic perspective. It will be argued here that there
are many places where |>*k should help in facilitating certain researches,
conversations, and decision-making processes of vital interest and value to a virtual
community.

2. |>*k: Diagrammatic Facilitation of Trichotomic
Analysis-Synthesis

Peirce held that all thinking was essentially diagrammatic and that perhaps the most
important diagrams were visual ones [CP 2.778]. The principal purpose of |>*k is to
facilitate diagrammatic thinking concerning trichotomic relations of importance to a
given community’s research interests, making such diagrams available for (virtual)
group manipulation, commentary, etc. It is certain that not all things can be
trikonically analyzed – yet, in consideration of the Peircean reduction thesis2 – which
holds that all relations of more than three elements are reducible to triadic relations,
but triadic relations are not reducible to dyadic and monadic relations [CP 3.483, 1] –
there is probably not much of potential importance to a professional community
which could not be incorporated into such an analysis, especially since provisions are
also made within |>*k for important dyadic (and other –adic) relations where these
need be considered.

Regarding such pragmatic contexts as testbed collaboratories one might argue that,
given the self- and hetero-critical nature of effective collaborative work and the
decision-making processes needed in preparing for and accomplishing the system-
and tool-centered inquiries needed for the achievement of virtual community goals,
|>*k could prove to be of some considerable value in catalyzing movement towards
what has been called a Pragmatic Web [4, 5], in which definitions are provided of the
context and purpose of information that might be handled by the continuously
developing Semantic Web. It is maintained here that a tool for electronic trichotomic
could expand pragmatic analysis even beyond those domains which Peirce considered

2 Kelly Parker [9] gives this as “all higher order polyads can be reduced to triads; conversely,

all higher order polyads can be constructed from triads.” This issue is intimately connected to
Peirce’s valency theory, for which see [13]

Outline of trikonic |>*k: Diagrammatic Trichotomic 455

in his trichotomic, and exactly in the direction of contemporary collaboratory needs in
the projected suite of electronic tools that will support the growth of such virtual
communities (and in consideration of, for example, proposals of methods and tools,
discovery of the extent of participant agreement in principle and practice regarding
them, identification of specific areas of consensus and disagreement, establishment of
criteria for making decisions on issues relating to personnel, etc.).

In short, it will be argued that there are significant places within a pragmatically
focused community where a trichotomic analysis-synthesis would prove valuable.
Such analysis could be facilitated by |>*k as applied science and electronic tool for
analysis-synthesis concerning matters involving such three-fold divisions as those to
be considered below. While the tool itself is still in the planning stage, the
terminology, symbol system, diagrammatic approach, etc. have been fairly fully
fleshed out. However, only an outline and overview of |>*k will be presented here.

Despite the necessary omission for now of a further explication of the purpose,
design, structure and content of the proposed trikonic tool, a primary goal of |>*k is
the application of the theory and diagrammatic system to virtual inquiry and
collaboratory practice, so that >*k is proposed as a small, but possibly integral
component of a quasi-necessary suite of principles/meta-principles, tools/meta-tools
necessary for realizing the goals of collaboratories modeled on Peircean principles.

3. |>*k Analysis and Peircean Category Theory3

As its theory and practice inextricably interpenetrate, it is perhaps not possible to
introduce |>*k as diagrammatic system without at the same time introducing
fundamental categorial distinctions and relations pertaining to it. This shall, therefore,
quasi-necessarily be the approach followed below: basic trichotomic relations and
terminology will be introduced as the system itself is explicated. The paper introduces
a few convenient notational conventions associated with |>*k beginning with the
trikon symbol itself, diagramming trikonic relations in relation to the three Peircean
categories.

|>, the trikon symbol, represents a trichotomic relationship showing the three
categorial elements of any object under consideration and, in its vectorial part (to be
discussed later), the six possible paths through the three categorial elements.

Three Peircean categories are at the core of trikonic analysis-synthesis:

1ns = firstness
|>3ns = thirdness
2ns = secondness

When there is no vectorial movement, one should read the three categorial

divisions around-the-trikon as if occurring all-at-once, each necessitating each other,

3 Where plain text is used and figures not provided, |> represents the trikon symbol. Similarly,

where vector analysis is employed, but bent arrows are not provided, the direction of the path
is given to the left of the trikon. For example, 1/3/2 |> represents the process vector: from 1ns,
through 3ns, arriving at 2ns.

456 Gary Richmond

no one more fundamental than the others. They stand in a genuine4 trichotomic
relationship, where genuine is used as a technical term opposed to degenerate (in the
mathematical sense of these expressions).

The trikon symbol, |>, which rather resembles the outline of a “forward” button on
an electronic device (suggesting, perhaps, process or evolving structure or time’s
arrow, etc.), is devised to hint at the characteristic of each categorial element within
Peirce’s three Universes of Experience

In such mature work on theory of inquiry as his “The Neglected Argument,” Peirce
characterizes the Universes of Experience in this way:

Of the three Universes of Experience familiar to us all, the first comprises all
mere Ideas, those airy nothings . . . their Being consist[ing] in mere capability of
getting thought, not in anybody's Actually thinking them. . .The second Universe
is that of the Brute Actuality of things and facts. I am confident that their Being
consists in reactions against Brute forces. . . The third Universe comprises
everything whose being consists in active power to establish connections between
different objects, especially between objects in different Universes.

Such is everything which is essentially a Sign – not the mere body of the
Sign . . . but, so to speak, the Sign’s Soul, which has its Being in its power of
serving as intermediary between its Object and a Mind. Such, too, is a living
consciousness, and such the life, the power of growth, of a plant. Such is a living
constitution – a daily newspaper, a great fortune, a social “movement.” [CP
6.455]

Fig. 1.

4 “Every triad is either monadically degenerate, dyadically degenerate, or genuine. A
monadically degenerate triad is one which results from the essence of three monads, its
subjects. A dyadically degenerate triad is one which results from dyads. A genuine triad is
one which cannot be resolved in any such way.” [CP 1.473]

Outline of trikonic |>*k: Diagrammatic Trichotomic 457

Upon such conceptions, the categories are placed around the trikon as follows:

1ns, ideas (“airy nothings,” mere possibility of being actualized, so, “floating” at
the top)
|>3ns, habits (tending to bring 1ns

 and 2ns
 into relationship in futuro, so “to the

right”)
2ns, events (brute actions and reactions, existential and earthbound, so, “sinking”
to the bottom of the diagram)

These, in turn, yield Peirce’s three Universal Categories:

possibility
|>necessity
actuality

From an even more abstract perspective, one can also see the categories as

representing first, something, second, other, third, that which brings something and
another into relationship:

what is in itself
|>bringing into relation (mediate)
correlate to another

There are naturally lively associations for each of the categories, of which this

selection, found in the “Trichotomic” manuscript (EP I: 280), is representative: “First
is the beginning, that which is fresh, original, spontaneous, free. Second is that which
is determined, terminated, ended, correlative, object, necessitated, reacting. Third is
the medium, becoming, developing, bringing about.”

In addition to the universal categories, there are equivalent existential categories:

feeling
|>thought:
action-reaction

The colon after “thought” above signals that that element will itself now be

trikonically analyzed.
So, within thought, one can identify three logical modalities. These are more or

less equivalent to the logical quantifiers:

may be == vague,
|> will necessarily be if. . . == general,
actually is == specific, !

458 Gary Richmond

There are indeed many other important authentic trichotomic relations operative in
virtually all the theoretical sciences and, no doubt, even beyond these in the vast
trichotomic semeiotic universe Peirce conceives.5

4. Triadic Semeiotic6

Yet, as important as these singular trikonic relations are, an even more significant set
of relations, at least from the standpoint of what might be called an evolutionary
pragmatism, is made up of the various groups and complexes of trikons – “trikons of
trikons,” so to speak, such as those which figure prominently in the analysis of
semeiotic grammar. Here trichotomic analysis begins to take on a richness and
suggestiveness which hint at the evolutionary movement possible within a semeiotic
reality which Peirce explicates in his metaphysical writings (see, for example, RLT).
Radically different from such dyadic semiotics as, for example, Saussure’s semiology
and much of the twentieth century semiotics deriving from it, Peirce’s semeiotic
posits three essential elements within an integral whole, the semeiotic triad
abstracting sign, object, and interpretant,7 showing relationships holding between the
sign and the object as it is represented for an interpretant sign (not necessarily an
actually existing interpreting person: an interpretant could, for example, be a
computer, or a future interpreter, etc.). This trichotomy exemplifies the “life of the
sign,” its vitality and semiotic movement. The |> always represents a genuine
semeiotic relationship:

sign
|> interpretant
object

From the standpoint of Peirce’s categorial perspective, this suggests that the sign

itself is a mere possibility (e.g., “cat” could be “chat” or “gato” or “gatto”),
representing a brute actuality “(feline-being-in-the-world”), to some possible or actual
interpretant, (e.g., a computer program generating an ontology of concepts related to
“feline being”). In section 5 below, we will see how the semeiotic triadic “always-
already” implies semiosis, or “sign action” as soon as vectorial movement is
considered. But, for now, analyzing the sign/object/interpretant more abstractly and,
as it were, “statically,” the three sign elements above yield a nonadic trikonic group,

5 “. . .It seems a strange thing, when one comes to ponder over it, that a sign should leave its

interpreter to supply a part of its meaning; but the explanation of the phenomenon lies in the
fact that the entire universe – not merely the universe of existents, but all that wider universe,
embracing the universe of existents as a part, the universe which we are all accustomed to
refer to as “the truth” – that all this universe is perfused with signs, if it is not composed
exclusively of signs. Let us note this in passing as having a bearing upon the question of
pragmaticism.” [CP 5.448]

6 Peirce’s idiosyncratic spelling is employed to distinguish it from other, typically dyadic forms
of semiotic.

7 The interpretant a.k.a. the interpretant sign is the sign into which the interpreted sign is
interpreted.

Outline of trikonic |>*k: Diagrammatic Trichotomic 459

the 9-adic diagram of possible relations of these three in consideration of certain
categorial constraints – three tripartite “parameters” for every sign.

Combining these to form embodied signs types, where each sign has an actual
(triadic) relationship to the object, the sign in itself, and the interpretant, and in
consideration of what Liszka has termed the “qualification rule,”8 Peirce constructs
the well known 10-adic Classification of Signs. In other words, the “parameters,” as
they are referred to here, are not completely independent of one another, and the
combinatorial upshot is not 27 kinds of sign but ten. Here Peirce analyzes ten classes
of embodied signs in what he characterizes as the order of involution.9 It is a matter of
some debate, but this researcher would suggest that a complete |>*k analysis strongly
supports the notion that the 9-adic diagram presents only the types of relationships
possible for yet to be embodied sign classes. In a word, the nine sign “parametric”
choices do not themselves represent embodied signs, whereas the ten classes do; i.e.,
not the nine, but Peirce’s ten classes of sign, are the exhaustive set of sign classes
fully determinate in terms of this level of classification.

Fig. 2.

8 “According to Peirce, qualisigns, icons, and rhemes are phenomenologically typed as firsts (of

thirds) or possible, while legisigns, symbols, and arguments are phenomenologically typed as
thirds (of thirds). Consequently . . . the total possible permutation[s] of twenty-seven
[possible] classes is reduced to ten.” [8]

9 In |>*k involution is a primary expression of the vector of analysis – from 3ns through 2ns to
1ns, and in the case of each of the ten sign classes, commencing at the interpretant, moving
through the object, arriving at the sign itself – so that, for example, the sign type at the top of
the 10-adic diagram is termed by Peirce a rhematic iconic qualisign, say, a particular red hue.

460 Gary Richmond

These ten classes themselves naturally form three “trikons of trikons” with an
additional single central |> placed within, further illustrating the deep trichotomic
nature of semeiotic as Peirce conceived it.10

5. |>*k Process: Vector Analysis-Synthesis

At the heart of |>*k or, better, as its methodological advance guard, are six vectors.11

Fig. 3.

In a passage that points both toward trichotomic vector analysis AND the

“reduction thesis,” Peirce writes.

. . . .Now the triad . . . has not for its principal element merely a certain
unanalyzable quality sui generis. It makes [to be sure] a certain feeling in us.
[But] the formal rule governing the triad is that it remains equally true for all six
permutations of A, B, C; and further, if D is in the same relation at once to A
and B and to A and C, it is in the same relation to B and C; etc. [CP 1.471]

In |>*k these six vectors (or, directions of movement through the trikon) factor

significantly, all of them being authentic permutations of logical – and in some cases,
temporal – paths of the relations holding between the 1ns, 2ns, 3ns

 of the object under
consideration. For instance, Parmentier [10] has noted that a vector of determination
(whereas the object determines a sign for an interpretant) and a vector of
representation (whereas the interpretant creates a sign to represent an object) move in
opposite directions.

10 A second 10-adic classification, involving specifically the interpretant element of semiosis,
permits the generation of sixty-six not wholly independent sign types.

11 Richard Parmentier uses the term “vector” in the sense of a path or direction of movement
through the three categories. Parmentier, however, only identifies two vectors.

Outline of trikonic |>*k: Diagrammatic Trichotomic 461

…a sign…
2/1/3|> …for an interpretant.
The object determines…

…creates a sign (for example, a diagram)…
3/1/2 |> An interpreter (say, a scientist)…
…of a complex object.

The former, the vector of determination, figures prominently in many of Peirce’s

semeiotic analyses. Indeed, one finds descriptions of all six vectors (“orders”)
scattered through Peirce’s voluminous writings, including analyses of pairs of vectors.
For example, in a discussion of the categories in “The Logic of Mathematics” paper
[CP1.417-520] Peirce analyzes Hegelian dialectic as following a vector of order,
whereas thesis (1ns) is followed by antithesis (2ns) thus leading to synthesis (3ns). He
opposes to this (Hegelian) “order of evolution” an inverse “order of involution or
analysis” (vector of analysis) by which, indeed, the three universal categories are in a
sense themselves derived, Peirce first positing 3ns which involves 2ns which in turn
involves 1ns. Peirce held that Hegel’s order, as logically significant a it undoubtedly is,
yet gains its generative power and effective meaning only when seen in the light of
the categories. So, despite the heuristic value of Hegel’s dialectical insight, Peirce’s
own analysis of evolution as such follows a different order (vector of process)
whereas chance sporting (1ns) leads to patterns of habit-formation (3ns) culminating in,
say, some actual structural change in an organism (2ns). The last of the six paths
(vector of aspiration) represents in a sense the unique character of specifically human
evolution, that is, the evolution of consciousness which, from a Peircean perspective,
is dependent upon critical self-control.

While it is expected that the six expressions used here to name the vectors will for

the most part hold, they are nevertheless offered as mere temporary expedients until
the development of a trikonic tool will allow for such semeiotic inquiry as might
bring about agreement concerning optimal terminology in vectorial analysis. There
would indeed seem to be considerable creative potential for a semeiotic which could
integrate the generative power of interpenetrating and transactional vectorial
movement.

The thematization and exploration of the six vectors (especially as they

interpenetrate in hierarchies of constraint, dependence/independence, etc.) aims at
bringing new light, and ultimately a more systematic treatment, to some of the
difficult issues which arise especially in semeiotic analysis. In short, the vector issue
invites treatments involving graphically logical aspects of dependence and constraint,
correlation, as well as the “living” reflection of the categories by the semeiotic triad.
The proposed trikonic tool is meant to facilitate such treatment in forms suitable and
editable for purposes of ongoing dialogue and comparison among many participants
in any given collaborative inquiry (or activity).

While it is certainly possible that an individual analyst with nothing more than pen

and paper might benefit from using Peirce’s trichotomic theory and the diagrammatic
system here outlined, yet the thrust of |>*k is towards empowering virtual

462 Gary Richmond

communities employing it. It is anticipated that the approach will eventually
contribute to an increase in shared understanding by the members of a given virtual
community in any number of matters of interest and importance to it. Agreement in
any matter so considered would in some sense represent the synthesis of the trikonic
analysis in which not only various trikonic elements and relations (and complexes of
trikons embedded in yet other trikonic relations, and strings of such relations, etc.) are
identified, but especially as the results of these analyses are directed to the concerns
of virtual communities in their attempts to reach their goals collaboratively. Of
course, not all six vectors need be considered in any given analysis (or synthesis),
although it is likely that several or all are operative in some ways and to some extent
in most complex semioses.

Consider, for example, the forms of inference as given in the syllogism.
Associating the syllogism’s rule, case, result with the three categories results in the
following: rule is naturally connected to 3ns

 as expressing lawfulness, case (as
existential case) with 2ns, and result with the idea, character, feeling, image,
possibility, etc. which is being considered, so 1ns

 :

Rule/case/result:
result (these beans are white)
|>rule (all the beans from this bag are white)
case (these beans are from this bag)

The three types of inference:

abduction (representation vector):
this handful of beans that I find on the table are white;
3/1/2 |>All the beans from this particular bag are white,
this handful of beans are possibly from this bag.

deduction (analytical vector):
these beans will necessarily be white.
3/2/1|> All of the beans from this bag are white,
these beans are drawn from this bag;

induction (determination vector):
all these beans are white;
2/1/3 |> all the beans in the bag are probably white.
These beans are drawn from this bag,

In a further step these three inference patterns taken together can be seen to have

their own vectorial relationship when considered as elements of an inquiry (for
example, an experiment conducted on scientific principles) where, in Peircean inquiry
at least, the following three steps occur: (1) an abduction – in experimental science,
retroduction to an hypothesis – gives rise to (2) the deduction of what would
necessarily follow if the hypothesis were correct, and upon which an experiment may
be constructed, followed by (3) the actual inductive testing of the hypothesis. (Such
inquiry expresses, nearly to perfection, the process vector).

Outline of trikonic |>*k: Diagrammatic Trichotomic 463

abduction (the case is possible)
1/3/2|> deduction (the result is necessary)
induction (the rule is probable)

The point here (and by way of example) is that trikonic vector analysis in

consideration of such complex semeiotical processes as inquiry—with its
characteristic sequence of three stages following the vector of process (with each of
these three stages being a unique form of inference having its own characteristic
vectorial path)—might contribute to the advance of both theoretical and applied logic
of inquiry.

6. Applications to Testbeds and Other Pragmatically Informed
Virtual Communities

The principal purpose of |>*k vector analysis is to explicate this sort of vectorial
movement both theoretically and as it might appear in any actual semiosis, most
notably those activities directed towards the pragmatic realization of complex virtual
communicative projects. Trikonic analysis – especially in conjunction with such a
consensus-building instrument as Aldo de Moor’s GRASS tool [3] – could lead to a
kind of trikonic synthesis catalyzing the further evolution of virtual community
development. How all this is to be accomplished can hardly be considered here.
However, one can say with de Moor that it ought to be a “user-driven” model,
participants together legitimatizing the specifications concerning the meaning of the
information they consider together, the collaborative processes to be employed within
their own communities, and so forth. [2]

Collaboratories built on pragmatic principles are virtual communities where users
ought to play an active role, especially as many significant decisions need be made
concerning, for example: the role of each member, the nature of and timing of each
member’s work in relation to the other’s and to the project(s), the selection of tools to
be employed for use individually and together, as well as individual and group
reflection upon the process as a whole (including the structure and goals of the
collaboratory itself). It is maintained here that all of these aspects of collaboratoriality
would be facilitated and catalyzed by employing a trikonic approach to testbed
inquiry, practice, decision making, etc. Wherever Peircean pragmatic logic, principles
and methods factor emphatically within a virtual project, |>*k promises to be of
significant intellectual and social benefit. In such collaboratories, pragmatic guidance
would seem to be invaluable in support of virtual community development, for it is at
the pragmatic (and not the semantic) level that such conversations, inquiries, and
decisions are made. |>*k, facilitating such pragmatic guidance, could have a
significant role to play in whole-system development.

Possible applications of |>*k to such virtual community development may be

suggested by considering two examples of vectorial analysis as they relate to
collaboratory activity. For example, the process vector might be applied strategically
to testbed operations employing pragmatic approaches to inquiry and experimentation
(see section 5). In this case (presented here somewhat abstractly), the retroduction of

464 Gary Richmond

hypotheses of interest and concern to a collaboratory, such as a proposed tool being
considered for use, 1ns, leads to the explication of the implications for testing as this
relates to the suite of tools already being used, as well as to personnel to be involved,
financial considerations, etc. 3ns, followed, perhaps, by the decision to test, and the
actual testing (under agreed upon conditions), 2ns.

At a later stage, and in further consideration of virtual community development, a
given virtual collaborative community, 2ns, having selected and tested a certain
complete suite of tools, etc., 3ns, finds that it begins to more and more fully achieve its
collaborative goals, 1ns.

These unit, abstract analyses can, however, only hint at the rich possibilities for
employing |>*k in actual pragmatic inquiries within virtual communities.

7. Summary, Conclusion and Further Prospects

Recapitulating some of the basic themes and goals of |>*k:

Theoretically, it is meant to explicate:

 basic trichotomies.
 trikons composed of trikons
 trikons in series
 trikonic vector analysis

Pragmatically, and following upon the theoretical analysis, especially vector analysis,
it is meant to support:

 collaborative inquiry
 testbeds and other collaborative projects
 consensual evolution of consciousness

As previously noted, although not everything under the sun can be trikonically
analyzed, yet significant dyadic (and other –adic) relationships are also dealt with in a
chapter of |>*k not considered in this brief introduction. |>*k may be capable of
providing rather complex and complete analyses in areas of vital concern to virtual
communities.

Peirce is considered by some to be the most original and creative genius that

America has produced. His contributions – to phenomenology, to logic as semeiotic,
and to a rather large number of other sciences – have been seminal in conceptual
structures research.[6] Peirce’s contributions can be seen to include especially his
pragmatism, semeiotic, critical and graphical logic, most notably existential graphs as
transformed into conceptual graphs by John Sowa.

In recent work with Arum Majumdar on analogical reasoning [12], Sowa has again
demonstrated how Peirce’s logical ideas are a veritable prerequisite for progress
towards NLP and in establishing the conditions necessary for the further progress
towards a Semantic Web.

Similarly, Mary Keeler has insisted that normative science and, especially,
pragmatism as method be tested in collaboratories, paradigmatically in a project

Outline of trikonic |>*k: Diagrammatic Trichotomic 465

appropriately involving Peirce’s own work, the projected digitizing of his manuscripts
as the PORT project.

Both Keeler and Sowa have stressed how quintessential the theory and practice of
Peirce’s pragmatism is to the possible success of virtual community projects as are
represented by such communities as ours. Both these researchers have allied virtual
community development directly to the evolutionary, and ultimately, co-evolutionary
pragmatism of Peirce. It is anticipated that Peirce’s category theory – upon which the
|>*k project is based – will begin to demonstrate its value to research, and to the other
creative work of virtual communities, especially that relating to knowledge
representation.

It is certain that in order to be effectively employed within virtual communities
|>*k requires additional principles, notably methodological meta-principles, as well as
advanced tools for realizing these principles in the interest of consensus building.
Seen from a pragmatic perspective, collaboratories will need participants interested in
such inquiry, tool building, tool and principle testing, virtual community building, etc.

And while |>*k might contribute to bringing about diagrammatically necessary and

sufficient conditions for trikonic analysis-synthesis of any topic or issue amenable to
such analysis, and although trikonic theory/practice may perhaps help generate
themes and topics for significant discussion within the community, |>*k itself does
not directly bring about agreement concerning the subject of any given analysis. This
will require a companion tool permitting the individual-communal observation of
changing patterns of the extent of agreement (also significant disagreement), but
especially highlighting deep consensus when it does occur, in particular inquiries and
experiments. Additionally, the results of the research will need to be documented in
group reports summarizing the experimental findings (in some cases including the
experimental process) for the purpose of developing action plans and the like.

Promising research from diverse disciplines has begun to converge on the

problematic of collaboratory development. For example, building on the work of
Peter Skagestad--who first distinguished Artificial Intelligence (AI) from Intelligence
Augmentation (IA), showing that Peirce provided a theoretical basis for the latter
much as Alan Turing had for the former--Joseph Ransdell [14] has argued that new
applications of IA should perhaps be informed in their design by Peirce’s notion that
all thought is dialogical. |>*k means to contribute to and to catalyze exactly that
manner of dialogue.

Such meta-theoretical principles as the assurance that the participants in a virtual

collaboratory will be involved in specifications relating to all matters appropriate to
the role(s) of each participant within the collaboratory (determining the principles
underlying the community, its processes, methods, structure, tools considered and
chosen together and ensemble, and so forth). One promising application of such
meta-theoretical principles to group report writing, the GRASS project [3], might be
suitably adapted for charting progress towards agreement in trikonic analyses. In
conjunction with such meta-principles and tools |>*k would hope to play its small part
in the furthering of Intelligence Augmentation.

466 Gary Richmond

[Note: The author is indebted to Ben Udell for creating the graphics illustrating
this paper, for his help in editing the text, and for his “parametric” language in the
analysis of the 9-adic sign division.]

References

[CP] Collected Papers of Charles Sanders Peirce, 8 vols. Edited by Charles Hartshorne, Paul
Weiss, and Arthur Burks (Harvard University Press, Cambridge, Massachusetts, 1931-
1958).

[EP] The Essential Peirce, 2 vols. Edited by Nathan Houser, Christian Kloesel, and the Peirce
Edition Project (Indiana University Press, Bloomington, Indiana, 1992, 1998).

[RLT] Reasoning and the Logic of Things: the Cambridge Conferences Lectures of 1898.
Edited by Kenneth Laine Ketner (Harvard University Press, Cambridge, Massachusetts,
1992).

1. R. Burch (1991) A Peircean Reduction Thesis. Texas Tech University Press.
2. A. de Moor (1999) Empowering Communities: A Method for the Legitimate User-Driven

Specification of Network Information Systems. Ph.D. thesis, Tilburg University, the
Netherlands.

3. A. de Moor. GRASS (Group Report Authoring Support System): Arena for Societal
Discourse. http://grass-arena.net/

4. A. de Moor (2002). Making Doug's Dream Come True: Collaboratories in Context. In Proc.
of the PORT's Pragmatic Web Workshop, Borovets, Bulgaria, July 15. 12

5. A. de Moor, M. Keeler, and G. Richmond (2002). Towards a Pragmatic Web. In Proc. of the
10th International Conference on Conceptual Structures (ICCS 2002), Borovets, Bulgaria,
Lecture Notes in Artificial Intelligence, No. 2393, Springer-Verlag, Berlin.

6. M. Keeler. Hegel in a Strange Costume: Reconsidering Normative Science for Conceptual
Structures Research. In Proc. of the 11th International Conference on Conceptual Structures
(ICCS 2003), Dresden, Germany Lecture Notes in Artificial Intelligence, No. 2746,
Springer-Verlag, Berlin.

7. M. Keeler. Using Brandom’s Framework to Do Peirce’s Normative Science: Pragmatism as
the Game of Harmonizing Assertions? In Proc. of the 12th International Conference on
Conceptual Structures (ICCS 2004), Huntsville, Alabama, Lecture Notes in Artificial
Intelligence, No. 3127, Springer-Verlag, Berlin.

8. J. J. Liszka, A General Introduction to the Semeiotic of Charles Sanders Peirce.
Bloomington and Indianapolis. Indiana University Press. 1996.

9. K.A. Parker, The Continuity of Peirce’s Thought. Nashville & London: Vanderbilt
University Press, 1998.

10. R. J. Parmentier,. “Signs' Place in Medias Res: Peirce's Concept of Semiotic Mediation.”
Semiotic Mediation: Sociocultural and Psychological Perspectives. Ed. Mertz, Elizabeth &
Parmentier. 1985.

11. G. Richmond (with B. Udell), trikonic, slide show in ppt format of presentation at PORT
Workshop, ICCS 2004 Huntsville, Alabama.
http://members.door.net/arisbe/menu/library/aboutcsp/richmond/trikonicb.ppt

12. J. Sowa and A. K. Majumdar, “Analogical Reasoning” In Proc. of the 11th International
Conference on Conceptual Structures (ICCS 2003), Dresden, Germany Lecture Notes in
Artificial Intelligence, No. 22746, Springer-Verlag, Berlin.

13. A Thief of Peirce: The Letters of Kenneth Laine Ketner and Walker Percy. Ed. by Patrick
Samway, S.J. University Press of Mississippi, 1995.

14. J.Ransdell (2002) The Relevance Of Peircean Semiotic To Computational Intelligence
Augmentation.
http://members.door.net/arisbe/menu/library/aboutcsp/ransdell/ia.htm

Author Index

Andersen, Jan, 425
Angelova, Galia, 367

Blumenstein, Michael, 411
Bruno, William J., 381

Compatangelo, Ernesto, 267
Corby, Olivier, 19
Croitoru, Madalina, 267

Dau, Frithjof, 152
de Moor, Aldo, 1
Deer, Peter, 411
Devignes, Marie-Dominique, 323
Dieng-Kuntz, Rose, 19
Domingo, Shaun, 281
Ducrou, Jon, 295

Eklund, Peter, 281, 295

Ferré, Sébastien, 166
Frambourg, Céline , 181
Fuchs, Norbert E., 51

Galitsky, Boris A., 307
Genest, David, 353
Godin, Robert, 181
Goguen, Joseph, 52

Hill, Richard, 439
Hitzer, Pascal, 223
Horrocks, Ian, 78
Hovy, Eduard, 91

Joslyn, Cliff A., 381

Kaiser, Tim B., 195
Kalfoglou, Yannis, 107
Keeler, Mary A., 396

Klinger, Julia, 209
Krötzsch, Marcus, 223
Kuznetsov, Sergei O., 307

Loiseau, Stéphane, 353

Martin, Philippe, 411
Mellish, Chris, 267
Messai, Nizar, 323

Naeve, Ambjörn , 136
Napoli, Amedeo, 323

Øhrstrøm, Peter, 425

Paliouras, Georgios, 119
Palmér, Mattias, 136
Petersen, Wiebke, 337
Pfeiffer, Heather D., 396
Polovina, Simon, 439

Raimbault, Thomas, 353
Richmond, Gary, 453
Ridoux, Olivier, 166

Samokhin, Mikhail V., 307
Schärfe, Henrik, 425
Schorlemmer, Marco, 107
Sigonneau, Benjamin, 166
Smäıl-Tabbone, Malika, 323

Valtchev, Petko, 181

Wille, Rudolf, 238
Wolff, Karl Erich, 250
Wormuth, Bastian, 295

Zhang, Guo-Qiang, 223

	Frontmatter
	Invited Papers
	Patterns for the Pragmatic Web
	Conceptual Graphs for Semantic Web Applications
	Knowledge Representation and Reasoning in (Controlled) Natural Language
	What Is a Concept?
	Applications of Description Logics: State of the Art and Research Challenges
	Methodologies for the Reliable Construction of Ontological Knowledge
	Using Formal Concept Analysis and Information Flow for Modelling and Sharing Common Semantics: Lessons Learnt and Emergent Issues
	On the Need to Bootstrap Ontology Learning with Extraction Grammar Learning
	Conzilla --- A Conceptual Interface to the Semantic Web

	Theoretical Foundations
	Variables in Concept Graphs
	Arbitrary Relations in Formal Concept Analysis and Logical Information Systems
	Merge-Based Computation of Minimal Generators
	Representation of Data Contexts and Their Concept Lattices in General Geometric Spaces
	Local Negation in Concept Graphs
	Morphisms in Context
	Contextual Logic and Aristotle's Syllogistic
	States of Distributed Objects in Conceptual Semantic Systems

	Knowledge Engineering and Tools
	Hierarchical Knowledge Integration Using Layered Conceptual Graphs
	Evaluation of Concept Lattices in a Web-Based Mail Browser
	D-SIFT: A Dynamic Simple Intuitive FCA Tool
	Analyzing Conflicts with Concept-Based Learning
	Querying a Bioinformatic Data Sources Registry with Concept Lattices
	How Formal Concept Lattices Solve a Problem of Ancient Linguistics
	A New Method to Interrogate and Check UML Class Diagrams

	Knowledge Acquisition and Ontologies
	Language Technologies Meet Ontology Acquisition
	Weighted Pseudo-distances for Categorization in Semantic Hierarchies
	Games of Inquiry for Collaborative Concept Structuring
	Toward Cooperatively-Built Knowledge Repositories
	What Has Happened to Ontology
	Enhancing the Initial Requirements Capture of Multi-Agent Systems Through Conceptual Graphs
	Outline of {\itshape trikonic}\rhd<Superscript>*</Superscript>{\itshape k}: Diagrammatic Trichotomic

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

